0n1xus commited on
Commit
14e7e84
·
1 Parent(s): 4f39d29

Add token completion task

Browse files
Files changed (2) hide show
  1. codexglue.py +48 -3
  2. dataset_infos.json +1 -1
codexglue.py CHANGED
@@ -43,7 +43,8 @@ _LICENSE = ""
43
  # The HuggingFace dataset library don't host the datasets but only point to the original files
44
  # This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
45
  _URLs = {
46
- 'code-to-code-trans': "code-to-code-trans.zip"
 
47
  }
48
 
49
 
@@ -51,7 +52,7 @@ _URLs = {
51
  class CodeXGLUE(datasets.GeneratorBasedBuilder):
52
  """TODO: Short description of my dataset."""
53
 
54
- VERSION = datasets.Version("1.0.0")
55
 
56
  # This is an example of a dataset with multiple configurations.
57
  # If you don't want/need to define several sub-sets in your dataset,
@@ -65,7 +66,10 @@ class CodeXGLUE(datasets.GeneratorBasedBuilder):
65
  # data = datasets.load_dataset('my_dataset', 'first_domain')
66
  # data = datasets.load_dataset('my_dataset', 'second_domain')
67
  BUILDER_CONFIGS = [
68
- datasets.BuilderConfig(name="code-to-code-trans", version=VERSION, description="Code-to-code/code-to-code-trans"),
 
 
 
69
  ]
70
 
71
  def _info(self):
@@ -76,6 +80,12 @@ class CodeXGLUE(datasets.GeneratorBasedBuilder):
76
  "cs_code": datasets.Value("string")
77
  }
78
  )
 
 
 
 
 
 
79
  else: # This is an example to show how to have different features for "first_domain" and "second_domain"
80
  features = datasets.Features(
81
  {
@@ -142,6 +152,34 @@ class CodeXGLUE(datasets.GeneratorBasedBuilder):
142
  gen_kwargs=get_kwargs('valid')
143
  ),
144
  ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
145
 
146
  def _generate_examples(
147
  self, data_paths, split
@@ -164,3 +202,10 @@ class CodeXGLUE(datasets.GeneratorBasedBuilder):
164
  'java_code': java_code,
165
  'cs_code': cs_code
166
  }
 
 
 
 
 
 
 
 
43
  # The HuggingFace dataset library don't host the datasets but only point to the original files
44
  # This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
45
  _URLs = {
46
+ 'code-to-code-trans': "code-to-code-trans.zip",
47
+ 'code-completion-token-py150': "code-completion-token-py150.zip",
48
  }
49
 
50
 
 
52
  class CodeXGLUE(datasets.GeneratorBasedBuilder):
53
  """TODO: Short description of my dataset."""
54
 
55
+ VERSION = datasets.Version("1.0.1")
56
 
57
  # This is an example of a dataset with multiple configurations.
58
  # If you don't want/need to define several sub-sets in your dataset,
 
66
  # data = datasets.load_dataset('my_dataset', 'first_domain')
67
  # data = datasets.load_dataset('my_dataset', 'second_domain')
68
  BUILDER_CONFIGS = [
69
+ datasets.BuilderConfig(name="code-to-code-trans", version=VERSION,
70
+ description="Java to C-sharp translation task."),
71
+ datasets.BuilderConfig(name="code-completion-token-py150", version=VERSION,
72
+ description="Token compltetion task for Python"),
73
  ]
74
 
75
  def _info(self):
 
80
  "cs_code": datasets.Value("string")
81
  }
82
  )
83
+ elif self.config.name == 'code-completion-token-py150':
84
+ features = datasets.Features(
85
+ {
86
+ "code": datasets.Value("string")
87
+ }
88
+ )
89
  else: # This is an example to show how to have different features for "first_domain" and "second_domain"
90
  features = datasets.Features(
91
  {
 
152
  gen_kwargs=get_kwargs('valid')
153
  ),
154
  ]
155
+ elif self.config.name == 'code-completion-token-py150':
156
+ data_dir = os.path.join(data_dir, self.config.name)
157
+
158
+ def get_kwargs(split_name: str):
159
+ return {
160
+ "data_paths": {
161
+ "code": os.path.join(data_dir, f'{split_name}.txt')
162
+ },
163
+ "split": split_name
164
+ }
165
+
166
+ return [
167
+ datasets.SplitGenerator(
168
+ name=datasets.Split.TRAIN,
169
+ # These kwargs will be passed to _generate_examples
170
+ gen_kwargs=get_kwargs('train')
171
+ ),
172
+ datasets.SplitGenerator(
173
+ name=datasets.Split.TEST,
174
+ # These kwargs will be passed to _generate_examples
175
+ gen_kwargs=get_kwargs('test')
176
+ ),
177
+ datasets.SplitGenerator(
178
+ name=datasets.Split.VALIDATION,
179
+ # These kwargs will be passed to _generate_examples
180
+ gen_kwargs=get_kwargs('dev')
181
+ ),
182
+ ]
183
 
