Upload 201 files
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- pairs/pair_0/input.txt +4 -0
- pairs/pair_0/output.txt +7 -0
- pairs/pair_1/input.txt +18 -0
- pairs/pair_1/output.txt +13 -0
- pairs/pair_10/input.txt +178 -0
- pairs/pair_10/output.txt +1 -0
- pairs/pair_11/input.txt +379 -0
- pairs/pair_11/output.txt +3 -0
- pairs/pair_12/input.txt +5 -0
- pairs/pair_12/output.txt +1 -0
- pairs/pair_13/input.txt +74 -0
- pairs/pair_13/output.txt +31 -0
- pairs/pair_14/input.txt +155 -0
- pairs/pair_14/output.txt +30 -0
- pairs/pair_15/input.txt +81 -0
- pairs/pair_15/output.txt +9 -0
- pairs/pair_16/input.txt +43 -0
- pairs/pair_16/output.txt +5 -0
- pairs/pair_17/input.txt +82 -0
- pairs/pair_17/output.txt +7 -0
- pairs/pair_18/input.txt +24 -0
- pairs/pair_18/output.txt +8 -0
- pairs/pair_19/input.txt +37 -0
- pairs/pair_19/output.txt +3 -0
- pairs/pair_2/input.txt +42 -0
- pairs/pair_2/output.txt +33 -0
- pairs/pair_20/input.txt +317 -0
- pairs/pair_20/output.txt +1 -0
- pairs/pair_21/input.txt +50 -0
- pairs/pair_21/output.txt +1 -0
- pairs/pair_22/input.txt +75 -0
- pairs/pair_22/output.txt +13 -0
- pairs/pair_23/input.txt +407 -0
- pairs/pair_23/output.txt +8 -0
- pairs/pair_24/input.txt +34 -0
- pairs/pair_24/output.txt +7 -0
- pairs/pair_25/input.txt +76 -0
- pairs/pair_25/output.txt +1 -0
- pairs/pair_26/input.txt +104 -0
- pairs/pair_26/output.txt +28 -0
- pairs/pair_27/input.txt +4 -0
- pairs/pair_27/output.txt +4 -0
- pairs/pair_28/input.txt +35 -0
- pairs/pair_28/output.txt +20 -0
- pairs/pair_29/input.txt +263 -0
- pairs/pair_29/output.txt +2 -0
- pairs/pair_3/input.txt +77 -0
- pairs/pair_3/output.txt +8 -0
- pairs/pair_30/input.txt +62 -0
- pairs/pair_30/output.txt +2 -0
pairs/pair_0/input.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#
|
2 |
+
# Copyright (C) 2023, Inria
|
3 |
+
# GRAPHDECO research group, https://team.inria.fr/graphdeco
|
4 |
+
# Al
|
pairs/pair_0/output.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
l rights reserved.
|
2 |
+
#
|
3 |
+
# This software is free for non-commercial, research and evaluation use
|
4 |
+
# under the terms of the LICENSE.md file.
|
5 |
+
#
|
6 |
+
# For inquiries contact [email protected]
|
7 |
+
#
|
pairs/pair_1/input.txt
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#
|
2 |
+
# Copyright (C) 2023, Inria
|
3 |
+
# GRAPHDECO research group, https://team.inria.fr/graphdeco
|
4 |
+
# All rights reserved.
|
5 |
+
#
|
6 |
+
# This software is free for non-commercial, research and evaluation use
|
7 |
+
# under the terms of the LICENSE.md file.
|
8 |
+
#
|
9 |
+
# For inquiries contact [email protected]
|
10 |
+
#
|
11 |
+
|
12 |
+
import torch
|
13 |
+
from torch import nn
|
14 |
+
import numpy as np
|
15 |
+
from utils.graphics_utils import getWorld2View2, getProjectionMatrix
|
16 |
+
|
17 |
+
class Camera(nn.Module):
|
18 |
+
def __init__(self, colmap_id, R
|
pairs/pair_1/output.txt
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
, T, FoVx, FoVy, image, gt_alpha_mask,
|
2 |
+
image_name, uid,
|
3 |
+
trans=np.array([0.0, 0.0, 0.0]), scale=1.0, data_device = "cuda"
|
4 |
+
):
|
5 |
+
super(Camera, self).__init__()
|
6 |
+
|
7 |
+
self.uid = uid
|
8 |
+
self.colmap_id = colmap_id
|
9 |
+
self.R = R
|
10 |
+
self.T = T
|
11 |
+
self.FoVx = FoVx
|
12 |
+
self.FoVy = FoVy
|
13 |
+
self.image_name = image_name
|
pairs/pair_10/input.txt
ADDED
@@ -0,0 +1,178 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
if "wsgi.input_terminated" in request.environ:
|
2 |
+
app.logger.debug(
|
3 |
+
"environ wsgi.input_terminated already set, keeping: %s"
|
4 |
+
% request.environ["wsgi.input_terminated"]
|
5 |
+
)
|
6 |
+
else:
|
7 |
+
request.environ["wsgi.input_terminated"] = 1
|
8 |
+
else:
|
9 |
+
abort(501, "Chunked requests are not supported for server %s" % server)
|
10 |
+
|
11 |
+
|
12 |
+
@app.after_request
|
13 |
+
def set_cors_headers(response):
|
14 |
+
response.headers["Access-Control-Allow-Origin"] = request.headers.get("Origin", "*")
|
15 |
+
response.headers["Access-Control-Allow-Credentials"] = "true"
|
16 |
+
|
17 |
+
if request.method == "OPTIONS":
|
18 |
+
# Both of these headers are only used for the "preflight request"
|
19 |
+
# http://www.w3.org/TR/cors/#access-control-allow-methods-response-header
|
20 |
+
response.headers[
|
21 |
+
"Access-Control-Allow-Methods"
|
22 |
+
] = "GET, POST, PUT, DELETE, PATCH, OPTIONS"
|
23 |
+
response.headers["Access-Control-Max-Age"] = "3600" # 1 hour cache
|
24 |
+
if request.headers.get("Access-Control-Request-Headers") is not None:
|
25 |
+
response.headers["Access-Control-Allow-Headers"] = request.headers[
|
26 |
+
"Access-Control-Request-Headers"
|
27 |
+
]
|
28 |
+
return response
|
29 |
+
|
30 |
+
|
31 |
+
# ------
|
32 |
+
# Routes
|
33 |
+
# ------
|
34 |
+
|
35 |
+
|
36 |
+
@app.route("/legacy")
|
37 |
+
def view_landing_page():
|
38 |
+
"""Generates Landing Page in legacy layout."""
|
39 |
+
return render_template("index.html")
|
40 |
+
|
41 |
+
|
42 |
+
@app.route("/html")
|
43 |
+
def view_html_page():
|
44 |
+
"""Returns a simple HTML document.
|
45 |
+
---
|
46 |
+
tags:
|
47 |
+
- Response formats
|
48 |
+
produces:
|
49 |
+
- text/html
|
50 |
+
responses:
|
51 |
+
200:
|
52 |
+
description: An HTML page.
|
53 |
+
"""
|
54 |
+
|
55 |
+
return render_template("moby.html")
|
56 |
+
|
57 |
+
|
58 |
+
@app.route("/robots.txt")
|
59 |
+
def view_robots_page():
|
60 |
+
"""Returns some robots.txt rules.
|
61 |
+
---
|
62 |
+
tags:
|
63 |
+
- Response formats
|
64 |
+
produces:
|
65 |
+
- text/plain
|
66 |
+
responses:
|
67 |
+
200:
|
68 |
+
description: Robots file
|
69 |
+
"""
|
70 |
+
|
71 |
+
response = make_response()
|
72 |
+
response.data = ROBOT_TXT
|
73 |
+
response.content_type = "text/plain"
|
74 |
+
return response
|
75 |
+
|
76 |
+
|
77 |
+
@app.route("/deny")
|
78 |
+
def view_deny_page():
|
79 |
+
"""Returns page denied by robots.txt rules.
|
80 |
+
---
|
81 |
+
tags:
|
82 |
+
- Response formats
|
83 |
+
produces:
|
84 |
+
- text/plain
|
85 |
+
responses:
|
86 |
+
200:
|
87 |
+
description: Denied message
|
88 |
+
"""
|
89 |
+
response = make_response()
|
90 |
+
response.data = ANGRY_ASCII
|
91 |
+
response.content_type = "text/plain"
|
92 |
+
return response
|
93 |
+
# return "YOU SHOULDN'T BE HERE"
|
94 |
+
|
95 |
+
|
96 |
+
@app.route("/ip")
|
97 |
+
def view_origin():
|
98 |
+
"""Returns the requester's IP Address.
|
99 |
+
---
|
100 |
+
tags:
|
101 |
+
- Request inspection
|
102 |
+
produces:
|
103 |
+
- application/json
|
104 |
+
responses:
|
105 |
+
200:
|
106 |
+
description: The Requester's IP Address.
|
107 |
+
"""
|
108 |
+
|
109 |
+
return jsonify(origin=request.headers.get("X-Forwarded-For", request.remote_addr))
|
110 |
+
|
111 |
+
|
112 |
+
@app.route("/uuid")
|
113 |
+
def view_uuid():
|
114 |
+
"""Return a UUID4.
|
115 |
+
---
|
116 |
+
tags:
|
117 |
+
- Dynamic data
|
118 |
+
produces:
|
119 |
+
- application/json
|
120 |
+
responses:
|
121 |
+
200:
|
122 |
+
description: A UUID4.
|
123 |
+
"""
|
124 |
+
|
125 |
+
return jsonify(uuid=str(uuid.uuid4()))
|
126 |
+
|
127 |
+
|
128 |
+
@app.route("/headers")
|
129 |
+
def view_headers():
|
130 |
+
"""Return the incoming request's HTTP headers.
|
131 |
+
---
|
132 |
+
tags:
|
133 |
+
- Request inspection
|
134 |
+
produces:
|
135 |
+
- application/json
|
136 |
+
responses:
|
137 |
+
200:
|
138 |
+
description: The request's headers.
|
139 |
+
"""
|
140 |
+
|
141 |
+
return jsonify(get_dict('headers'))
|
142 |
+
|
143 |
+
|
144 |
+
@app.route("/user-agent")
|
145 |
+
def view_user_agent():
|
146 |
+
"""Return the incoming requests's User-Agent header.
|
147 |
+
---
|
148 |
+
tags:
|
149 |
+
- Request inspection
|
150 |
+
produces:
|
151 |
+
- application/json
|
152 |
+
responses:
|
153 |
+
200:
|
154 |
+
description: The request's User-Agent header.
|
155 |
+
"""
|
156 |
+
|
157 |
+
headers = get_headers()
|
158 |
+
|
159 |
+
return jsonify({"user-agent": headers["user-agent"]})
|
160 |
+
|
161 |
+
|
162 |
+
@app.route("/get", methods=("GET",))
|
163 |
+
def view_get():
|
164 |
+
"""The request's query parameters.
|
165 |
+
---
|
166 |
+
tags:
|
167 |
+
- HTTP Methods
|
168 |
+
produces:
|
169 |
+
- application/json
|
170 |
+
responses:
|
171 |
+
200:
|
172 |
+
description: The request's query parameters.
|
173 |
+
"""
|
174 |
+
|
175 |
+
return jsonify(get_dict("url", "args", "headers", "origin"))
|
176 |
+
|
177 |
+
|
178 |
+
@app.route("/anything", methods=["GET", "POST", "PUT", "DELETE", "PATCH", "TRAC
|
pairs/pair_10/output.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
E"])
|
pairs/pair_11/input.txt
ADDED
@@ -0,0 +1,379 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
ue) == 1:
|
2 |
+
value = value[0]
|
3 |
+
d[key] = value
|
4 |
+
response = jsonify(d)
|
5 |
+
for key, value in headers.items(multi=True):
|
6 |
+
response.headers.add(key, value)
|
7 |
+
response_has_changed = response.data != original_data
|
8 |
+
if not response_has_changed:
|
9 |
+
break
|
10 |
+
return response
|
11 |
+
|
12 |
+
|
13 |
+
@app.route("/cookies")
|
14 |
+
def view_cookies(hide_env=True):
|
15 |
+
"""Returns cookie data.
|
16 |
+
---
|
17 |
+
tags:
|
18 |
+
- Cookies
|
19 |
+
produces:
|
20 |
+
- application/json
|
21 |
+
responses:
|
22 |
+
200:
|
23 |
+
description: Set cookies.
|
24 |
+
"""
|
25 |
+
|
26 |
+
cookies = dict(request.cookies.items())
|
27 |
+
|
28 |
+
if hide_env and ("show_env" not in request.args):
|
29 |
+
for key in ENV_COOKIES:
|
30 |
+
try:
|
31 |
+
del cookies[key]
|
32 |
+
except KeyError:
|
33 |
+
pass
|
34 |
+
|
35 |
+
return jsonify(cookies=cookies)
|
36 |
+
|
37 |
+
|
38 |
+
@app.route("/forms/post")
|
39 |
+
def view_forms_post():
|
40 |
+
"""Simple HTML form."""
