Datasets:
Languages:
Chinese
Size:
10K<n<100K
Roomcar
commited on
Commit
·
60f3d2f
1
Parent(s):
a86ccfe
script
Browse files- README.md +63 -0
- SpaCE2022.py +206 -0
README.md
CHANGED
@@ -10,6 +10,69 @@ tags:
|
|
10 |
pretty_name: SpaCE2022
|
11 |
size_categories:
|
12 |
- 1K<n<10K
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
---
|
14 |
|
15 |
# Dataset Card for Dataset Name
|
|
|
10 |
pretty_name: SpaCE2022
|
11 |
size_categories:
|
12 |
- 1K<n<10K
|
13 |
+
dataset_info:
|
14 |
+
- config_name: task1
|
15 |
+
features:
|
16 |
+
- name: qid
|
17 |
+
dtype: string
|
18 |
+
- name: context
|
19 |
+
dtype: string
|
20 |
+
- name: judge
|
21 |
+
dtype: int8
|
22 |
+
splits:
|
23 |
+
- name: train
|
24 |
+
num_bytes: 4018440
|
25 |
+
num_examples: 10993
|
26 |
+
- name: validation
|
27 |
+
num_bytes: 599209
|
28 |
+
num_examples: 1602
|
29 |
+
download_size: 4932714
|
30 |
+
dataset_size: 4617649
|
31 |
+
- config_name: task2
|
32 |
+
features:
|
33 |
+
- name: qid
|
34 |
+
dtype: string
|
35 |
+
- name: context
|
36 |
+
dtype: string
|
37 |
+
- name: reasons
|
38 |
+
sequence:
|
39 |
+
- name: fragments
|
40 |
+
sequence:
|
41 |
+
- name: role
|
42 |
+
dtype:
|
43 |
+
class_label:
|
44 |
+
names:
|
45 |
+
'0': S
|
46 |
+
'1': P
|
47 |
+
'2': E
|
48 |
+
'3': S1
|
49 |
+
'4': P1
|
50 |
+
'5': E1
|
51 |
+
'6': S2
|
52 |
+
'7': P2
|
53 |
+
'8': E2
|
54 |
+
'9': text1
|
55 |
+
'10': text2
|
56 |
+
- name: text
|
57 |
+
dtype: string
|
58 |
+
- name: idxes
|
59 |
+
sequence: int32
|
60 |
+
- name: type
|
61 |
+
dtype:
|
62 |
+
class_label:
|
63 |
+
names:
|
64 |
+
'0': A
|
65 |
+
'1': B
|
66 |
+
'2': C
|
67 |
+
splits:
|
68 |
+
- name: train
|
69 |
+
num_bytes: 2655240
|
70 |
+
num_examples: 4966
|
71 |
+
- name: validation
|
72 |
+
num_bytes: 370883
|
73 |
+
num_examples: 700
|
74 |
+
download_size: 3543914
|
75 |
+
dataset_size: 3026123
|
76 |
---
|
77 |
|
78 |
# Dataset Card for Dataset Name
|
SpaCE2022.py
ADDED
@@ -0,0 +1,206 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import datasets
|
3 |
+
import json
|
4 |
+
from typing import List
|
5 |
+
from typing import Union
|
6 |
+
|
7 |
+
_LICENSE = """
|
8 |
+
## 第二届中文空间语义理解评测 SpaCE2022 数据集使用许可
|
9 |
+
|
10 |
+
由 北京大学计算语言学研究所 授权给(使用者)
|
11 |
+
|
12 |
+
#### 一
|
13 |
+
|
14 |
+
1. 任何使用本数据集的主体都需要知晓、理解并同意本许可的全部内容。
|
15 |
+
2. 传播本数据集的主体必须同时提供本许可并要求传播受众知晓、理解并同意本许可的全部内容。
|
16 |
+
3. 使用本数据集即代表知晓、理解并同意本许可的全部内容。
|
17 |
+
|
18 |
+
#### 二
|
19 |
+
|
20 |
+
1. 本数据集的版权归北京大学计算语言学研究所(下简称“版权所有者”)所有。
|
21 |
+
2. 本数据集将分阶段在 第二届中文空间语义理解评测 SpaCE2022 活动中发布。
|
22 |
+
3. 版权所有者对本数据集内容有权进行任何修改,修改后,如无特殊说明,使用者仍需遵守本许可的条款。
|
23 |
+
4. 版权所有者对本数据集的名称、网站等相关信息、材料等有权进行任何修改,修改后,如无特殊说明,使用者仍需遵守本许可的条款。
|
24 |
+
|
25 |
+
#### 三
|
26 |
+
|
27 |
+
1. 本数据集仅供以下用途使用:
|
28 |
+
(1) 参赛选手在比赛中使用。参看《[第二届中文空间语义理解评测 SpaCE2022 参赛协议](https://github.com/2030NLP/SpaCE2022/blob/main/Agreement.md)》。
|
29 |
+
(2) 高校、科研机构在科学研究中使用。
|
30 |
+
2. 本数据集禁止用于任何商业目的,不提供任何形式的商业授权。除了在参与第二届中文空间语义理解评测 SpaCE2022 的过程中为参赛而使用本数据集,公司或其他商业机构禁止使用本数据集。
|
31 |
+
3. 使用本数据进行科学研究,发表论文或其他材料时应注明来源信息,如:“本研究使用了北京大学组织的第二届中文空间语义理解评测提供的 SpaCE2022 数据集”,并在参考文献中引用版权所有者的评测报告论文(**请关注举办方后续的论文发表情况**)。
|
32 |
+
|
33 |
+
#### 四
|
34 |
+
|
35 |
+
1. 本许可证的最终解释权归属于版权所有者。
|
36 |
+
|
37 |
+
北京大学计算语言学研究所
