dat-lequoc
commited on
Upload README.md with huggingface_hub
Browse files
README.md
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: Kortix/FastApply-7B-v1.0
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
license: apache-2.0
|
6 |
+
tags:
|
7 |
+
- text-generation-inference
|
8 |
+
- transformers
|
9 |
+
- unsloth
|
10 |
+
- qwen2
|
11 |
+
- trl
|
12 |
+
- sft
|
13 |
+
- fast-apply
|
14 |
+
- instant-apply
|
15 |
+
- llama-cpp
|
16 |
+
- gguf-my-repo
|
17 |
+
---
|
18 |
+
|
19 |
+
# dat-lequoc/FastApply-7B-v1.0-Q4_K_M-GGUF
|
20 |
+
This model was converted to GGUF format from [`Kortix/FastApply-7B-v1.0`](https://huggingface.co/Kortix/FastApply-7B-v1.0) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
|
21 |
+
Refer to the [original model card](https://huggingface.co/Kortix/FastApply-7B-v1.0) for more details on the model.
|
22 |
+
|
23 |
+
## Use with llama.cpp
|
24 |
+
Install llama.cpp through brew (works on Mac and Linux)
|
25 |
+
|
26 |
+
```bash
|
27 |
+
brew install llama.cpp
|
28 |
+
|
29 |
+
```
|
30 |
+
Invoke the llama.cpp server or the CLI.
|
31 |
+
|
32 |
+
### CLI:
|
33 |
+
```bash
|
34 |
+
llama-cli --hf-repo dat-lequoc/FastApply-7B-v1.0-Q4_K_M-GGUF --hf-file fastapply-7b-v1.0-q4_k_m.gguf -p "The meaning to life and the universe is"
|
35 |
+
```
|
36 |
+
|
37 |
+
### Server:
|
38 |
+
```bash
|
39 |
+
llama-server --hf-repo dat-lequoc/FastApply-7B-v1.0-Q4_K_M-GGUF --hf-file fastapply-7b-v1.0-q4_k_m.gguf -c 2048
|
40 |
+
```
|
41 |
+
|
42 |
+
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
|
43 |
+
|
44 |
+
Step 1: Clone llama.cpp from GitHub.
|
45 |
+
```
|
46 |
+
git clone https://github.com/ggerganov/llama.cpp
|
47 |
+
```
|
48 |
+
|
49 |
+
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
|
50 |
+
```
|
51 |
+
cd llama.cpp && LLAMA_CURL=1 make
|
52 |
+
```
|
53 |
+
|
54 |
+
Step 3: Run inference through the main binary.
|
55 |
+
```
|
56 |
+
./llama-cli --hf-repo dat-lequoc/FastApply-7B-v1.0-Q4_K_M-GGUF --hf-file fastapply-7b-v1.0-q4_k_m.gguf -p "The meaning to life and the universe is"
|
57 |
+
```
|
58 |
+
or
|
59 |
+
```
|
60 |
+
./llama-server --hf-repo dat-lequoc/FastApply-7B-v1.0-Q4_K_M-GGUF --hf-file fastapply-7b-v1.0-q4_k_m.gguf -c 2048
|
61 |
+
```
|