|
41 |
+
|
42 |
+
return render_template("forms-post.html")
|
43 |
+
|
44 |
+
|
45 |
+
@app.route("/cookies/set/<name>/<value>")
|
46 |
+
def set_cookie(name, value):
|
47 |
+
"""Sets a cookie and redirects to cookie list.
|
48 |
+
---
|
49 |
+
tags:
|
50 |
+
- Cookies
|
51 |
+
parameters:
|
52 |
+
- in: path
|
53 |
+
name: name
|
54 |
+
type: string
|
55 |
+
- in: path
|
56 |
+
name: value
|
57 |
+
type: string
|
58 |
+
produces:
|
59 |
+
- text/plain
|
60 |
+
responses:
|
61 |
+
200:
|
62 |
+
description: Set cookies and redirects to cookie list.
|
63 |
+
"""
|
64 |
+
|
65 |
+
r = app.make_response(redirect(url_for("view_cookies")))
|
66 |
+
r.set_cookie(key=name, value=value, secure=secure_cookie())
|
67 |
+
|
68 |
+
return r
|
69 |
+
|
70 |
+
|
71 |
+
@app.route("/cookies/set")
|
72 |
+
def set_cookies():
|
73 |
+
"""Sets cookie(s) as provided by the query string and redirects to cookie list.
|
74 |
+
---
|
75 |
+
tags:
|
76 |
+
- Cookies
|
77 |
+
parameters:
|
78 |
+
- in: query
|
79 |
+
name: freeform
|
80 |
+
explode: true
|
81 |
+
allowEmptyValue: true
|
82 |
+
schema:
|
83 |
+
type: object
|
84 |
+
additionalProperties:
|
85 |
+
type: string
|
86 |
+
style: form
|
87 |
+
produces:
|
88 |
+
- text/plain
|
89 |
+
responses:
|
90 |
+
200:
|
91 |
+
description: Redirect to cookie list
|
92 |
+
"""
|
93 |
+
|
94 |
+
cookies = dict(request.args.items())
|
95 |
+
r = app.make_response(redirect(url_for("view_cookies")))
|
96 |
+
for key, value in cookies.items():
|
97 |
+
r.set_cookie(key=key, value=value, secure=secure_cookie())
|
98 |
+
|
99 |
+
return r
|
100 |
+
|
101 |
+
|
102 |
+
@app.route("/cookies/delete")
|
103 |
+
def delete_cookies():
|
104 |
+
"""Deletes cookie(s) as provided by the query string and redirects to cookie list.
|
105 |
+
---
|
106 |
+
tags:
|
107 |
+
- Cookies
|
108 |
+
parameters:
|
109 |
+
- in: query
|
110 |
+
name: freeform
|
111 |
+
explode: true
|
112 |
+
allowEmptyValue: true
|
113 |
+
schema:
|
114 |
+
type: object
|
115 |
+
additionalProperties:
|
116 |
+
type: string
|
117 |
+
style: form
|
118 |
+
produces:
|
119 |
+
- text/plain
|
120 |
+
responses:
|
121 |
+
200:
|
122 |
+
description: Redirect to cookie list
|
123 |
+
"""
|
124 |
+
|
125 |
+
cookies = dict(request.args.items())
|
126 |
+
r = app.make_response(redirect(url_for("view_cookies")))
|
127 |
+
for key, value in cookies.items():
|
128 |
+
r.delete_cookie(key=key)
|
129 |
+
|
130 |
+
return r
|
131 |
+
|
132 |
+
|
133 |
+
@app.route("/basic-auth/<user>/<passwd>")
|
134 |
+
def basic_auth(user="user", passwd="passwd"):
|
135 |
+
"""Prompts the user for authorization using HTTP Basic Auth.
|
136 |
+
---
|
137 |
+
tags:
|
138 |
+
- Auth
|
139 |
+
parameters:
|
140 |
+
- in: path
|
141 |
+
name: user
|
142 |
+
type: string
|
143 |
+
- in: path
|
144 |
+
name: passwd
|
145 |
+
type: string
|
146 |
+
produces:
|
147 |
+
- application/json
|
148 |
+
responses:
|
149 |
+
200:
|
150 |
+
description: Sucessful authentication.
|
151 |
+
401:
|
152 |
+
description: Unsuccessful authentication.
|
153 |
+
"""
|
154 |
+
|
155 |
+
if not check_basic_auth(user, passwd):
|
156 |
+
return status_code(401)
|
157 |
+
|
158 |
+
return jsonify(authenticated=True, user=user)
|
159 |
+
|
160 |
+
|
161 |
+
@app.route("/hidden-basic-auth/<user>/<passwd>")
|
162 |
+
def hidden_basic_auth(user="user", passwd="passwd"):
|
163 |
+
"""Prompts the user for authorization using HTTP Basic Auth.
|
164 |
+
---
|
165 |
+
tags:
|
166 |
+
- Auth
|
167 |
+
parameters:
|
168 |
+
- in: path
|
169 |
+
name: user
|
170 |
+
type: string
|
171 |
+
- in: path
|
172 |
+
name: passwd
|
173 |
+
type: string
|
174 |
+
produces:
|
175 |
+
- application/json
|
176 |
+
responses:
|
177 |
+
200:
|
178 |
+
description: Sucessful authentication.
|
179 |
+
404:
|
180 |
+
description: Unsuccessful authentication.
|
181 |
+
"""
|
182 |
+
|
183 |
+
if not check_basic_auth(user, passwd):
|
184 |
+
return status_code(404)
|
185 |
+
return jsonify(authenticated=True, user=user)
|
186 |
+
|
187 |
+
|
188 |
+
@app.route("/bearer")
|
189 |
+
def bearer_auth():
|
190 |
+
"""Prompts the user for authorization using bearer authentication.
|
191 |
+
---
|
192 |
+
tags:
|
193 |
+
- Auth
|
194 |
+
parameters:
|
195 |
+
- in: header
|
196 |
+
name: Authorization
|
197 |
+
schema:
|
198 |
+
type: string
|
199 |
+
produces:
|
200 |
+
- application/json
|
201 |
+
responses:
|
202 |
+
200:
|
203 |
+
description: Sucessful authentication.
|
204 |
+
401:
|
205 |
+
description: Unsuccessful authentication.
|
206 |
+
"""
|
207 |
+
authorization = request.headers.get("Authorization")
|
208 |
+
if not (authorization and authorization.startswith("Bearer ")):
|
209 |
+
response = app.make_response("")
|
210 |
+
response.headers["WWW-Authenticate"] = "Bearer"
|
211 |
+
response.status_code = 401
|
212 |
+
return response
|
213 |
+
slice_start = len("Bearer ")
|
214 |
+
token = authorization[slice_start:]
|
215 |
+
|
216 |
+
return jsonify(authenticated=True, token=token)
|
217 |
+
|
218 |
+
|
219 |
+
@app.route("/digest-auth/<qop>/<user>/<passwd>")
|
220 |
+
def digest_auth_md5(qop=None, user="user", passwd="passwd"):
|
221 |
+
"""Prompts the user for authorization using Digest Auth.
|
222 |
+
---
|
223 |
+
tags:
|
224 |
+
- Auth
|
225 |
+
parameters:
|
226 |
+
- in: path
|
227 |
+
name: qop
|
228 |
+
type: string
|
229 |
+
description: auth or auth-int
|
230 |
+
- in: path
|
231 |
+
name: user
|
232 |
+
type: string
|
233 |
+
- in: path
|
234 |
+
name: passwd
|
235 |
+
type: string
|
236 |
+
produces:
|
237 |
+
- application/json
|
238 |
+
responses:
|
239 |
+
200:
|
240 |
+
description: Sucessful authentication.
|
241 |
+
401:
|
242 |
+
description: Unsuccessful authentication.
|
243 |
+
"""
|
244 |
+
return digest_auth(qop, user, passwd, "MD5", "never")
|
245 |
+
|
246 |
+
|
247 |
+
@app.route("/digest-auth/<qop>/<user>/<passwd>/<algorithm>")
|
248 |
+
def digest_auth_nostale(qop=None, user="user", passwd="passwd", algorithm="MD5"):
|
249 |
+
"""Prompts the user for authorization using Digest Auth + Algorithm.
|
250 |
+
---
|
251 |
+
tags:
|
252 |
+
- Auth
|
253 |
+
parameters:
|
254 |
+
- in: path
|
255 |
+
name: qop
|
256 |
+
type: string
|
257 |
+
description: auth or auth-int
|
258 |
+
- in: path
|
259 |
+
name: user
|
260 |
+
type: string
|
261 |
+
- in: path
|
262 |
+
name: passwd
|
263 |
+
type: string
|
264 |
+
- in: path
|
265 |
+
name: algorithm
|
266 |
+
type: string
|
267 |
+
description: MD5, SHA-256, SHA-512
|
268 |
+
default: MD5
|
269 |
+
produces:
|
270 |
+
- application/json
|
271 |
+
responses:
|
272 |
+
200:
|
273 |
+
description: Sucessful authentication.
|
274 |
+
401:
|
275 |
+
description: Unsuccessful authentication.
|
276 |
+
"""
|
277 |
+
return digest_auth(qop, user, passwd, algorithm, "never")
|
278 |
+
|
279 |
+
|
280 |
+
@app.route("/digest-auth/<qop>/<user>/<passwd>/<algorithm>/<stale_after>")
|
281 |
+
def digest_auth(
|
282 |
+
qop=None, user="user", passwd="passwd", algorithm="MD5", stale_after="never"
|
283 |
+
):
|
284 |
+
"""Prompts the user for authorization using Digest Auth + Algorithm.
|
285 |
+
allow settings the stale_after argument.
|
286 |
+
---
|
287 |
+
tags:
|
288 |
+
- Auth
|
289 |
+
parameters:
|
290 |
+
- in: path
|
291 |
+
name: qop
|
292 |
+
type: string
|
293 |
+
description: auth or auth-int
|
294 |
+
- in: path
|
295 |
+
name: user
|
296 |
+
type: string
|
297 |
+
- in: path
|
298 |
+
name: passwd
|
299 |
+
type: string
|
300 |
+
- in: path
|
301 |
+
name: algorithm
|
302 |
+
type: string
|
303 |
+
description: MD5, SHA-256, SHA-512
|
304 |
+
default: MD5
|
305 |
+
- in: path
|
306 |
+
name: stale_after
|
307 |
+
type: string
|
308 |
+
default: never
|
309 |
+
produces:
|
310 |
+
- application/json
|
311 |
+
responses:
|
312 |
+
200:
|
313 |
+
description: Sucessful authentication.
|
314 |
+
401:
|
315 |
+
description: Unsuccessful authentication.
|
316 |
+
"""
|
317 |
+
require_cookie_handling = request.args.get("require-cookie", "").lower() in (
|
318 |
+
"1",
|
319 |
+
"t",
|
320 |
+
"true",
|
321 |
+
)
|
322 |
+
if algorithm not in ("MD5", "SHA-256", "SHA-512"):
|
323 |
+
algorithm = "MD5"
|
324 |
+
|
325 |
+
if qop not in ("auth", "auth-int"):
|
326 |
+
qop = None
|
327 |
+
|
328 |
+
authorization = request.headers.get("Authorization")
|
329 |
+
credentials = None
|
330 |
+
if authorization:
|
331 |
+
credentials = parse_authorization_header(authorization)
|
332 |
+
|
333 |
+
if (
|
334 |
+
not authorization
|
335 |
+
or not credentials
|
336 |
+
or credentials.type.lower() != "digest"
|
337 |
+
or (require_cookie_handling and "Cookie" not in request.headers)
|
338 |
+
):
|
339 |
+
response = digest_challenge_response(app, qop, algorithm)
|
340 |
+
response.set_cookie("stale_after", value=stale_after)
|
341 |
+
response.set_cookie("fake", value="fake_value")
|
342 |
+
return response
|
343 |
+
|
344 |
+
if require_cookie_handling and request.cookies.get("fake") != "fake_value":
|
345 |
+
response = jsonify({"errors": ["missing cookie set on challenge"]})
|
346 |
+
response.set_cookie("fake", value="fake_value")
|
347 |
+
response.status_code = 403
|
348 |
+
return response
|
349 |
+
|
350 |
+
current_nonce = credentials.get("nonce")
|
351 |
+
|
352 |
+
stale_after_value = None
|
353 |
+
if "stale_after" in request.cookies:
|
354 |
+
stale_after_value = request.cookies.get("stale_after")
|
355 |
+
|
356 |
+
if (
|
357 |
+
"last_nonce" in request.cookies
|
358 |
+
and current_nonce == request.cookies.get("last_nonce")
|
359 |
+
or stale_after_value == "0"
|
360 |
+
):
|
361 |
+
response = digest_challenge_response(app, qop, algorithm, True)
|
362 |
+
response.set_cookie("stale_after", value=stale_after)
|
363 |
+
response.set_cookie("last_nonce", value=current_nonce)
|
364 |
+
response.set_cookie("fake", value="fake_value")
|
365 |
+
return response
|
366 |
+
|
367 |
+
if not check_digest_auth(user, passwd):
|
368 |
+
response = digest_challenge_response(app, qop, algorithm, False)
|
369 |
+
response.set_cookie("stale_after", value=stale_after)
|
370 |
+
response.set_cookie("last_nonce", value=current_nonce)
|
371 |
+
response.set_cookie("fake", value="fake_value")
|
372 |
+
return response
|
373 |
+
|
374 |
+
response = jsonify(authenticated=True, user=user)
|
375 |
+
response.set_cookie("fake", value="fake_value")
|
376 |
+
if stale_after_value:
|
377 |
+
response.set_cookie(
|
378 |
+
"stale_after", value=next_stale_after_value(stale_after_value)
|
379 |
+
|
pairs/pair_11/output.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
)
|
2 |
+
|
3 |
+
return response
|
pairs/pair_12/input.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) OpenMMLab. All rights reserved.