|
38 |
+
2022年5月23日
|
39 |
+
"""
|
40 |
+
|
41 |
+
_DESCRIPTION = """SpaCE2022"""
|
42 |
+
_CITATION = """ """
|
43 |
+
|
44 |
+
_DESCRIPTION_TASK1 = """SpaCE2022 Task1"""
|
45 |
+
_DESCRIPTION_TASK2 = """SpaCE2022 Task2"""
|
46 |
+
_DESCRIPTION_TASK3 = """SpaCE2022 Task3"""
|
47 |
+
|
48 |
+
|
49 |
+
|
50 |
+
_DESCRIPTION_DICT = {
|
51 |
+
'task1': _DESCRIPTION_TASK1,
|
52 |
+
'task2': _DESCRIPTION_TASK2,
|
53 |
+
'task3': _DESCRIPTION_TASK3,
|
54 |
+
}
|
55 |
+
|
56 |
+
# _URLS_ROOT = "https://huggingface.co/datasets/2030NLP/SpaCE2022/raw/main/"
|
57 |
+
_URLS_ROOT = "./"
|
58 |
+
_URLS_DICT = {
|
59 |
+
'task1': {
|
60 |
+
'train': _URLS_ROOT + "data/task1/task1_train.jsonl",
|
61 |
+
'dev': _URLS_ROOT + "data/task1/task1_dev.jsonl",
|
62 |
+
},
|
63 |
+
'task2': {
|
64 |
+
'train': _URLS_ROOT + "data/task2/task2_train.jsonl",
|
65 |
+
'dev': _URLS_ROOT + "data/task2/task2_dev.jsonl",
|
66 |
+
},
|
67 |
+
'task3': {
|
68 |
+
'train': _URLS_ROOT + "data/task3/task3_train.jsonl",
|
69 |
+
'dev': _URLS_ROOT + "data/task3/task3_dev.jsonl",
|
70 |
+
},
|
71 |
+
}
|
72 |
+
|
73 |
+
XXXX = datasets.Sequence([{
|
74 |
+
'text': datasets.Sequence(datasets.Value('string')),
|
75 |
+
'idxes': datasets.Sequence(datasets.Value('int32')),
|
76 |
+
}])
|
77 |
+
|
78 |
+
_FEATURES_DICT = {
|
79 |
+
'task1': {
|
80 |
+
"qid": datasets.Value(dtype="string"),
|
81 |
+
"context": datasets.Value(dtype="string"),
|
82 |
+
"judge": datasets.Value(dtype="int8"),
|
83 |
+
},
|
84 |
+
'task2': {
|
85 |
+
"qid": datasets.Value(dtype="string"),
|
86 |
+
"context": datasets.Value(dtype="string"),
|
87 |
+
"reasons": datasets.Sequence(
|
88 |
+
feature={
|
89 |
+
"fragments": datasets.Sequence(
|
90 |
+
feature={
|
91 |
+
"role": datasets.ClassLabel(num_classes=11, names=['S', 'P', 'E', 'S1', 'P1', 'E1', 'S2', 'P2', 'E2', 'text1', 'text2']),
|
92 |
+
"text": datasets.Value(dtype="string"),
|
93 |
+
"idxes": datasets.Sequence(datasets.Value("int32")),
|
94 |
+
},
|
95 |
+
),
|
96 |
+
"type": datasets.ClassLabel(num_classes=3, names=['A', 'B', 'C']),
|
97 |
+
},
|
98 |
+
),
|
99 |
+
},
|
100 |
+
'task3': {
|
101 |
+
"qid": datasets.Value(dtype="string"),
|
102 |
+
"context": datasets.Value(dtype="string"),
|
103 |
+
"corefs": datasets.Sequence(datasets.Sequence(feature={
|
104 |
+
"text": datasets.Value("string"),
|
105 |
+
"idxes": datasets.Sequence(datasets.Value("int32")),
|
106 |
+
})),
|
107 |
+
"non_corefs": datasets.Sequence(datasets.Sequence(feature={
|
108 |
+
"text": datasets.Value("string"),
|
109 |
+
"idxes": datasets.Sequence(datasets.Value("int32")),
|
110 |
+
})),
|
111 |
+
# "outputs": datasets.Sequence(datasets.Sequence(feature={
|
112 |
+
# "text": datasets.Value("string"),
|
113 |
+
# "idxes": datasets.Sequence(datasets.Value("int32")),
|
114 |
+
# })),
|
115 |
+
"outputs": datasets.Sequence(datasets.Sequence(feature={})),
|
116 |
+
},
|
117 |
+
}
|
118 |
+
|
119 |
+
_split_name_map = {
|
120 |
+
'train': datasets.Split.TRAIN,
|
121 |
+
'dev': datasets.Split.VALIDATION,
|
122 |
+
'test': datasets.Split.TEST,
|
123 |
+
}
|
124 |
+
|
125 |
+
|
126 |
+
|
127 |
+
|
128 |
+
class SpaCE2022Config(datasets.BuilderConfig):
|
129 |
+
"""BuilderConfig for SpaCE2022."""
