File size: 11,741 Bytes
d6a496d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
from pathlib import Path

import datasets
import pandas as pd

_VERSION = "1.2.1"

_CITATION = f"""
@dataset{{unsplash-lite-dataset,
  title  = {{Unsplash Lite Dataset {_VERSION}}},
  url    = {{\\url{{https://github.com/unsplash/datasets}}}},
  author = {{Unsplash}},
  year   = {{2023}},
  month  = {{May}},
  day    = {{02}},
}}
"""

_DESCRIPTION = """
This dataset, available for commercial and noncommercial usage,
contains 25k nature-themed Unsplash photos, 25k keywords, and 1M searches.
"""

_HOMEPAGE = f"https://github.com/unsplash/datasets/tree/{_VERSION}"

_URL = f"https://unsplash.com/data/lite/{_VERSION}"

_LICENSE = "Unsplash Dataset License"

_TSV = (
    "collections",
    "colors",
    "conversions",
    "keywords",
    "photos",
)

_FEATURES = datasets.Features(
    {
        "photo": {
            "id": datasets.Value("string"),
            "url": datasets.Value("string"),
            "image_url": datasets.Value("string"),
            "submitted_at": datasets.Value("string"),
            "featured": datasets.Value("bool"),
            "width": datasets.Value("uint16"),
            "height": datasets.Value("uint16"),
            "aspect_ratio": datasets.Value("float32"),
            "description": datasets.Value("string"),
            "blur_hash": datasets.Value("string"),
        },
        "photographer": {
            "username": datasets.Value("string"),
            "first_name": datasets.Value("string"),
            "last_name": datasets.Value("string"),
        },
        "exif": {
            "camera_make": datasets.Value("string"),
            "camera_model": datasets.Value("string"),
            "iso": datasets.Value("string"),
            "aperture_value": datasets.Value("string"),
            "focal_length": datasets.Value("string"),
            "exposure_time": datasets.Value("string"),
        },
        "location": {
            "name": datasets.Value("string"),
            "latitude": datasets.Value("float32"),
            "longitude": datasets.Value("float32"),
            "country": datasets.Value("string"),
            "city": datasets.Value("string"),
        },
        "stats": {
            "views": datasets.Value("uint32"),
            "downloads": datasets.Value("uint32"),
        },
        "ai": {
            "description": datasets.Value("string"),
            "primary_landmark_name": datasets.Value("string"),
            "primary_landmark_latitude": datasets.Value("string"),
            "primary_landmark_longitude": datasets.Value("string"),
            "primary_landmark_confidence": datasets.Value("string"),
        },
        "keywords": [
            {
                "keyword": datasets.Value("string"),
                "ai_service_1_confidence": datasets.Value("string"),
                "ai_service_2_confidence": datasets.Value("string"),
                "suggested_by_user": datasets.Value("bool"),
            },
        ],
        "collections": [
            {
                "collection_id": datasets.Value("string"),
                "collection_title": datasets.Value("string"),
                "photo_collected_at": datasets.Value("string"),
            },
        ],
        "conversions": [
            {
                "converted_at": datasets.Value("string"),
                "conversion_type": datasets.Value("string"),
                "keyword": datasets.Value("string"),
                "anonymous_user_id": datasets.Value("string"),
                "conversion_country": datasets.Value("string"),
            },
        ],
        "colors": [
            {
                "hex": datasets.Value("string"),
                "red": datasets.Value("uint8"),
                "green": datasets.Value("uint8"),
                "blue": datasets.Value("uint8"),
                "keyword": datasets.Value("string"),
                "ai_coverage": datasets.Value("float32"),
                "ai_score": datasets.Value("float32"),
            },
        ],
    },
)

def df_withprefix(df, prefix, exclude=None):
    columns = [col for col in df.columns if col.startswith(prefix)]
    if exclude is not None:
        columns = [col for col in columns if exclude not in col]
    if "photo_id" not in columns:
        columns.append("photo_id")

    return df[columns].rename(columns=lambda col: col.removeprefix(prefix))

class Unsplash(datasets.GeneratorBasedBuilder):
    """The Unsplash Lite dataset."""

    DEFAULT_WRITER_BATCH_SIZE = 100

    def _info(self):
        return datasets.DatasetInfo(
            features=_FEATURES,
            supervised_keys=None,
            description=_DESCRIPTION,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            version=_VERSION,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        archive_path = Path(dl_manager.download_and_extract(_URL))

        # read all tsv files
        dataframes = {}
        for doc in _TSV:
            # read all tsv files for this document type
            frames = []
            for filename in archive_path.glob(f"{doc}.tsv*"):
                frame = pd.read_csv(filename, sep="\t", header=0)
                frames.append(frame)