|
2 |
+
import numbers
|
3 |
+
from math import cos, pi
|
4 |
+
|
5 |
+
import annotator.
|
pairs/pair_12/output.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
uniformer.mmcv as mmcv
|
pairs/pair_13/input.txt
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
on
|
2 |
+
maps or list of prediction result filenames.
|
3 |
+
gt_seg_maps (list[ndarray] | list[str]): list of ground truth
|
4 |
+
segmentation maps or list of label filenames.
|
5 |
+
num_classes (int): Number of categories.
|
6 |
+
ignore_index (int): Index that will be ignored in evaluation.
|
7 |
+
nan_to_num (int, optional): If specified, NaN values will be replaced
|
8 |
+
by the numbers defined by the user. Default: None.
|
9 |
+
label_map (dict): Mapping old labels to new labels. Default: dict().
|
10 |
+
reduce_zero_label (bool): Wether ignore zero label. Default: False.
|
11 |
+
beta (int): Determines the weight of recall in the combined score.
|
12 |
+
Default: False.
|
13 |
+
|
14 |
+
|
15 |
+
Returns:
|
16 |
+
dict[str, float | ndarray]: Default metrics.
|
17 |
+
<aAcc> float: Overall accuracy on all images.
|
18 |
+
<Fscore> ndarray: Per category recall, shape (num_classes, ).
|
19 |
+
<Precision> ndarray: Per category precision, shape (num_classes, ).
|
20 |
+
<Recall> ndarray: Per category f-score, shape (num_classes, ).
|
21 |
+
"""
|
22 |
+
fscore_result = eval_metrics(
|
23 |
+
results=results,
|
24 |
+
gt_seg_maps=gt_seg_maps,
|
25 |
+
num_classes=num_classes,
|
26 |
+
ignore_index=ignore_index,
|
27 |
+
metrics=['mFscore'],
|
28 |
+
nan_to_num=nan_to_num,
|
29 |
+
label_map=label_map,
|
30 |
+
reduce_zero_label=reduce_zero_label,
|
31 |
+
beta=beta)
|
32 |
+
return fscore_result
|
33 |
+
|
34 |
+
|
35 |
+
def eval_metrics(results,
|
36 |
+
gt_seg_maps,
|
37 |
+
num_classes,
|
38 |
+
ignore_index,
|
39 |
+
metrics=['mIoU'],
|
40 |
+
nan_to_num=None,
|
41 |
+
label_map=dict(),
|
42 |
+
reduce_zero_label=False,
|
43 |
+
beta=1):
|
44 |
+
"""Calculate evaluation metrics
|
45 |
+
Args:
|
46 |
+
results (list[ndarray] | list[str]): List of prediction segmentation
|
47 |
+
maps or list of prediction result filenames.
|
48 |
+
gt_seg_maps (list[ndarray] | list[str]): list of ground truth
|
49 |
+
segmentation maps or list of label filenames.
|
50 |
+
num_classes (int): Number of categories.
|
51 |
+
ignore_index (int): Index that will be ignored in evaluation.
|
52 |
+
metrics (list[str] | str): Metrics to be evaluated, 'mIoU' and 'mDice'.
|
53 |
+
nan_to_num (int, optional): If specified, NaN values will be replaced
|
54 |
+
by the numbers defined by the user. Default: None.
|
55 |
+
label_map (dict): Mapping old labels to new labels. Default: dict().
|
56 |
+
reduce_zero_label (bool): Wether ignore zero label. Default: False.
|
57 |
+
Returns:
|
58 |
+
float: Overall accuracy on all images.
|
59 |
+
ndarray: Per category accuracy, shape (num_classes, ).
|
60 |
+
ndarray: Per category evaluation metrics, shape (num_classes, ).
|
61 |
+
"""
|
62 |
+
if isinstance(metrics, str):
|
63 |
+
metrics = [metrics]
|
64 |
+
allowed_metrics = ['mIoU', 'mDice', 'mFscore']
|
65 |
+
if not set(metrics).issubset(set(allowed_metrics)):
|
66 |
+
raise KeyError('metrics {} is not supported'.format(metrics))
|
67 |
+
|
68 |
+
total_area_intersect, total_area_union, total_area_pred_label, \
|
69 |
+
total_area_label = total_intersect_and_union(
|
70 |
+
results, gt_seg_maps, num_classes, ignore_index, label_map,
|
71 |
+
reduce_zero_label)
|
72 |
+
all_acc = total_area_intersect.sum() / total_area_label.sum()
|
73 |
+
ret_metrics = OrderedDict({'aAcc': all_acc})
|
74 |
+
for metri
|
pairs/pair_13/output.txt
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
c in metrics:
|
2 |
+
if metric == 'mIoU':
|
3 |
+
iou = total_area_intersect / total_area_union
|
4 |
+
acc = total_area_intersect / total_area_label
|
5 |
+
ret_metrics['IoU'] = iou
|
6 |
+
ret_metrics['Acc'] = acc
|
7 |
+
elif metric == 'mDice':
|
8 |
+
dice = 2 * total_area_intersect / (
|
9 |
+
total_area_pred_label + total_area_label)
|
10 |
+
acc = total_area_intersect / total_area_label
|
11 |
+
ret_metrics['Dice'] = dice
|
12 |
+
ret_metrics['Acc'] = acc
|
13 |
+
elif metric == 'mFscore':
|
14 |
+
precision = total_area_intersect / total_area_pred_label
|
15 |
+
recall = total_area_intersect / total_area_label
|
16 |
+
f_value = torch.tensor(
|
17 |
+
[f_score(x[0], x[1], beta) for x in zip(precision, recall)])
|
18 |
+
ret_metrics['Fscore'] = f_value
|
19 |
+
ret_metrics['Precision'] = precision
|
20 |
+
ret_metrics['Recall'] = recall
|
21 |
+
|
22 |
+
ret_metrics = {
|
23 |
+
metric: value.numpy()
|
24 |
+
for metric, value in ret_metrics.items()
|
25 |
+
}
|
26 |
+
if nan_to_num is not None:
|
27 |
+
ret_metrics = OrderedDict({
|
28 |
+
metric: np.nan_to_num(metric_value, nan=nan_to_num)
|
29 |
+
for metric, metric_value in ret_metrics.items()
|
30 |
+
})
|
31 |
+
return ret_metrics
|
pairs/pair_14/input.txt
ADDED
@@ -0,0 +1,155 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
x_t = (
|
2 |
+
expand_dims(sigma_t / sigma_s, dims) * x
|
3 |
+
- expand_dims(alpha_t * phi_1, dims) * model_s
|
4 |
+
)
|
5 |
+
if return_intermediate:
|
6 |
+
return x_t, {'model_s': model_s}
|
7 |
+
else:
|
8 |
+
return x_t
|
9 |
+
else:
|
10 |
+
phi_1 = torch.expm1(h)
|
11 |
+
if model_s is None:
|
12 |
+
model_s = self.model_fn(x, s)
|
13 |
+
x_t = (
|
14 |
+
expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x
|
15 |
+
- expand_dims(sigma_t * phi_1, dims) * model_s
|
16 |
+
)
|
17 |
+
if return_intermediate:
|
18 |
+
return x_t, {'model_s': model_s}
|
19 |
+
else:
|
20 |
+
return x_t
|
21 |
+
|
22 |
+
def singlestep_dpm_solver_second_update(self, x, s, t, r1=0.5, model_s=None, return_intermediate=False,
|
23 |
+
solver_type='dpm_solver'):
|
24 |
+
"""
|
25 |
+
Singlestep solver DPM-Solver-2 from time `s` to time `t`.
|
26 |
+
Args:
|
27 |
+
x: A pytorch tensor. The initial value at time `s`.
|
28 |
+
s: A pytorch tensor. The starting time, with the shape (x.shape[0],).
|
29 |
+
t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
|
30 |
+
r1: A `float`. The hyperparameter of the second-order solver.
|
31 |
+
model_s: A pytorch tensor. The model function evaluated at time `s`.
|
32 |
+
If `model_s` is None, we evaluate the model by `x` and `s`; otherwise we directly use it.
|
33 |
+
return_intermediate: A `bool`. If true, also return the model value at time `s` and `s1` (the intermediate time).
|
34 |
+
solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
|
35 |
+
The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
|
36 |
+
Returns:
|
37 |
+
x_t: A pytorch tensor. The approximated solution at time `t`.
|
38 |
+
"""
|
39 |
+
if solver_type not in ['dpm_solver', 'taylor']:
|
40 |
+
raise ValueError("'solver_type' must be either 'dpm_solver' or 'taylor', got {}".format(solver_type))
|
41 |
+
if r1 is None:
|
42 |
+
r1 = 0.5
|
43 |
+
ns = self.noise_schedule
|
44 |
+
dims = x.dim()
|
45 |
+
lambda_s, lambda_t = ns.marginal_lambda(s), ns.marginal_lambda(t)
|
46 |
+
h = lambda_t - lambda_s
|
47 |
+
lambda_s1 = lambda_s + r1 * h
|
48 |
+
s1 = ns.inverse_lambda(lambda_s1)
|
49 |
+
log_alpha_s, log_alpha_s1, log_alpha_t = ns.marginal_log_mean_coeff(s), ns.marginal_log_mean_coeff(
|
50 |
+
s1), ns.marginal_log_mean_coeff(t)
|
51 |
+
sigma_s, sigma_s1, sigma_t = ns.marginal_std(s), ns.marginal_std(s1), ns.marginal_std(t)
|
52 |
+
alpha_s1, alpha_t = torch.exp(log_alpha_s1), torch.exp(log_alpha_t)
|
53 |
+
|
54 |
+
if self.predict_x0:
|
55 |
+
phi_11 = torch.expm1(-r1 * h)
|
56 |
+
phi_1 = torch.expm1(-h)
|
57 |
+
|
58 |
+
if model_s is None:
|
59 |
+
model_s = self.model_fn(x, s)
|
60 |
+
x_s1 = (
|
61 |
+
expand_dims(sigma_s1 / sigma_s, dims) * x
|
62 |
+
- expand_dims(alpha_s1 * phi_11, dims) * model_s
|
63 |
+
)
|
64 |
+
model_s1 = self.model_fn(x_s1, s1)
|
65 |
+
if solver_type == 'dpm_solver':
|
66 |
+
x_t = (
|
67 |
+
expand_dims(sigma_t / sigma_s, dims) * x
|
68 |
+
- expand_dims(alpha_t * phi_1, dims) * model_s
|
69 |
+
- (0.5 / r1) * expand_dims(alpha_t * phi_1, dims) * (model_s1 - model_s)
|
70 |
+
)
|
71 |
+
elif solver_type == 'taylor':
|
72 |
+
x_t = (
|
73 |
+
expand_dims(sigma_t / sigma_s, dims) * x
|
74 |
+
- expand_dims(alpha_t * phi_1, dims) * model_s
|
75 |
+
+ (1. / r1) * expand_dims(alpha_t * ((torch.exp(-h) - 1.) / h + 1.), dims) * (
|
76 |
+
model_s1 - model_s)
|
77 |
+
)
|
78 |
+
else:
|
79 |
+
phi_11 = torch.expm1(r1 * h)
|
80 |
+
phi_1 = torch.expm1(h)
|
81 |
+
|
82 |
+
if model_s is None:
|
83 |
+
model_s = self.model_fn(x, s)
|
84 |
+
x_s1 = (
|
85 |
+
expand_dims(torch.exp(log_alpha_s1 - log_alpha_s), dims) * x
|
86 |
+
- expand_dims(sigma_s1 * phi_11, dims) * model_s
|
87 |
+
)
|
88 |
+
model_s1 = self.model_fn(x_s1, s1)
|
89 |
+
if solver_type == 'dpm_solver':
|
90 |
+
x_t = (
|
91 |
+
expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x
|
92 |
+
- expand_dims(sigma_t * phi_1, dims) * model_s
|
93 |
+
- (0.5 / r1) * expand_dims(sigma_t * phi_1, dims) * (model_s1 - model_s)
|
94 |
+
)
|
95 |
+
elif solver_type == 'taylor':
|
96 |
+
x_t = (
|
97 |
+
expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x
|
98 |
+
- expand_dims(sigma_t * phi_1, dims) * model_s
|
99 |
+
- (1. / r1) * expand_dims(sigma_t * ((torch.exp(h) - 1.) / h - 1.), dims) * (model_s1 - model_s)
|
100 |
+
)
|
101 |
+
if return_intermediate:
|
102 |
+
return x_t, {'model_s': model_s, 'model_s1': model_s1}
|
103 |
+
else:
|
104 |
+
return x_t
|
105 |
+
|
106 |
+
def singlestep_dpm_solver_third_update(self, x, s, t, r1=1. / 3., r2=2. / 3., model_s=None, model_s1=None,
|
107 |
+
return_intermediate=False, solver_type='dpm_solver'):
|
108 |
+
"""
|
109 |
+
Singlestep solver DPM-Solver-3 from time `s` to time `t`.