184
  def _generate_examples(
185
  self, data_paths, split
 
202
  'java_code': java_code,
203
  'cs_code': cs_code
204
  }
205
+ elif self.config.name == 'code-completion-token-py150':
206
+ code_path = data_paths['code']
207
+ with open(code_path, encoding='utf-8') as code_file:
208
+ for _id, code_line in enumerate(code_file):
209
+ yield _id, {
210
+ 'code': code_line
211
+ }
dataset_infos.json CHANGED
@@ -1 +1 @@
1
- {"code-to-code-trans": {"description": "CodeXGLUE is a benchmark dataset to foster machine learning research for program understanding and generation. \nCodeXGLUE includes a collection of 10 tasks across 14 datasets and a platform for model evaluation and comparison.\n", "citation": "@article{Lu2021,\nauthor = {Lu, Shuai and Guo, Daya and Ren, Shuo and Huang, Junjie and Svyatkovskiy, Alexey and Blanco, Ambrosio and Clement, Colin B. and Drain, Dawn and Jiang, Daxin and Tang, Duyu and Li, Ge and Zhou, Lidong and Shou, Linjun and Zhou, Long and Tufano, Michele and Gong, Ming and Zhou, Ming and Duan, Nan and Sundaresan, Neel and Deng, Shao Kun and Fu, Shengyu and Liu, Shujie},\nyear = {2021},\nbooktitle = {arXiv},\ntitle = {CodeXGLUE - A Machine Learning Benchmark Dataset for Code Understanding and Generation}\n}\n", "homepage": "https://microsoft.github.io/CodeXGLUE/", "license": "", "features": {"java_code": {"dtype": "string", "id": null, "_type": "Value"}, "cs_code": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "code_xglue", "config_name": "code-to-code-trans", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 4306167, "num_examples": 10295, "dataset_name": "code_xglue"}, "test": {"name": "test", "num_bytes": 412372, "num_examples": 1000, "dataset_name": "code_xglue"}, "validation": {"name": "validation", "num_bytes": 221932, "num_examples": 499, "dataset_name": "code_xglue"}}, "download_checksums": {"code-to-code-trans.zip": {"num_bytes": 1169662, "checksum": "91000596399aee3367aab5068452e1560ab131e2c0311f3ea367e692f46fb8ac"}}, "download_size": 1169662, "post_processing_size": null, "dataset_size": 4940471, "size_in_bytes": 6110133}}
 
1
+ {"code-to-code-trans": {"description": "CodeXGLUE is a benchmark dataset to foster machine learning research for program understanding and generation. \nCodeXGLUE includes a collection of 10 tasks across 14 datasets and a platform for model evaluation and comparison.\n", "citation": "@article{Lu2021,\nauthor = {Lu, Shuai and Guo, Daya and Ren, Shuo and Huang, Junjie and Svyatkovskiy, Alexey and Blanco, Ambrosio and Clement, Colin B. and Drain, Dawn and Jiang, Daxin and Tang, Duyu and Li, Ge and Zhou, Lidong and Shou, Linjun and Zhou, Long and Tufano, Michele and Gong, Ming and Zhou, Ming and Duan, Nan and Sundaresan, Neel and Deng, Shao Kun and Fu, Shengyu and Liu, Shujie},\nyear = {2021},\nbooktitle = {arXiv},\ntitle = {CodeXGLUE - A Machine Learning Benchmark Dataset for Code Understanding and Generation}\n}\n", "homepage": "https://microsoft.github.io/CodeXGLUE/", "license": "", "features": {"java_code": {"dtype": "string", "id": null, "_type": "Value"}, "cs_code": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "code_xglue", "config_name": "code-to-code-trans", "version": {"version_str": "1.0.1", "description": null, "major": 1, "minor": 0, "patch": 1}, "splits": {"train": {"name": "train", "num_bytes": 4306167, "num_examples": 10295, "dataset_name": "code_xglue"}, "test": {"name": "test", "num_bytes": 412372, "num_examples": 1000, "dataset_name": "code_xglue"}, "validation": {"name": "validation", "num_bytes": 221932, "num_examples": 499, "dataset_name": "code_xglue"}}, "download_checksums": {"code-to-code-trans.zip": {"num_bytes": 1169662, "checksum": "91000596399aee3367aab5068452e1560ab131e2c0311f3ea367e692f46fb8ac"}}, "download_size": 1169662, "post_processing_size": null, "dataset_size": 4940471, "size_in_bytes": 6110133}, "code-completion-token-py150": {"description": "CodeXGLUE is a benchmark dataset to foster machine learning research for program understanding and generation. \nCodeXGLUE includes a collection of 10 tasks across 14 datasets and a platform for model evaluation and comparison.\n", "citation": "@article{Lu2021,\nauthor = {Lu, Shuai and Guo, Daya and Ren, Shuo and Huang, Junjie and Svyatkovskiy, Alexey and Blanco, Ambrosio and Clement, Colin B. and Drain, Dawn and Jiang, Daxin and Tang, Duyu and Li, Ge and Zhou, Lidong and Shou, Linjun and Zhou, Long and Tufano, Michele and Gong, Ming and Zhou, Ming and Duan, Nan and Sundaresan, Neel and Deng, Shao Kun and Fu, Shengyu and Liu, Shujie},\nyear = {2021},\nbooktitle = {arXiv},\ntitle = {CodeXGLUE - A Machine Learning Benchmark Dataset for Code Understanding and Generation}\n}\n", "homepage": "https://microsoft.github.io/CodeXGLUE/", "license": "", "features": {"code": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "code_xglue", "config_name": "code-completion-token-py150", "version": {"version_str": "1.0.1", "description": null, "major": 1, "minor": 0, "patch": 1}, "splits": {"train": {"name": "train", "num_bytes": 441358038, "num_examples": 95000, "dataset_name": "code_xglue"}, "test": {"name": "test", "num_bytes": 228741847, "num_examples": 50000, "dataset_name": "code_xglue"}, "validation": {"name": "validation", "num_bytes": 27069231, "num_examples": 5000, "dataset_name": "code_xglue"}}, "download_checksums": {"code-completion-token-py150.zip": {"num_bytes": 102464389, "checksum": "b7a59c977da228400c6d6fec10730b9b70030248325ea325230f56280ccddb8e"}}, "download_size": 102464389, "post_processing_size": null, "dataset_size": 697169116, "size_in_bytes": 799633505}}