            # concatenate all subframes into one
            concat_frames = pd.concat(frames, axis=0, ignore_index=True)

            if doc != "photos":
                dataframes[doc] = concat_frames
            else:
                # split "photos" into "photo", "photographer", "exif", "location", "stats", "ai"
                dataframes["photo"] = df_withprefix(concat_frames, "photo_", "location")
                dataframes["photo"]["blur_hash"] = concat_frames["blur_hash"]
                dataframes["photographer"] = df_withprefix(concat_frames, "photographer_")
                dataframes["exif"] = df_withprefix(concat_frames, "exif_")
                dataframes["location"] = df_withprefix(concat_frames, "photo_location_")
                dataframes["stats"] = df_withprefix(concat_frames, "stats_")
                dataframes["ai"] = df_withprefix(concat_frames, "ai_")

        # preprocess some columns
        dataframes["photo"]["featured"] = dataframes["photo"]["featured"].map({"t": True, "f": False})
        dataframes["keywords"]["suggested_by_user"] = dataframes["keywords"]["suggested_by_user"].map({"t": True, "f": False})

        # cast columns to appropriate dtypes
        for doc in dataframes.keys():
            if doc in _TSV:
                features = _FEATURES[doc][0]
            else:
                features = _FEATURES[doc]

            dataframes[doc].astype({
                key: features[key].dtype
                for key in features.keys()
            })

        # groupby "photo_id" if not "photo" dataframe
        for key in _TSV[:-1]:
            dataframes[key] = dataframes[key].groupby("photo_id")

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={"dataframes": dataframes},
            ),
        ]

    def _generate_examples(self, dataframes):
        # iterate over rows of "photos" dataframe
        photo_id_frames = {}
        for index, row in dataframes["photo"].iterrows():
            photo_id = row["id"]
            photographer = dataframes["photographer"].iloc[index]
            exif = dataframes["exif"].iloc[index]
            location = dataframes["location"].iloc[index]
            stats = dataframes["stats"].iloc[index]
            ai = dataframes["ai"].iloc[index]

            for key in _TSV[:-1]:
                try:
                    photo_id_frames[key] = dataframes[key].get_group(photo_id)
                except:
                    photo_id_frames[key] = pd.DataFrame()

            data = {
                "photo": {
                    "id": photo_id,
                    "url": row["url"],
                    "image_url": row["image_url"],
                    "submitted_at": row["submitted_at"],
                    "featured": row["featured"],
                    "width": row["width"],
                    "height": row["height"],
                    "aspect_ratio": row["aspect_ratio"],
                    "description": row["description"],
                    "blur_hash": row["blur_hash"],
                },
                "photographer": {
                    "username": photographer["username"],
                    "first_name": photographer["first_name"],
                    "last_name": photographer["last_name"],
                },
                "exif": {
                    "camera_make": exif["camera_make"],
                    "camera_model": exif["camera_model"],
                    "iso": exif["iso"],
                    "aperture_value": exif["aperture_value"],
                    "focal_length": exif["focal_length"],
                    "exposure_time": exif["exposure_time"],
                },
                "location": {
                    "name": location["name"],
                    "latitude": location["latitude"],
                    "longitude": location["longitude"],
                    "country": location["country"],
                    "city": location["city"],
                },
                "stats": {
                    "views": stats["views"],
                    "downloads": stats["downloads"],
                },
                "ai": {
                    "description": ai["description"],
                    "primary_landmark_name": ai["primary_landmark_name"],
                    "primary_landmark_latitude": ai["primary_landmark_latitude"],
                    "primary_landmark_longitude": ai["primary_landmark_longitude"],
                    "primary_landmark_confidence": ai["primary_landmark_confidence"],
                },
                "keywords": [
                    {
                        "keyword": keyword["keyword"],
                        "ai_service_1_confidence": keyword["ai_service_1_confidence"],
                        "ai_service_2_confidence": keyword["ai_service_2_confidence"],
                        "suggested_by_user": keyword["suggested_by_user"],
                    }
                    for _, keyword in photo_id_frames["keywords"].iterrows()
                ],
                "collections": [
                    {
                        "collection_id": collection["collection_id"],
                        "collection_title": str(collection["collection_title"]),
                        "photo_collected_at": collection["photo_collected_at"],
                    }
                    for _, collection in photo_id_frames["collections"].iterrows()
                ],
                "conversions": [
                    {
                        "converted_at": conversion["converted_at"],
                        "conversion_type": conversion["conversion_type"],
                        "keyword": conversion["keyword"],
                        "anonymous_user_id": conversion["anonymous_user_id"],
                        "conversion_country": str(conversion["conversion_country"]),
                    }
                    for _, conversion in photo_id_frames["conversions"].iterrows()
                ],
                "colors": [
                    {
                        "hex": color["hex"],
                        "red": color["red"],
                        "green": color["green"],
                        "blue": color["blue"],
                        "keyword": color["keyword"],
                        "ai_coverage": color["ai_coverage"],
                        "ai_score": color["ai_score"],
                    }
                    for _, color in photo_id_frames["colors"].iterrows()
                ],
            }

            yield index, data