|
110 |
+
Args:
|
111 |
+
x: A pytorch tensor. The initial value at time `s`.
|
112 |
+
s: A pytorch tensor. The starting time, with the shape (x.shape[0],).
|
113 |
+
t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
|
114 |
+
r1: A `float`. The hyperparameter of the third-order solver.
|
115 |
+
r2: A `float`. The hyperparameter of the third-order solver.
|
116 |
+
model_s: A pytorch tensor. The model function evaluated at time `s`.
|
117 |
+
If `model_s` is None, we evaluate the model by `x` and `s`; otherwise we directly use it.
|
118 |
+
model_s1: A pytorch tensor. The model function evaluated at time `s1` (the intermediate time given by `r1`).
|
119 |
+
If `model_s1` is None, we evaluate the model at `s1`; otherwise we directly use it.
|
120 |
+
return_intermediate: A `bool`. If true, also return the model value at time `s`, `s1` and `s2` (the intermediate times).
|
121 |
+
solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
|
122 |
+
The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
|
123 |
+
Returns:
|
124 |
+
x_t: A pytorch tensor. The approximated solution at time `t`.
|
125 |
+
"""
|
126 |
+
if solver_type not in ['dpm_solver', 'taylor']:
|
127 |
+
raise ValueError("'solver_type' must be either 'dpm_solver' or 'taylor', got {}".format(solver_type))
|
128 |
+
if r1 is None:
|
129 |
+
r1 = 1. / 3.
|
130 |
+
if r2 is None:
|
131 |
+
r2 = 2. / 3.
|
132 |
+
ns = self.noise_schedule
|
133 |
+
dims = x.dim()
|
134 |
+
lambda_s, lambda_t = ns.marginal_lambda(s), ns.marginal_lambda(t)
|
135 |
+
h = lambda_t - lambda_s
|
136 |
+
lambda_s1 = lambda_s + r1 * h
|
137 |
+
lambda_s2 = lambda_s + r2 * h
|
138 |
+
s1 = ns.inverse_lambda(lambda_s1)
|
139 |
+
s2 = ns.inverse_lambda(lambda_s2)
|
140 |
+
log_alpha_s, log_alpha_s1, log_alpha_s2, log_alpha_t = ns.marginal_log_mean_coeff(
|
141 |
+
s), ns.marginal_log_mean_coeff(s1), ns.marginal_log_mean_coeff(s2), ns.marginal_log_mean_coeff(t)
|
142 |
+
sigma_s, sigma_s1, sigma_s2, sigma_t = ns.marginal_std(s), ns.marginal_std(s1), ns.marginal_std(
|
143 |
+
s2), ns.marginal_std(t)
|
144 |
+
alpha_s1, alpha_s2, alpha_t = torch.exp(log_alpha_s1), torch.exp(log_alpha_s2), torch.exp(log_alpha_t)
|
145 |
+
|
146 |
+
if self.predict_x0:
|
147 |
+
phi_11 = torch.expm1(-r1 * h)
|
148 |
+
phi_12 = torch.expm1(-r2 * h)
|
149 |
+
phi_1 = torch.expm1(-h)
|
150 |
+
phi_22 = torch.expm1(-r2 * h) / (r2 * h) + 1.
|
151 |
+
phi_2 = phi_1 / h + 1.
|
152 |
+
phi_3 = phi_2 / h - 0.5
|
153 |
+
|
154 |
+
if model_s is None:
|
155 |
+
model_s = self.mode
|
pairs/pair_14/output.txt
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
l_fn(x, s)
|
2 |
+
if model_s1 is None:
|
3 |
+
x_s1 = (
|
4 |
+
expand_dims(sigma_s1 / sigma_s, dims) * x
|
5 |
+
- expand_dims(alpha_s1 * phi_11, dims) * model_s
|
6 |
+
)
|
7 |
+
model_s1 = self.model_fn(x_s1, s1)
|
8 |
+
x_s2 = (
|
9 |
+
expand_dims(sigma_s2 / sigma_s, dims) * x
|
10 |
+
- expand_dims(alpha_s2 * phi_12, dims) * model_s
|
11 |
+
+ r2 / r1 * expand_dims(alpha_s2 * phi_22, dims) * (model_s1 - model_s)
|
12 |
+
)
|
13 |
+
model_s2 = self.model_fn(x_s2, s2)
|
14 |
+
if solver_type == 'dpm_solver':
|
15 |
+
x_t = (
|
16 |
+
expand_dims(sigma_t / sigma_s, dims) * x
|
17 |
+
- expand_dims(alpha_t * phi_1, dims) * model_s
|
18 |
+
+ (1. / r2) * expand_dims(alpha_t * phi_2, dims) * (model_s2 - model_s)
|
19 |
+
)
|
20 |
+
elif solver_type == 'taylor':
|
21 |
+
D1_0 = (1. / r1) * (model_s1 - model_s)
|
22 |
+
D1_1 = (1. / r2) * (model_s2 - model_s)
|
23 |
+
D1 = (r2 * D1_0 - r1 * D1_1) / (r2 - r1)
|
24 |
+
D2 = 2. * (D1_1 - D1_0) / (r2 - r1)
|
25 |
+
x_t = (
|
26 |
+
expand_dims(sigma_t / sigma_s, dims) * x
|
27 |
+
- expand_dims(alpha_t * phi_1, dims) * model_s
|
28 |
+
+ expand_dims(alpha_t * phi_2, dims) * D1
|
29 |
+
- expand_dims(alpha_t * phi_3, dims) * D2
|
30 |
+
)
|
pairs/pair_15/input.txt
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
cc = torch.cat(c_crossattn, 1)
|
2 |
+
out = self.diffusion_model(xc, t, context=cc)
|
3 |
+
elif self.conditioning_key == 'hybrid-adm':
|
4 |
+
assert c_adm is not None
|
5 |
+
xc = torch.cat([x] + c_concat, dim=1)
|
6 |
+
cc = torch.cat(c_crossattn, 1)
|
7 |
+
out = self.diffusion_model(xc, t, context=cc, y=c_adm)
|
8 |
+
elif self.conditioning_key == 'crossattn-adm':
|
9 |
+
assert c_adm is not None
|
10 |
+
cc = torch.cat(c_crossattn, 1)
|
11 |
+
out = self.diffusion_model(x, t, context=cc, y=c_adm)
|
12 |
+
elif self.conditioning_key == 'adm':
|
13 |
+
cc = c_crossattn[0]
|
14 |
+
out = self.diffusion_model(x, t, y=cc)
|
15 |
+
else:
|
16 |
+
raise NotImplementedError()
|
17 |
+
|
18 |
+
return out
|
19 |
+
|
20 |
+
|
21 |
+
class LatentUpscaleDiffusion(LatentDiffusion):
|
22 |
+
def __init__(self, *args, low_scale_config, low_scale_key="LR", noise_level_key=None, **kwargs):
|
23 |
+
super().__init__(*args, **kwargs)
|
24 |
+
# assumes that neither the cond_stage nor the low_scale_model contain trainable params
|
25 |
+
assert not self.cond_stage_trainable
|
26 |
+
self.instantiate_low_stage(low_scale_config)
|
27 |
+
self.low_scale_key = low_scale_key
|
28 |
+
self.noise_level_key = noise_level_key
|
29 |
+
|
30 |
+
def instantiate_low_stage(self, config):
|
31 |
+
model = instantiate_from_config(config)
|
32 |
+
self.low_scale_model = model.eval()
|
33 |
+
self.low_scale_model.train = disabled_train
|
34 |
+
for param in self.low_scale_model.parameters():
|
35 |
+
param.requires_grad = False
|
36 |
+
|
37 |
+
@torch.no_grad()
|
38 |
+
def get_input(self, batch, k, cond_key=None, bs=None, log_mode=False):
|
39 |
+
if not log_mode:
|
40 |
+
z, c = super().get_input(batch, k, force_c_encode=True, bs=bs)
|
41 |
+
else:
|
42 |
+
z, c, x, xrec, xc = super().get_input(batch, self.first_stage_key, return_first_stage_outputs=True,
|
43 |
+
force_c_encode=True, return_original_cond=True, bs=bs)
|
44 |
+
x_low = batch[self.low_scale_key][:bs]
|
45 |
+
x_low = rearrange(x_low, 'b h w c -> b c h w')
|
46 |
+
x_low = x_low.to(memory_format=torch.contiguous_format).float()
|
47 |
+
zx, noise_level = self.low_scale_model(x_low)
|
48 |
+
if self.noise_level_key is not None:
|
49 |
+
# get noise level from batch instead, e.g. when extracting a custom noise level for bsr
|
50 |
+
raise NotImplementedError('TODO')
|
51 |
+
|
52 |
+
all_conds = {"c_concat": [zx], "c_crossattn": [c], "c_adm": noise_level}
|
53 |
+
if log_mode:
|
54 |
+
# TODO: maybe disable if too expensive
|
55 |
+
x_low_rec = self.low_scale_model.decode(zx)
|
56 |
+
return z, all_conds, x, xrec, xc, x_low, x_low_rec, noise_level
|
57 |
+
return z, all_conds
|
58 |
+
|
59 |
+
@torch.no_grad()
|
60 |
+
def log_images(self, batch, N=8, n_row=4, sample=True, ddim_steps=200, ddim_eta=1., return_keys=None,
|
61 |
+
plot_denoise_rows=False, plot_progressive_rows=True, plot_diffusion_rows=True,
|
62 |
+
unconditional_guidance_scale=1., unconditional_guidance_label=None, use_ema_scope=True,
|
63 |
+
**kwargs):
|
64 |
+
ema_scope = self.ema_scope if use_ema_scope else nullcontext
|
65 |
+
use_ddim = ddim_steps is not None
|
66 |
+
|
67 |
+
log = dict()
|
68 |
+
z, c, x, xrec, xc, x_low, x_low_rec, noise_level = self.get_input(batch, self.first_stage_key, bs=N,
|
69 |
+
log_mode=True)
|
70 |
+
N = min(x.shape[0], N)
|
71 |
+
n_row = min(x.shape[0], n_row)
|
72 |
+
log["inputs"] = x
|
73 |
+
log["reconstruction"] = xrec
|
74 |
+
log["x_lr"] = x_low
|
75 |
+
log[f"x_lr_rec_@noise_levels{'-'.join(map(lambda x: str(x), list(noise_level.cpu().numpy())))}"] = x_low_rec
|
76 |
+
if self.model.conditioning_key is not None:
|
77 |
+
if hasattr(self.cond_stage_model, "decode"):
|
78 |
+
xc = self.cond_stage_model.decode(c)
|
79 |
+
log["conditioning"] = xc
|
80 |
+
elif self.cond_stage_key in ["caption", "txt"]:
|
81 |
+
xc = log_txt_as_img((x.shape[2], x.shape[3]), batch[self.cond_stage_key], size=x.shape[
|
pairs/pair_15/output.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2] // 25)
|
2 |
+
log["conditioning"] = xc
|
3 |
+
elif self.cond_stage_key in ['class_label', 'cls']:
|
4 |
+
xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"], size=x.shape[2] // 25)
|
5 |
+
log['conditioning'] = xc
|
6 |
+
elif isimage(xc):
|
7 |
+
log["conditioning"] = xc
|
8 |
+
if ismap(xc):
|
9 |
+
log["original_conditioning"] = self.to_rgb(xc)
|
pairs/pair_16/input.txt
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
from keras.models import *
|
3 |
+
from keras.layers import *
|
4 |
+
from keras.applications.vgg16 import VGG16
|
5 |
+
from keras.preprocessing.image import ImageDataGenerator
|
6 |
+
from keras.optimizers import *
|
7 |
+
from keras.callbacks import ModelCheckpoint
|
8 |
+
import cv2
|
9 |
+
|
10 |
+
def train_generator(batch_size=32):
|
11 |
+
data_gen_args = dict(featurewise_center=True,
|
12 |
+
rotation_range=90.,
|
13 |
+
width_shift_range=0.1,
|
14 |
+
height_shift_range=0.1,
|
15 |
+
fill_mode="constant",
|
16 |
+
cval=255,
|
17 |
+
horizontal_flip=True,
|
18 |
+
vertical_flip=True,
|
19 |
+
zoom_range=0.2)
|
20 |
+
image_datagen = ImageDataGenerator(**data_gen_args)
|
21 |
+
mask_datagen = ImageDataGenerator(**data_gen_args)
|
22 |
+
|
23 |
+
seed = 1
|
24 |
+
image_generator = image_datagen.flow_from_directory(
|
25 |
+
'data/train/images',
|
26 |
+
class_mode=None,
|
27 |
+
batch_size=batch_size,
|
28 |
+
color_mode='rgb',
|
29 |
+
target_size=(512,512),
|
30 |
+
#save_to_dir='./data/gen/images',
|
31 |
+
seed=seed)
|
32 |
+
|
33 |
+
mask_generator = mask_datagen.flow_from_directory(
|
34 |
+
'data/train/masks',
|
35 |
+
class_mode=None,
|
36 |
+
color_mode='grayscale',
|
37 |
+
target_size=(512,512),
|
38 |
+
batch_size=batch_size,
|
39 |
+
#save_to_dir='./data/gen/masks',
|
40 |
+
seed=seed)
|
41 |
+
|
42 |
+
# combine generators into one which yields image and masks
|
43 |
+
train_generator = zip(image_generator, mask_
|
pairs/pair_16/output.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
generator)
|
2 |
+
for (imgs, masks) in train_generator:
|
3 |
+
imgs = imgs / 255.0
|
4 |
+
masks = masks / 255.0
|
5 |
+
yield (imgs,masks)
|
pairs/pair_17/input.txt
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
from keras.models import *
|
3 |
+
from keras.layers import *
|
4 |
+
from keras.applications.vgg16 import VGG16
|
5 |
+
from keras.preprocessing.image import ImageDataGenerator
|
6 |
+
from keras.optimizers import *
|
7 |
+
from keras.callbacks import ModelCheckpoint
|
8 |
+
import cv2
|
9 |
+
|
10 |
+
def train_generator(batch_size=32):
|
11 |
+
data_gen_args = dict(featurewise_center=True,