|
130 |
+
|
131 |
+
def __init__(self, splits, **kwargs):
|
132 |
+
# Version history:
|
133 |
+
# 1.4.0: final version used in SpaCE2022 Eval.
|
134 |
+
super().__init__(version=datasets.Version("1.4.0"), **kwargs)
|
135 |
+
self.splits = splits
|
136 |
+
|
137 |
+
|
138 |
+
class SpaCE2022(datasets.GeneratorBasedBuilder):
|
139 |
+
"""The SpaCE2022 benchmark."""
|
140 |
+
|
141 |
+
BUILDER_CONFIGS = [
|
142 |
+
SpaCE2022Config(
|
143 |
+
name="task1",
|
144 |
+
splits=['train', 'dev'],
|
145 |
+
),
|
146 |
+
SpaCE2022Config(
|
147 |
+
name="task2",
|
148 |
+
splits=['train', 'dev'],
|
149 |
+
),
|
150 |
+
# SpaCE2022Config(
|
151 |
+
# name="task3",
|
152 |
+
# splits=['train', 'dev'],
|
153 |
+
# ),
|
154 |
+
]
|
155 |
+
|
156 |
+
def _info(self):
|
157 |
+
return datasets.DatasetInfo(
|
158 |
+
description=_DESCRIPTION_DICT[self.config.name],
|
159 |
+
features=datasets.Features(_FEATURES_DICT[self.config.name]),
|
160 |
+
homepage="https://2030nlp.github.io/SpaCE2022/",
|
161 |
+
citation=_CITATION,
|
162 |
+
license=_LICENSE,
|
163 |
+
)
|
164 |
+
|
165 |
+
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
|
166 |
+
|
167 |
+
# 在 hugging face 中如何为 dataset 创建 _split_generators 函数?
|
168 |
+
|
169 |
+
split_things = []
|
170 |
+
for split_name in self.config.splits:
|
171 |
+
# print('')
|
172 |
+
split_data_path = _URLS_DICT[self.config.name][split_name]
|
173 |
+
# print(split_data_path)
|
174 |
+
filepath = dl_manager.download(split_data_path)
|
175 |
+
# print(filepath)
|
176 |
+
# print('')
|
177 |
+
split_thing = datasets.SplitGenerator(
|
178 |
+
name=_split_name_map[split_name],
|
179 |
+
gen_kwargs={
|
180 |
+
"task": self.config.name,
|
181 |
+
"filepath": filepath,
|
182 |
+
"split": split_name,
|
183 |
+
}
|
184 |
+
)
|
185 |
+
split_things.append(split_thing)
|
186 |
+
return split_things
|
187 |
+
|
188 |
+
def _generate_examples(self, task, filepath, split):
|
189 |
+
try:
|
190 |
+
with open(filepath, encoding="utf-8") as ff:
|
191 |
+
keys = _FEATURES_DICT[task].keys()
|
192 |
+
for idx, line in enumerate(ff):
|
193 |
+
example = json.loads(line.strip())
|
194 |
+
example = {kk: example[kk] for kk in keys if kk in example}
|
195 |
+
print('')
|
196 |
+
print(example)
|
197 |
+
print('')
|
198 |
+
qid = example.get("qid")
|
199 |
+
# print(qid)
|
200 |
+
jj = (split == qid.split("-")[1])
|
201 |
+
# print(jj)
|
202 |
+
if jj:
|
203 |
+
yield qid, example
|
204 |
+
except Exception as error:
|
205 |
+
print(error)
|
206 |
+
|