Datasets:
Size:
10M<n<100M
License:
"""Example script to unpack one shard of the 1xGPT v2.0 video dataset.""" | |
import json | |
import pathlib | |
import subprocess | |
import numpy as np | |
dir_path = pathlib.Path("val_v2.0") | |
rank = 0 | |
# load metadata.json | |
metadata = json.load(open(dir_path / "metadata.json")) | |
metadata_shard = json.load(open(dir_path / f"metadata_{rank}.json")) | |
total_frames = metadata_shard["shard_num_frames"] | |
maps = [ | |
("segment_idx", np.int32, []), | |
("states", np.float32, [25]), | |
] | |
video_path = dir_path / "video_0.mp4" | |
for m, dtype, shape in maps: | |
filename = dir_path / f"{m}_{rank}.bin" | |
print("Reading", filename, [total_frames] + shape) | |
m_out = np.memmap(filename, dtype=dtype, mode="r", shape=tuple([total_frames] + shape)) | |
assert m_out.shape[0] == total_frames | |
print(m, m_out[:100]) | |