|
12 |
+
rotation_range=90.,
|
13 |
+
width_shift_range=0.1,
|
14 |
+
height_shift_range=0.1,
|
15 |
+
fill_mode="constant",
|
16 |
+
cval=255,
|
17 |
+
horizontal_flip=True,
|
18 |
+
vertical_flip=True,
|
19 |
+
zoom_range=0.2)
|
20 |
+
image_datagen = ImageDataGenerator(**data_gen_args)
|
21 |
+
mask_datagen = ImageDataGenerator(**data_gen_args)
|
22 |
+
|
23 |
+
seed = 1
|
24 |
+
image_generator = image_datagen.flow_from_directory(
|
25 |
+
'data/train/images',
|
26 |
+
class_mode=None,
|
27 |
+
batch_size=batch_size,
|
28 |
+
color_mode='rgb',
|
29 |
+
target_size=(512,512),
|
30 |
+
#save_to_dir='./data/gen/images',
|
31 |
+
seed=seed)
|
32 |
+
|
33 |
+
mask_generator = mask_datagen.flow_from_directory(
|
34 |
+
'data/train/masks',
|
35 |
+
class_mode=None,
|
36 |
+
color_mode='grayscale',
|
37 |
+
target_size=(512,512),
|
38 |
+
batch_size=batch_size,
|
39 |
+
#save_to_dir='./data/gen/masks',
|
40 |
+
seed=seed)
|
41 |
+
|
42 |
+
# combine generators into one which yields image and masks
|
43 |
+
train_generator = zip(image_generator, mask_generator)
|
44 |
+
for (imgs, masks) in train_generator:
|
45 |
+
imgs = imgs / 255.0
|
46 |
+
masks = masks / 255.0
|
47 |
+
yield (imgs,masks)
|
48 |
+
|
49 |
+
|
50 |
+
def vgg10_unet(input_shape=(256,256,3), weights='imagenet'):
|
51 |
+
vgg16_model = VGG16(input_shape=input_shape, weights=weights, include_top=False)
|
52 |
+
|
53 |
+
block4_pool = vgg16_model.get_layer('block4_pool').output
|
54 |
+
block5_conv1 = Conv2D(1024, 3, activation='relu', padding='same', kernel_initializer='he_normal')(block4_pool)
|
55 |
+
block5_conv2 = Conv2D(1024, 3, activation='relu', padding='same', kernel_initializer='he_normal')(block5_conv1)
|
56 |
+
block5_drop = Dropout(0.5)(block5_conv2)
|
57 |
+
|
58 |
+
block6_up = Conv2D(512, 2, activation='relu', padding='same', kernel_initializer='he_normal')(
|
59 |
+
UpSampling2D(size=(2, 2))(block5_drop))
|
60 |
+
block6_merge = Concatenate(axis=3)([vgg16_model.get_layer('block4_conv3').output, block6_up])
|
61 |
+
block6_conv1 = Conv2D(512, 3, activation='relu', padding='same', kernel_initializer='he_normal')(block6_merge)
|
62 |
+
block6_conv2 = Conv2D(512, 3, activation='relu', padding='same', kernel_initializer='he_normal')(block6_conv1)
|
63 |
+
block6_conv3 = Conv2D(512, 3, activation='relu', padding='same', kernel_initializer='he_normal')(block6_conv2)
|
64 |
+
|
65 |
+
block7_up = Conv2D(256, 2, activation='relu', padding='same', kernel_initializer='he_normal')(
|
66 |
+
UpSampling2D(size=(2, 2))(block6_conv3))
|
67 |
+
block7_merge = Concatenate(axis=3)([vgg16_model.get_layer('block3_conv3').output, block7_up])
|
68 |
+
block7_conv1 = Conv2D(256, 3, activation='relu', padding='same', kernel_initializer='he_normal')(block7_merge)
|
69 |
+
block7_conv2 = Conv2D(256, 3, activation='relu', padding='same', kernel_initializer='he_normal')(block7_conv1)
|
70 |
+
block7_conv3 = Conv2D(256, 3, activation='relu', padding='same', kernel_initializer='he_normal')(block7_conv2)
|
71 |
+
|
72 |
+
block8_up = Conv2D(128, 2, activation='relu', padding='same', kernel_initializer='he_normal')(
|
73 |
+
UpSampling2D(size=(2, 2))(block7_conv3))
|
74 |
+
block8_merge = Concatenate(axis=3)([vgg16_model.get_layer('block2_conv2').output, block8_up])
|
75 |
+
block8_conv1 = Conv2D(128, 3, activation='relu', padding='same', kernel_initializer='he_normal')(block8_merge)
|
76 |
+
block8_conv2 = Conv2D(128, 3, activation='relu', padding='same', kernel_initializer='he_normal')(block8_conv1)
|
77 |
+
|
78 |
+
block9_up = Conv2D(64, 2, activation='relu', padding='same', kernel_initializer='he_normal')(
|
79 |
+
UpSampling2D(size=(2, 2))(block8_conv2))
|
80 |
+
block9_merge = Concatenate(axis=3)([vgg16_model.get_layer('block1_conv2').output, block9_up])
|
81 |
+
block9_conv1 = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(block9_merge)
|
82 |
+
block9_conv2 = Conv2D(64, 3, activation='relu'
|
pairs/pair_17/output.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
, padding='same', kernel_initializer='he_normal')(block9_conv1)
|
2 |
+
|
3 |
+
block10_conv1 = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(block9_conv2)
|
4 |
+
block10_conv2 = Conv2D(1, 1, activation='sigmoid')(block10_conv1)
|
5 |
+
|
6 |
+
model = Model(inputs=vgg16_model.input, outputs=block10_conv2)
|
7 |
+
return model
|
pairs/pair_18/input.txt
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
from keras.models import *
|
3 |
+
from keras.layers import *
|
4 |
+
from keras.applications.vgg16 import VGG16
|
5 |
+
from keras.preprocessing.image import ImageDataGenerator
|
6 |
+
from keras.optimizers import *
|
7 |
+
from keras.callbacks import ModelCheckpoint
|
8 |
+
import cv2
|
9 |
+
|
10 |
+
def train_generator(batch_size=32):
|
11 |
+
data_gen_args = dict(featurewise_center=True,
|
12 |
+
rotation_range=90.,
|
13 |
+
width_shift_range=0.1,
|
14 |
+
height_shift_range=0.1,
|
15 |
+
fill_mode="constant",
|
16 |
+
cval=255,
|
17 |
+
horizontal_flip=True,
|
18 |
+
vertical_flip=True,
|
19 |
+
zoom_range=0.2)
|
20 |
+
image_datagen = ImageDataGenerator(**data_gen_args)
|
21 |
+
mask_datagen = ImageDataGenerator(**data_gen_args)
|
22 |
+
|
23 |
+
seed = 1
|
24 |
+
image_generator = image_datagen.flow_fr
|
pairs/pair_18/output.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
om_directory(
|
2 |
+
'data/train/images',
|
3 |
+
class_mode=None,
|
4 |
+
batch_size=batch_size,
|
5 |
+
color_mode='rgb',
|
6 |
+
target_size=(512,512),
|
7 |
+
#save_to_dir='./data/gen/images',
|
8 |
+
seed=seed)
|
pairs/pair_19/input.txt
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
er('block3_conv3').output, block7_up])
|
2 |
+
block7_conv1 = Conv2D(256, 3, activation='relu', padding='same', kernel_initializer='he_normal')(block7_merge)
|
3 |
+
block7_conv2 = Conv2D(256, 3, activation='relu', padding='same', kernel_initializer='he_normal')(block7_conv1)
|
4 |
+
block7_conv3 = Conv2D(256, 3, activation='relu', padding='same', kernel_initializer='he_normal')(block7_conv2)
|
5 |
+
|
6 |
+
block8_up = Conv2D(128, 2, activation='relu', padding='same', kernel_initializer='he_normal')(
|
7 |
+
UpSampling2D(size=(2, 2))(block7_conv3))
|
8 |
+
block8_merge = Concatenate(axis=3)([vgg16_model.get_layer('block2_conv2').output, block8_up])
|
9 |
+
block8_conv1 = Conv2D(128, 3, activation='relu', padding='same', kernel_initializer='he_normal')(block8_merge)
|
10 |
+
block8_conv2 = Conv2D(128, 3, activation='relu', padding='same', kernel_initializer='he_normal')(block8_conv1)
|
11 |
+
|
12 |
+
block9_up = Conv2D(64, 2, activation='relu', padding='same', kernel_initializer='he_normal')(
|
13 |
+
UpSampling2D(size=(2, 2))(block8_conv2))
|
14 |
+
block9_merge = Concatenate(axis=3)([vgg16_model.get_layer('block1_conv2').output, block9_up])
|
15 |
+
block9_conv1 = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(block9_merge)
|
16 |
+
block9_conv2 = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(block9_conv1)
|
17 |
+
|
18 |
+
block10_conv1 = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(block9_conv2)
|
19 |
+
block10_conv2 = Conv2D(1, 1, activation='sigmoid')(block10_conv1)
|
20 |
+
|
21 |
+
model = Model(inputs=vgg16_model.input, outputs=block10_conv2)
|
22 |
+
return model
|
23 |
+
|
24 |
+
|
25 |
+
if __name__ == '__main__':
|
26 |
+
is_train = False
|
27 |
+
if is_train:
|
28 |
+
model = vgg10_unet(input_shape=(512,512,3), weights='imagenet')
|
29 |
+
|
30 |
+
for index in range(15):
|
31 |
+
model.layers[index].trainable = True
|
32 |
+
model.compile(optimizer=Adam(lr=1e-4), loss='binary_crossentropy', metrics=['accuracy'])
|
33 |
+
model_checkpoint = ModelCheckpoint('unet.h5', monitor='loss', verbose=1, save_best_only=True)
|
34 |
+
model.fit_generator(train_generator(batch_size=4),
|
35 |
+
steps_per_epoch=200,
|
36 |
+
epochs=50,
|
37 |
+
validation_data=train_generator(ba
|
pairs/pair_19/output.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
tch_size=4),
|
2 |
+
validation_steps=50,
|
3 |
+
callbacks=[model_checkpoint])
|
pairs/pair_2/input.txt
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
for idx, frame in enumerate(frames):
|
2 |
+
cam_name = os.path.join(path, frame["file_path"] + extension)
|
3 |
+
|
4 |
+
# NeRF 'transform_matrix' is a camera-to-world transform
|
5 |
+
c2w = np.array(frame["transform_matrix"])
|
6 |
+
# change from OpenGL/Blender camera axes (Y up, Z back) to COLMAP (Y down, Z forward)
|
7 |
+
c2w[:3, 1:3] *= -1
|
8 |
+
|
9 |
+
# get the world-to-camera transform and set R, T
|
10 |
+
w2c = np.linalg.inv(c2w)
|
11 |
+
R = np.transpose(w2c[:3,:3]) # R is stored transposed due to 'glm' in CUDA code
|
12 |
+
T = w2c[:3, 3]
|
13 |
+
|
14 |
+
image_path = os.path.join(path, cam_name)
|
15 |
+
image_name = Path(cam_name).stem
|
16 |
+
image = Image.open(image_path)
|
17 |
+
|
18 |
+
im_data = np.array(image.convert("RGBA"))
|
19 |
+
|
20 |
+
bg = np.array([1,1,1]) if white_background else np.array([0, 0, 0])
|
21 |
+
|
22 |
+
norm_data = im_data / 255.0
|
23 |
+
arr = norm_data[:,:,:3] * norm_data[:, :, 3:4] + bg * (1 - norm_data[:, :, 3:4])
|
24 |
+
image = Image.fromarray(np.array(arr*255.0, dtype=np.byte), "RGB")
|
25 |
+
|
26 |
+
fovy = focal2fov(fov2focal(fovx, image.size[0]), image.size[1])
|
27 |
+
FovY = fovy
|
28 |
+
FovX = fovx
|
29 |
+
|
30 |
+
cam_infos.append(CameraInfo(uid=idx, R=R, T=T, FovY=FovY, FovX=FovX, image=image,
|
31 |
+
image_path=image_path, image_name=image_name, width=image.size[0], height=image.size[1]))
|
32 |
+
|
33 |
+
return cam_infos
|
34 |
+
|
35 |
+
def readNerfSyntheticInfo(path, white_background, eval, extension=".png"):
|
36 |
+
print("Reading Training Transforms")
|
37 |
+
train_cam_infos = readCamerasFromTransforms(path, "transforms_train.json", white_background, extension)
|
38 |
+
print("Reading Test Transforms")
|
39 |
+
test_cam_infos = readCamerasFromTransforms(path, "transforms_test.json", white_background, extension)
|
40 |
+
|
41 |
+
if not eval:
|
42 |
+
train_cam_infos.extend(test_cam_info
|
pairs/pair_2/output.txt
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
s)
|
2 |
+
test_cam_infos = []
|
3 |
+
|
4 |
+
nerf_normalization = getNerfppNorm(train_cam_infos)
|
5 |
+
|
6 |
+
ply_path = os.path.join(path, "points3d.ply")
|
7 |
+
if not os.path.exists(ply_path):
|
8 |
+
# Since this data set has no colmap data, we start with random points
|
9 |
+
num_pts = 100_000
|
10 |
+
print(f"Generating random point cloud ({num_pts})...")
