File size: 6,803 Bytes
42c6c72 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 |
---
license: cc-by-nc-sa-4.0
language:
- en
library_name: transformers
tags:
- text-to-sql
- text2sql
- nlp2sql
- nlp-to-sql
- SQL
---
# Model Card for text2sql
<!-- Provide a quick summary of what the model is/does. -->
LLM instruction finetuned for Text-to-SQL task.
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [dataeaze systems pvt ltd](https://www.dataeaze.io/)
- **Funded by :** [dataeaze systems pvt ltd](https://www.dataeaze.io/)
- **Shared by :** [dataeaze systems pvt ltd](https://www.dataeaze.io/)
- **Model type:** LlamaForCausalLM
- **Language(s) (NLP):** English
- **License:** [cc-by-nc-sa-4.0](https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en) Model is made available under non-commercial use for research purposes only. For commercial usage please connect at [email protected]
- **Finetuned from model :** [CodeLlama-7b-Instruct-hf](https://huggingface.co/codellama/CodeLlama-7b-Instruct-hf)
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
Model can be used a tool to convert queries in expressed in natural language (English) to SQL statements
### Downstream Use
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
The model could be used as the initial stage in a data analytics / business intelligence application pipeline.
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
Model has been fine tuned on a specific task of converting English language statements to SQL queries.
Any use beyond this is not guaranteed to be accurate.
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
- **Bias:** Trained for English language only.
- **Risk:** Guardrails are reliant on the base models CodeLlama (Llama2). Finetuning could impact this behaviour.
- **Limitations:** Intended to be a small model optimised for inference. Does not provide SoTA results on accuracy.
## How to Get Started with the Model
Use the code below to get started with the model.
```
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained(
"dataeaze/dataeaze-text2sql-codellama_7b_instruct-clinton_text_to_sql_v1",
torch_dtype=torch.bfloat16,
device_map='auto'
)
tokenizer = AutoTokenizer.from_pretrained("dataeaze/dataeaze-text2sql-codellama_7b_instruct-clinton_text_to_sql_v1")
# print("model device :", model.device)
tokenizer.pad_token = tokenizer.eos_token
model.eval()
prompt = """ Below are sql tables schemas paired with instruction that describes a task.
Using valid SQLite, write a response that appropriately completes the request for the provided tables.
### Instruction: How many transactions were made by a customer in a specific month?
### Database: RewardsProgramDB61
### Input:
CREATE SCHEMA RewardsProgram;
CREATE TABLE Customer (
CustomerID INT NOT NULL AUTO_INCREMENT,
FirstName VARCHAR(50) NOT NULL,
LastName VARCHAR(50) NOT NULL,
Email VARCHAR(100) UNIQUE NOT NULL,
Phone VARCHAR(20) UNIQUE,
DateOfBirth DATE,
PRIMARY KEY (CustomerID)
);
CREATE TABLE Membership (
MembershipID INT NOT NULL AUTO_INCREMENT,
MembershipType VARCHAR(50) NOT NULL,
DiscountPercentage DECIMAL(5, 2) NOT NULL,
ValidFrom DATETIME,
ValidTo DATETIME,
CustomerID INT NOT NULL,
PRIMARY KEY (MembershipID),
FOREIGN KEY (CustomerID) REFERENCES Customer(CustomerID)
);
CREATE TABLE Transaction (
TransactionID INT NOT NULL AUTO_INCREMENT,
TransactionDate TIMESTAMP,
TotalAmount DECIMAL(10, 2) NOT NULL,
CustomerID INT NOT NULL,
PRIMARY KEY (TransactionID),
FOREIGN KEY (CustomerID) REFERENCES Customer(CustomerID)
);
CREATE TABLE TransactionDetail (
TransactionDetailID INT NOT NULL AUTO_INCREMENT,
TransactionID INT NOT NULL,
ProductID INT NOT NULL,
Quantity INT NOT NULL,
UnitPrice DECIMAL(10, 2) NOT NULL,
PRIMARY KEY (TransactionDetailID),
FOREIGN KEY (TransactionID) REFERENCES Transaction(TransactionID),
FOREIGN KEY (ProductID) REFERENCES Product(ProductID)
);
CREATE TABLE Product (
ProductID INT NOT NULL AUTO_INCREMENT,
ProductName VARCHAR(100) NOT NULL,
UnitPrice DECIMAL(10, 2) NOT NULL,
AvailableQuantity INT NOT NULL,
CreatedDate DATETIME,
PRIMARY KEY (ProductID)
);
ALTER TABLE Membership ADD CONSTRAINT FK_Membership_Customer FOREIGN KEY (CustomerID) REFERENCES Customer(CustomerID);
ALTER TABLE TransactionDetail ADD CONSTRAINT FK_TransactionDetail_Transaction FOREIGN KEY (TransactionID) REFERENCES Transaction(TransactionID);
ALTER TABLE TransactionDetail ADD CONSTRAINT FK_TransactionDetail_Product FOREIGN KEY (ProductID) REFERENCES Product(ProductID);"
"""
input_ids = tokenizer(prompt, padding=True, return_tensors='pt')
outputs = model.generate(
input_ids=input_ids['input_ids'].to(model.device),
attention_mask=input_ids['attention_mask'].to(model.device),
max_new_tokens=3072,
)
generated_query = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(generated_query)
```
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[SPIDER dataset Test Set](https://yale-lily.github.io/spider)
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
SQL queries are matched against the correct answer, with two types of evaluation
* Execution with Values
* Exact Set Match without Values
### Results
```
model-index:
- name: dataeaze/dataeaze-text2sql-codellama_7b_instruct-dzsql
results:
- task:
type: text-to-sql
dataset:
name: SPIDER 1.0
type: text-to-sql
metrics:
- name: Execution with Values
type: Execution with Values
value: 64.3
- name: Exact Set Match without Values
type: Exact Set Match without Values
value: 29.6
source:
name: Spider 1.0 - Leaderboard
url: https://yale-lily.github.io/spider
```
## Model Card Authors
* Suyash Chougule
* Chittaranjan Rathod
* Sourabh Daptardar
## Model Card Contact
"dataeaze systems" <[email protected]> |