--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: emotion_recognition results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.6125 --- # emotion_recognition This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.2014 - Accuracy: 0.6125 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.0842 | 1.0 | 10 | 2.0668 | 0.175 | | 2.039 | 2.0 | 20 | 2.0070 | 0.2875 | | 1.9285 | 3.0 | 30 | 1.8789 | 0.4062 | | 1.7699 | 4.0 | 40 | 1.6942 | 0.425 | | 1.6135 | 5.0 | 50 | 1.5758 | 0.4313 | | 1.5056 | 6.0 | 60 | 1.4884 | 0.55 | | 1.3896 | 7.0 | 70 | 1.3999 | 0.5437 | | 1.2804 | 8.0 | 80 | 1.3563 | 0.5437 | | 1.2043 | 9.0 | 90 | 1.3244 | 0.55 | | 1.1231 | 10.0 | 100 | 1.2775 | 0.6062 | | 1.0652 | 11.0 | 110 | 1.2567 | 0.575 | | 1.0005 | 12.0 | 120 | 1.2833 | 0.5563 | | 0.9878 | 13.0 | 130 | 1.2277 | 0.5687 | | 0.9714 | 14.0 | 140 | 1.2557 | 0.5563 | | 0.9057 | 15.0 | 150 | 1.2187 | 0.6125 | | 0.8854 | 16.0 | 160 | 1.2612 | 0.5437 | | 0.8478 | 17.0 | 170 | 1.2450 | 0.5437 | | 0.8601 | 18.0 | 180 | 1.2456 | 0.5375 | | 0.8498 | 19.0 | 190 | 1.2413 | 0.5875 | | 0.8775 | 20.0 | 200 | 1.1928 | 0.6 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1