|
11 |
+
|
12 |
+
# We create random points inside the bounds of the synthetic Blender scenes
|
13 |
+
xyz = np.random.random((num_pts, 3)) * 2.6 - 1.3
|
14 |
+
shs = np.random.random((num_pts, 3)) / 255.0
|
15 |
+
pcd = BasicPointCloud(points=xyz, colors=SH2RGB(shs), normals=np.zeros((num_pts, 3)))
|
16 |
+
|
17 |
+
storePly(ply_path, xyz, SH2RGB(shs) * 255)
|
18 |
+
try:
|
19 |
+
pcd = fetchPly(ply_path)
|
20 |
+
except:
|
21 |
+
pcd = None
|
22 |
+
|
23 |
+
scene_info = SceneInfo(point_cloud=pcd,
|
24 |
+
train_cameras=train_cam_infos,
|
25 |
+
test_cameras=test_cam_infos,
|
26 |
+
nerf_normalization=nerf_normalization,
|
27 |
+
ply_path=ply_path)
|
28 |
+
return scene_info
|
29 |
+
|
30 |
+
sceneLoadTypeCallbacks = {
|
31 |
+
"Colmap": readColmapSceneInfo,
|
32 |
+
"Blender" : readNerfSyntheticInfo
|
33 |
+
}
|
pairs/pair_20/input.txt
ADDED
@@ -0,0 +1,317 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[0, 1, 2, 3, 4, 5, 6],
|
2 |
+
]
|
3 |
+
|
4 |
+
@classmethod
|
5 |
+
def Colors(cls):
|
6 |
+
"""Returns the list of colors.
|
7 |
+
"""
|
8 |
+
return cls.colors
|
9 |
+
|
10 |
+
@classmethod
|
11 |
+
def ColorGenerator(cls, n):
|
12 |
+
"""Returns an iterator of color strings.
|
13 |
+
|
14 |
+
n: how many colors will be used
|
15 |
+
"""
|
16 |
+
for i in cls.which_colors[n]:
|
17 |
+
yield cls.colors[i]
|
18 |
+
raise StopIteration('Ran out of colors in _Brewer.ColorGenerator')
|
19 |
+
|
20 |
+
@classmethod
|
21 |
+
def InitializeIter(cls, num):
|
22 |
+
"""Initializes the color iterator with the given number of colors."""
|
23 |
+
cls.color_iter = cls.ColorGenerator(num)
|
24 |
+
|
25 |
+
@classmethod
|
26 |
+
def ClearIter(cls):
|
27 |
+
"""Sets the color iterator to None."""
|
28 |
+
cls.color_iter = None
|
29 |
+
|
30 |
+
@classmethod
|
31 |
+
def GetIter(cls):
|
32 |
+
"""Gets the color iterator."""
|
33 |
+
if cls.color_iter is None:
|
34 |
+
cls.InitializeIter(7)
|
35 |
+
|
36 |
+
return cls.color_iter
|
37 |
+
|
38 |
+
|
39 |
+
def PrePlot(num=None, rows=None, cols=None):
|
40 |
+
"""Takes hints about what's coming.
|
41 |
+
|
42 |
+
num: number of lines that will be plotted
|
43 |
+
rows: number of rows of subplots
|
44 |
+
cols: number of columns of subplots
|
45 |
+
"""
|
46 |
+
if num:
|
47 |
+
_Brewer.InitializeIter(num)
|
48 |
+
|
49 |
+
if rows is None and cols is None:
|
50 |
+
return
|
51 |
+
|
52 |
+
if rows is not None and cols is None:
|
53 |
+
cols = 1
|
54 |
+
|
55 |
+
if cols is not None and rows is None:
|
56 |
+
rows = 1
|
57 |
+
|
58 |
+
# resize the image, depending on the number of rows and cols
|
59 |
+
size_map = {(1, 1): (8, 6),
|
60 |
+
(1, 2): (14, 6),
|
61 |
+
(1, 3): (14, 6),
|
62 |
+
(2, 2): (10, 10),
|
63 |
+
(2, 3): (16, 10),
|
64 |
+
(3, 1): (8, 10),
|
65 |
+
}
|
66 |
+
|
67 |
+
if (rows, cols) in size_map:
|
68 |
+
fig = pyplot.gcf()
|
69 |
+
fig.set_size_inches(*size_map[rows, cols])
|
70 |
+
|
71 |
+
# create the first subplot
|
72 |
+
if rows > 1 or cols > 1:
|
73 |
+
pyplot.subplot(rows, cols, 1)
|
74 |
+
global SUBPLOT_ROWS, SUBPLOT_COLS
|
75 |
+
SUBPLOT_ROWS = rows
|
76 |
+
SUBPLOT_COLS = cols
|
77 |
+
|
78 |
+
|
79 |
+
def SubPlot(plot_number, rows=None, cols=None):
|
80 |
+
"""Configures the number of subplots and changes the current plot.
|
81 |
+
|
82 |
+
rows: int
|
83 |
+
cols: int
|
84 |
+
plot_number: int
|
85 |
+
"""
|
86 |
+
rows = rows or SUBPLOT_ROWS
|
87 |
+
cols = cols or SUBPLOT_COLS
|
88 |
+
pyplot.subplot(rows, cols, plot_number)
|
89 |
+
|
90 |
+
|
91 |
+
def _Underride(d, **options):
|
92 |
+
"""Add key-value pairs to d only if key is not in d.
|
93 |
+
|
94 |
+
If d is None, create a new dictionary.
|
95 |
+
|
96 |
+
d: dictionary
|
97 |
+
options: keyword args to add to d
|
98 |
+
"""
|
99 |
+
if d is None:
|
100 |
+
d = {}
|
101 |
+
|
102 |
+
for key, val in options.items():
|
103 |
+
d.setdefault(key, val)
|
104 |
+
|
105 |
+
return d
|
106 |
+
|
107 |
+
|
108 |
+
def Clf():
|
109 |
+
"""Clears the figure and any hints that have been set."""
|
110 |
+
global LOC
|
111 |
+
LOC = None
|
112 |
+
_Brewer.ClearIter()
|
113 |
+
pyplot.clf()
|
114 |
+
fig = pyplot.gcf()
|
115 |
+
fig.set_size_inches(8, 6)
|
116 |
+
|
117 |
+
|
118 |
+
def Figure(**options):
|
119 |
+
"""Sets options for the current figure."""
|
120 |
+
_Underride(options, figsize=(6, 8))
|
121 |
+
pyplot.figure(**options)
|
122 |
+
|
123 |
+
|
124 |
+
def _UnderrideColor(options):
|
125 |
+
if 'color' in options:
|
126 |
+
return options
|
127 |
+
|
128 |
+
color_iter = _Brewer.GetIter()
|
129 |
+
|
130 |
+
if color_iter:
|
131 |
+
try:
|
132 |
+
options['color'] = next(color_iter)
|
133 |
+
except StopIteration:
|
134 |
+
# TODO: reconsider whether this should warn
|
135 |
+
# warnings.warn('Warning: Brewer ran out of colors.')
|
136 |
+
_Brewer.ClearIter()
|
137 |
+
return options
|
138 |
+
|
139 |
+
|
140 |
+
def Plot(obj, ys=None, style='', **options):
|
141 |
+
"""Plots a line.
|
142 |
+
|
143 |
+
Args:
|
144 |
+
obj: sequence of x values, or Series, or anything with Render()
|
145 |
+
ys: sequence of y values
|
146 |
+
style: style string passed along to pyplot.plot
|
147 |
+
options: keyword args passed to pyplot.plot
|
148 |
+
"""
|
149 |
+
options = _UnderrideColor(options)
|
150 |
+
label = getattr(obj, 'label', '_nolegend_')
|
151 |
+
options = _Underride(options, linewidth=3, alpha=0.8, label=label)
|
152 |
+
|
153 |
+
xs = obj
|
154 |
+
if ys is None:
|
155 |
+
if hasattr(obj, 'Render'):
|
156 |
+
xs, ys = obj.Render()
|
157 |
+
if isinstance(obj, pandas.Series):
|
158 |
+
ys = obj.values
|
159 |
+
xs = obj.index
|
160 |
+
|
161 |
+
if ys is None:
|
162 |
+
pyplot.plot(xs, style, **options)
|
163 |
+
else:
|
164 |
+
pyplot.plot(xs, ys, style, **options)
|
165 |
+
|
166 |
+
|
167 |
+
def FillBetween(xs, y1, y2=None, where=None, **options):
|
168 |
+
"""Plots a line.
|
169 |
+
|
170 |
+
Args:
|
171 |
+
xs: sequence of x values
|
172 |
+
y1: sequence of y values
|
173 |
+
y2: sequence of y values
|
174 |
+
where: sequence of boolean
|
175 |
+
options: keyword args passed to pyplot.fill_between
|
176 |
+
"""
|
177 |
+
options = _UnderrideColor(options)
|
178 |
+
options = _Underride(options, linewidth=0, alpha=0.5)
|
179 |
+
pyplot.fill_between(xs, y1, y2, where, **options)
|
180 |
+
|
181 |
+
|
182 |
+
def Bar(xs, ys, **options):
|
183 |
+
"""Plots a line.
|
184 |
+
|
185 |
+
Args:
|
186 |
+
xs: sequence of x values
|
187 |
+
ys: sequence of y values
|
188 |
+
options: keyword args passed to pyplot.bar
|
189 |
+
"""
|
190 |
+
options = _UnderrideColor(options)
|
191 |
+
options = _Underride(options, linewidth=0, alpha=0.6)
|
192 |
+
pyplot.bar(xs, ys, **options)
|
193 |
+
|
194 |
+
|
195 |
+
def Scatter(xs, ys=None, **options):
|
196 |
+
"""Makes a scatter plot.
|
197 |
+
|
198 |
+
xs: x values
|
199 |
+
ys: y values
|
200 |
+
options: options passed to pyplot.scatter
|
201 |
+
"""
|
202 |
+
options = _Underride(options, color='blue', alpha=0.2,
|
203 |
+
s=30, edgecolors='none')
|
204 |
+
|
205 |
+
if ys is None and isinstance(xs, pandas.Series):
|
206 |
+
ys = xs.values
|
207 |
+
xs = xs.index
|
208 |
+
|
209 |
+
pyplot.scatter(xs, ys, **options)
|
210 |
+
|
211 |
+
|
212 |
+
def HexBin(xs, ys, **options):
|
213 |
+
"""Makes a scatter plot.
|
214 |
+
|
215 |
+
xs: x values
|
216 |
+
ys: y values
|
217 |
+
options: options passed to pyplot.scatter
|
218 |
+
"""
|
219 |
+
options = _Underride(options, cmap=matplotlib.cm.Blues)
|
220 |
+
pyplot.hexbin(xs, ys, **options)
|
221 |
+
|
222 |
+
|
223 |
+
def Pdf(pdf, **options):
|
224 |
+
"""Plots a Pdf, Pmf, or Hist as a line.
|
225 |
+
|
226 |
+
Args:
|
227 |
+
pdf: Pdf, Pmf, or Hist object
|
228 |
+
options: keyword args passed to pyplot.plot
|
229 |
+
"""
|
230 |
+
low, high = options.pop('low', None), options.pop('high', None)
|
231 |
+
n = options.pop('n', 101)
|
232 |
+
xs, ps = pdf.Render(low=low, high=high, n=n)
|
233 |
+
options = _Underride(options, label=pdf.label)
|
234 |
+
Plot(xs, ps, **options)
|
235 |
+
|
236 |
+
|
237 |
+
def Pdfs(pdfs, **options):
|
238 |
+
"""Plots a sequence of PDFs.
|
239 |
+
|
240 |
+
Options are passed along for all PDFs. If you want different
|
241 |
+
options for each pdf, make multiple calls to Pdf.
|
242 |
+
|
243 |
+
Args:
|
244 |
+
pdfs: sequence of PDF objects
|
245 |
+
options: keyword args passed to pyplot.plot
|
246 |
+
"""
|
247 |
+
for pdf in pdfs:
|
248 |
+
Pdf(pdf, **options)
|
249 |
+
|
250 |
+
|
251 |
+
def Hist(hist, **options):
|
252 |
+
"""Plots a Pmf or Hist with a bar plot.
|
253 |
+
|
254 |
+
The default width of the bars is based on the minimum difference
|
255 |
+
between values in the Hist. If that's too small, you can override
|
256 |
+
it by providing a width keyword argument, in the same units
|
257 |
+
as the values.
|
258 |
+
|
259 |
+
Args:
|
260 |
+
hist: Hist or Pmf object
|
261 |
+
options: keyword args passed to pyplot.bar
|
262 |
+
"""
|
263 |
+
# find the minimum distance between adjacent values
|
264 |
+
xs, ys = hist.Render()
|
265 |
+
|
266 |
+
if 'width' not in options:
|
267 |
+
try:
|
268 |
+
options['width'] = 0.9 * np.diff(xs).min()
|
269 |
+
except TypeError:
|
270 |
+
warnings.warn("Hist: Can't compute bar width automatically."
|
271 |
+
"Check for non-numeric types in Hist."
|
272 |
+
"Or try providing width option."
|
273 |
+
)
|
274 |
+
|
275 |
+
options = _Underride(options, label=hist.label)
|
276 |
+
options = _Underride(options, align='center')
|
277 |
+
if options['align'] == 'left':
|
278 |
+
options['align'] = 'edge'
|
279 |
+
elif options['align'] == 'right':
|
280 |
+
options['align'] = 'edge'
|
281 |
+
options['width'] *= -1
|
282 |
+
|
283 |
+
Bar(xs, ys, **options)
|
284 |
+
|
285 |
+
|
286 |
+
def Hists(hists, **options):
|
287 |
+
"""Plots two histograms as interleaved bar plots.
|
288 |
+
|
289 |
+
Options are passed along for all PMFs. If you want different
|
290 |
+
options for each pmf, make multiple calls to Pmf.
|
291 |
+
|
292 |
+
Args:
|
293 |
+
hists: list of two Hist or Pmf objects
|
294 |
+
options: keyword args passed to pyplot.plot
|
295 |
+
"""
|
296 |
+
for hist in hists:
|
297 |
+
Hist(hist, **options)
|
298 |
+
|
299 |
+
|
300 |
+
def Pmf(pmf, **options):
|
301 |
+
"""Plots a Pmf or Hist as a line.
|
302 |
+
|
303 |
+
Args:
|
304 |
+
pmf: Hist or Pmf object
|
305 |
+
options: keyword args passed to pyplot.plot
|
306 |
+
"""
|
307 |
+
xs, ys = pmf.Render()
|
308 |
+
low, high = min(xs), max(xs)
|
309 |
+
|
310 |
+
width = options.pop('width', None)
|
311 |
+
if width is None:
|
312 |
+
try:
|
313 |
+
width = np.diff(xs).min()
|
314 |
+
except TypeError:
|
315 |
+
warnings.warn("Pmf: Can't compute bar width automatically."
|
316 |
+
"Check for non-numeric types in Pmf."
|
317 |
+
|
pairs/pair_20/output.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
"Or try providing width option.")
|
pairs/pair_21/input.txt
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
m most common place
|
2 |
+
if len(train_df.Embarked[ train_df.Embarked.isnull() ]) > 0:
|
3 |
+
train_df.Embarked[ train_df.Embarked.isnull() ] = train_df.Embarked.dropna().mode().values
|
4 |
+
|
5 |
+
Ports = list(enumerate(np.unique(train_df['Embarked']))) # determine all values of Embarked,
|
6 |
+
Ports_dict = { name : i for i, name in Ports } # set up a dictionary in the form Ports : index
|
7 |
+
train_df.Embarked = train_df.Embarked.map( lambda x: Ports_dict[x]).astype(int) # Convert all Embark strings to int
|
8 |
+
|
9 |
+
# All the ages with no data -> make the median of all Ages
|
10 |
+
median_age = train_df['Age'].dropna().median()
|
11 |
+
if len(train_df.Age[ train_df.Age.isnull() ]) > 0:
|
12 |
+
train_df.loc[ (train_df.Age.isnull()), 'Age'] = median_age
|
13 |
+
|
14 |
+
# Remove the Name column, Cabin, Ticket, and Sex (since I copied and filled it to Gender)
|
15 |
+
train_df = train_df.drop(['Name', 'Sex', 'Ticket', 'Cabin', 'PassengerId'], axis=1)
|
16 |
+
|
17 |
+
|
18 |
+
# TEST DATA
|
19 |
+
test_df = pd.read_csv('test.csv', header=0) # Load the test file into a dataframe
|
20 |
+
|
21 |
+
# I need to do the same with the test data now, so that the columns are the same as the training data
|
22 |
+
# I need to convert all strings to integer classifiers:
|
23 |
+
# female = 0, Male = 1
|
24 |
+
test_df['Gender'] = test_df['Sex'].map( {'female': 0, 'male': 1} ).astype(int)
|
25 |
+
|
26 |
+
# Embarked from 'C', 'Q', 'S'
|
27 |
+
# All missing Embarked -> just make them embark from most common place
|
28 |
+
if len(test_df.Embarked[ test_df.Embarked.isnull() ]) > 0:
|
29 |
+
test_df.Embarked[ test_df.Embarked.isnull() ] = test_df.Embarked.dropna().mode().values
|
30 |
+
# Again convert all Embarked strings to int
|
31 |
+
test_df.Embarked = test_df.Embarked.map( lambda x: Ports_dict[x]).astype(int)
|
32 |
+
|
33 |
+
|
34 |
+
# All the ages with no data -> make the median of all Ages
|
35 |
+
median_age = test_df['Age'].dropna().median()
|
36 |
+
if len(test_df.Age[ test_df.Age.isnull() ]) > 0:
|
37 |
+
test_df.loc[ (test_df.Age.isnull()), 'Age'] = median_age
|
38 |
+
|
39 |
+
# All the missing Fares -> assume median of their respective class
|
40 |
+
if len(test_df.Fare[ test_df.Fare.isnull() ]) > 0:
|
41 |
+
median_fare = np.zeros(3)
|
42 |
+
for f in range(0,3): # loop 0 to 2
|
43 |
+
median_fare[f] = test_df[ test_df.Pclass == f+1 ]['Fare'].dropna().median()
|
44 |
+
for f in range(0,3): # loop 0 to 2
|
45 |
+
test_df.loc[ (test_df.Fare.isnull()) & (test_df.Pclass == f+1 ), 'Fare'] = median_fare[f]
|
46 |
+
|
47 |
+
# Collect the test data's PassengerIds before dropping it
|
48 |
+
ids = test_df['PassengerId'].values
|
49 |
+
# Remove the Name column, Cabin, Ticket, and Sex (since I copied and filled it to Gender)
|
50 |
+
test_df = test_df.drop(['Name', 'Sex', 'Ticket', 'Cabin', 'Passen
|
pairs/pair_21/output.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
gerId'], axis=1)
|
pairs/pair_22/input.txt
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
xs, n=None):
|
2 |
+
"""Draw a sample from xs with the same length as xs.
|
3 |
+
|
4 |
+
xs: sequence
|
5 |
+
n: sample size (default: len(xs))
|
6 |
+
|
7 |
+
returns: NumPy array
|
8 |
+
"""
|
9 |
+
if n is None:
|
10 |
+
n = len(xs)
|
11 |
+
return np.random.choice(xs, n, replace=True)
|
12 |
+
|
13 |
+
|
14 |
+
def SampleRows(df, nrows, replace=False):
|
15 |
+
"""Choose a sample of rows from a DataFrame.
|
16 |
+
|
17 |
+
df: DataFrame
|
18 |
+
nrows: number of rows
|
19 |
+
replace: whether to sample with replacement
|
20 |
+
|
21 |
+
returns: DataDf
|
22 |
+
"""
|
23 |
+
indices = np.random.choice(df.index, nrows, replace=replace)
|
24 |
+
sample = df.loc[indices]
|
25 |
+
return sample
|
26 |
+
|
27 |
+
|
28 |
+
def ResampleRows(df):
|
29 |
+
"""Resamples rows from a DataFrame.
|
30 |
+
|
31 |
+
df: DataFrame
|
32 |
+
|
33 |
+
returns: DataFrame
|
34 |
+
"""
|
35 |
+
return SampleRows(df, len(df), replace=True)
|
36 |
+
|
37 |
+
|
38 |
+
def ResampleRowsWeighted(df, column='finalwgt'):
|
39 |
+
"""Resamples a DataFrame using probabilities proportional to given column.
|
40 |
+
|
41 |
+
df: DataFrame
|
42 |
+
column: string column name to use as weights
|
43 |
+
|
44 |
+
returns: DataFrame
|
45 |
+
"""
|
46 |
+
weights = df[column]
|
47 |
+
cdf = Cdf(dict(weights))
|
48 |
+
indices = cdf.Sample(len(weights))
|
49 |
+
sample = df.loc[indices]
|
50 |
+
return sample
|
51 |
+
|
52 |
+
|
53 |
+
def PercentileRow(array, p):
|
54 |
+
"""Selects the row from a sorted array that maps to percentile p.
|
55 |
+
|
56 |
+
p: float 0--100
|
57 |
+
|
58 |
+
returns: NumPy array (one row)
|
59 |
+
"""
|
60 |
+
rows, cols = array.shape
|
61 |
+
index = int(rows * p / 100)
|
62 |
+
return array[index,]
|
63 |
+
|
64 |
+
|
65 |
+
def PercentileRows(ys_seq, percents):
|
66 |
+
"""Given a collection of lines, selects percentiles along vertical axis.
|
67 |
+
|
68 |
+
For example, if ys_seq contains simulation results like ys as a
|
69 |
+
function of time, and percents contains (5, 95), the result would
|
70 |
+
be a 90% CI for each vertical slice of the simulation results.
|
71 |
+
|
72 |
+
ys_seq: sequence of lines (y values)
|
73 |
+
percents: list of percentiles (0-100) to select
|
74 |
+
|
75 |
+
returns: list of NumPy arrays, one for each pe
|
pairs/pair_22/output.txt
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
rcentile
|
2 |
+
"""
|
3 |
+
nrows = len(ys_seq)
|
4 |
+
ncols = len(ys_seq[0])
|
5 |
+
array = np.zeros((nrows, ncols))
|
6 |
+
|
7 |
+
for i, ys in enumerate(ys_seq):
|
8 |
+
array[i,] = ys
|
9 |
+
|
10 |
+
array = np.sort(array, axis=0)
|
11 |
+
|
12 |
+
rows = [PercentileRow(array, p) for p in percents]
|
13 |
+
return rows
|
pairs/pair_23/input.txt
ADDED
@@ -0,0 +1,407 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
.
|
2 |
+
|
3 |
+
other: a number
|
4 |
+
|
5 |
+
returns: new Pmf
|
6 |
+
"""
|
7 |
+
pmf = Pmf()
|
8 |
+
for v1, p1 in self.Items():
|
9 |
+
pmf.Set(v1 + other, p1)
|
10 |
+
return pmf
|
11 |
+
|
12 |
+
def __sub__(self, other):
|
13 |
+
"""Computes the Pmf of the diff of values drawn from self and other.
|
14 |
+
|
15 |
+
other: another Pmf
|
16 |
+
|
17 |
+
returns: new Pmf
|
18 |
+
"""
|
19 |
+
try:
|
20 |
+
return self.SubPmf(other)
|
21 |
+
except AttributeError:
|
22 |
+
return self.AddConstant(-other)
|
23 |
+
|
24 |
+
def SubPmf(self, other):
|
25 |
+
"""Computes the Pmf of the diff of values drawn from self and other.
|
26 |
+
|
27 |
+
other: another Pmf
|
28 |
+
|
29 |
+
returns: new Pmf
|
30 |
+
"""
|
31 |
+
pmf = Pmf()
|
32 |
+
for v1, p1 in self.Items():
|
33 |
+
for v2, p2 in other.Items():
|
34 |
+
pmf.Incr(v1 - v2, p1 * p2)
|
35 |
+
return pmf
|
36 |
+
|
37 |
+
def __mul__(self, other):
|
38 |
+
"""Computes the Pmf of the product of values drawn from self and other.
|
39 |
+
|
40 |
+
other: another Pmf
|
41 |
+
|
42 |
+
returns: new Pmf
|
43 |
+
"""
|
44 |
+
try:
|
45 |
+
return self.MulPmf(other)
|
46 |
+
except AttributeError:
|
47 |
+
return self.MulConstant(other)
|
48 |
+
|
49 |
+
def MulPmf(self, other):
|
50 |
+
"""Computes the Pmf of the diff of values drawn from self and other.
|
51 |
+
|
52 |
+
other: another Pmf
|
53 |
+
|
54 |
+
returns: new Pmf
|
55 |
+
"""
|
56 |
+
pmf = Pmf()
|
57 |
+
for v1, p1 in self.Items():
|
58 |
+
for v2, p2 in other.Items():
|
59 |
+
pmf.Incr(v1 * v2, p1 * p2)
|
60 |
+
return pmf
|
61 |
+
|
62 |
+
def MulConstant(self, other):
|
63 |
+
"""Computes the Pmf of the product of a constant and values from self.
|
64 |
+
|
65 |
+
other: a number
|
66 |
+
|
67 |
+
returns: new Pmf
|
68 |
+
"""
|
69 |
+
pmf = Pmf()
|
70 |
+
for v1, p1 in self.Items():
|
71 |
+
pmf.Set(v1 * other, p1)
|
72 |
+
return pmf
|
73 |
+
|
74 |
+
def __div__(self, other):
|
75 |
+
"""Computes the Pmf of the ratio of values drawn from self and other.
|
76 |
+
|
77 |
+
other: another Pmf
|
78 |
+
|
79 |
+
returns: new Pmf
|
80 |
+
"""
|
81 |
+
try:
|
82 |
+
return self.DivPmf(other)
|
83 |
+
except AttributeError:
|
84 |
+
return self.MulConstant(1/other)
|
85 |
+
|
86 |
+
__truediv__ = __div__
|
87 |
+
|
88 |
+
def DivPmf(self, other):
|
89 |
+
"""Computes the Pmf of the ratio of values drawn from self and other.
|
90 |
+
|
91 |
+
other: another Pmf
|
92 |
+
|
93 |
+
returns: new Pmf
|
94 |
+
"""
|
95 |
+
pmf = Pmf()
|
96 |
+
for v1, p1 in self.Items():
|
97 |
+
for v2, p2 in other.Items():
|
98 |
+
pmf.Incr(v1 / v2, p1 * p2)
|
99 |
+
return pmf
|
100 |
+
|
101 |
+
def Max(self, k):
|
102 |
+
"""Computes the CDF of the maximum of k selections from this dist.
|
103 |
+
|
104 |
+
k: int
|
105 |
+
|
106 |
+
returns: new Cdf
|
107 |
+
"""
|
108 |
+
cdf = self.MakeCdf()
|
109 |
+
return cdf.Max(k)
|
110 |
+
|
111 |
+
|
112 |
+
class Joint(Pmf):
|
113 |
+
"""Represents a joint distribution.
|
114 |
+
|
115 |
+
The values are sequences (usually tuples)
|
116 |
+
"""
|
117 |
+
|
118 |
+
def Marginal(self, i, label=None):
|
119 |
+
"""Gets the marginal distribution of the indicated variable.
|
120 |
+
|
121 |
+
i: index of the variable we want
|
122 |
+
|
123 |
+
Returns: Pmf
|
124 |
+
"""
|
125 |
+
pmf = Pmf(label=label)
|
126 |
+
for vs, prob in self.Items():
|
127 |
+
pmf.Incr(vs[i], prob)
|
128 |
+
return pmf
|
129 |
+
|
130 |
+
def Conditional(self, i, j, val, label=None):
|
131 |
+
"""Gets the conditional distribution of the indicated variable.
|
132 |
+
|
133 |
+
Distribution of vs[i], conditioned on vs[j] = val.
|
134 |
+
|
135 |
+
i: index of the variable we want
|
136 |
+
j: which variable is conditioned on
|
137 |
+
val: the value the jth variable has to have
|
138 |
+
|
139 |
+
Returns: Pmf
|
140 |
+
"""
|
141 |
+
pmf = Pmf(label=label)
|
142 |
+
for vs, prob in self.Items():
|
143 |
+
if vs[j] != val:
|
144 |
+
continue
|
145 |
+
pmf.Incr(vs[i], prob)
|
146 |
+
|
147 |
+
pmf.Normalize()
|
148 |
+
return pmf
|
149 |
+
|
150 |
+
def MaxLikeInterval(self, percentage=90):
|
151 |
+
"""Returns the maximum-likelihood credible interval.
|
152 |
+
|
153 |
+
If percentage=90, computes a 90% CI containing the values
|
154 |
+
with the highest likelihoods.
|
155 |
+
|
156 |
+
percentage: float between 0 and 100
|
157 |
+
|
158 |
+
Returns: list of values from the suite
|
159 |
+
"""
|
160 |
+
interval = []
|
161 |
+
total = 0
|
162 |
+
|
163 |
+
t = [(prob, val) for val, prob in self.Items()]
|
164 |
+
t.sort(reverse=True)
|
165 |
+
|
166 |
+
for prob, val in t:
|
167 |
+
interval.append(val)
|
168 |
+
total += prob
|
169 |
+
if total >= percentage / 100.0:
|
170 |
+
break
|
171 |
+
|
172 |
+
return interval
|
173 |
+
|
174 |
+
|
175 |
+
def MakeJoint(pmf1, pmf2):
|
176 |
+
"""Joint distribution of values from pmf1 and pmf2.
|
177 |
+
|
178 |
+
Assumes that the PMFs represent independent random variables.
|
179 |
+
|
180 |
+
Args:
|
181 |
+
pmf1: Pmf object
|
182 |
+
pmf2: Pmf object
|
183 |
+
|
184 |
+
Returns:
|
185 |
+
Joint pmf of value pairs
|
186 |
+
"""
|
187 |
+
joint = Joint()
|
188 |
+
for v1, p1 in pmf1.Items():
|
189 |
+
for v2, p2 in pmf2.Items():
|
190 |
+
joint.Set((v1, v2), p1 * p2)
|
191 |
+
return joint
|
192 |
+
|
193 |
+
|
194 |
+
def MakeHistFromList(t, label=None):
|
195 |
+
"""Makes a histogram from an unsorted sequence of values.
|
196 |
+
|
197 |
+
Args:
|
198 |
+
t: sequence of numbers
|
199 |
+
label: string label for this histogram
|
200 |
+
|
201 |
+
Returns:
|
202 |
+
Hist object
|
203 |
+
"""
|
204 |
+
return Hist(t, label=label)
|
205 |
+
|
206 |
+
|
207 |
+
def MakeHistFromDict(d, label=None):
|
208 |
+
"""Makes a histogram from a map from values to frequencies.
|
209 |
+
|
210 |
+
Args:
|
211 |
+
d: dictionary that maps values to frequencies
|
212 |
+
label: string label for this histogram
|
213 |
+
|
214 |
+
Returns:
|
215 |
+
Hist object
|
216 |
+
"""
|
217 |
+
return Hist(d, label)
|
218 |
+
|
219 |
+
|
220 |
+
def MakePmfFromList(t, label=None):
|
221 |
+
"""Makes a PMF from an unsorted sequence of values.
|
222 |
+
|
223 |
+
Args:
|
224 |
+
t: sequence of numbers
|
225 |
+
label: string label for this PMF
|
226 |
+
|
227 |
+
Returns:
|
228 |
+
Pmf object
|
229 |
+
"""
|
230 |
+
return Pmf(t, label=label)
|
231 |
+
|
232 |
+
|
233 |
+
def MakePmfFromDict(d, label=None):
|
234 |
+
"""Makes a PMF from a map from values to probabilities.
|
235 |
+
|
236 |
+
Args:
|
237 |
+
d: dictionary that maps values to probabilities
|
238 |
+
label: string label for this PMF
|
239 |
+
|
240 |
+
Returns:
|
241 |
+
Pmf object
|
242 |
+
"""
|
243 |
+
return Pmf(d, label=label)
|
244 |
+
|
245 |
+
|
246 |
+
def MakePmfFromItems(t, label=None):
|
247 |
+
"""Makes a PMF from a sequence of value-probability pairs
|
248 |
+
|
249 |
+
Args:
|
250 |
+
t: sequence of value-probability pairs
|
251 |
+
label: string label for this PMF
|
252 |
+
|
253 |
+
Returns:
|
254 |
+
Pmf object
|
255 |
+
"""
|
256 |
+
return Pmf(dict(t), label=label)
|
257 |
+
|
258 |
+
|
259 |
+
def MakePmfFromHist(hist, label=None):
|
260 |
+
"""Makes a normalized PMF from a Hist object.
|
261 |
+
|
262 |
+
Args:
|
263 |
+
hist: Hist object
|
264 |
+
label: string label
|
265 |
+
|
266 |
+
Returns:
|
267 |
+
Pmf object
|
268 |
+
"""
|
269 |
+
if label is None:
|
270 |
+
label = hist.label
|
271 |
+
|
272 |
+
return Pmf(hist, label=label)
|
273 |
+
|
274 |
+
|
275 |
+
def MakeMixture(metapmf, label='mix'):
|
276 |
+
"""Make a mixture distribution.
|
277 |
+
|
278 |
+
Args:
|
279 |
+
metapmf: Pmf that maps from Pmfs to probs.
|
280 |
+
label: string label for the new Pmf.
|
281 |
+
|
282 |
+
Returns: Pmf object.
|
283 |
+
"""
|
284 |
+
mix = Pmf(label=label)
|
285 |
+
for pmf, p1 in metapmf.Items():
|
286 |
+
for x, p2 in pmf.Items():
|
287 |
+
mix.Incr(x, p1 * p2)
|
288 |
+
return mix
|
289 |
+
|
290 |
+
|
291 |
+
def MakeUniformPmf(low, high, n):
|
292 |
+
"""Make a uniform Pmf.
|
293 |
+
|
294 |
+
low: lowest value (inclusive)
|
295 |
+
high: highest value (inclusize)
|
296 |
+
n: number of values
|
297 |
+
"""
|
298 |
+
pmf = Pmf()
|
299 |
+
for x in np.linspace(low, high, n):
|
300 |
+
pmf.Set(x, 1)
|
301 |
+
pmf.Normalize()
|
302 |
+
return pmf
|
303 |
+
|
304 |
+
|
305 |
+
class Cdf(object):
|
306 |
+
"""Represents a cumulative distribution function.
|
307 |
+
|
308 |
+
Attributes:
|
309 |
+
xs: sequence of values
|
310 |
+
ps: sequence of probabilities
|
311 |
+
label: string used as a graph label.
|
312 |
+
"""
|
313 |
+
def __init__(self, obj=None, ps=None, label=None):
|
314 |
+
"""Initializes.
|
315 |
+
|
316 |
+
If ps is provided, obj must be the corresponding list of values.
|
317 |
+
|
318 |
+
obj: Hist, Pmf, Cdf, Pdf, dict, pandas Series, list of pairs
|
319 |
+
ps: list of cumulative probabilities
|
320 |
+
label: string label
|
321 |
+
"""
|
322 |
+
self.label = label if label is not None else '_nolegend_'
|
323 |
+
|
324 |
+
if isinstance(obj, (_DictWrapper, Cdf, Pdf)):
|
325 |
+
if not label:
|
326 |
+
self.label = label if label is not None else obj.label
|
327 |
+
|
328 |
+
if obj is None:
|
329 |
+
# caller does not provide obj, make an empty Cdf
|
330 |
+
self.xs = np.asarray([])
|
331 |
+
self.ps = np.asarray([])
|
332 |
+
if ps is not None:
|
333 |
+
logging.warning("Cdf: can't pass ps without also passing xs.")
|
334 |
+
return
|
335 |
+
else:
|
336 |
+
# if the caller provides xs and ps, just store them
|
337 |
+
if ps is not None:
|
338 |
+
if isinstance(ps, str):
|
339 |
+
logging.warning("Cdf: ps can't be a string")
|
340 |
+
|
341 |
+
self.xs = np.asarray(obj)
|
342 |
+
self.ps = np.asarray(ps)
|
343 |
+
return
|
344 |
+
|
345 |
+
# caller has provided just obj, not ps
|
346 |
+
if isinstance(obj, Cdf):
|
347 |
+
self.xs = copy.copy(obj.xs)
|
348 |
+
self.ps = copy.copy(obj.ps)
|
349 |
+
return
|
350 |
+
|
351 |
+
if isinstance(obj, _DictWrapper):
|
352 |
+
dw = obj
|
353 |
+
else:
|
354 |
+
dw = Hist(obj)
|
355 |
+
|
356 |
+
if len(dw) == 0:
|
357 |
+
self.xs = np.asarray([])
|
358 |
+
self.ps = np.asarray([])
|
359 |
+
return
|
360 |
+
|
361 |
+
xs, freqs = zip(*sorted(dw.Items()))
|
362 |
+
self.xs = np.asarray(xs)
|
363 |
+
self.ps = np.cumsum(freqs, dtype=np.float)
|
364 |
+
self.ps /= self.ps[-1]
|
365 |
+
|
366 |
+
def __str__(self):
|
367 |
+
return 'Cdf(%s, %s)' % (str(self.xs), str(self.ps))
|
368 |
+
|
369 |
+
__repr__ = __str__
|
370 |
+
|
371 |
+
def __len__(self):
|
372 |
+
return len(self.xs)
|
373 |
+
|
374 |
+
def __getitem__(self, x):
|
375 |
+
return self.Prob(x)
|
376 |
+
|
377 |
+
def __setitem__(self):
|
378 |
+
raise UnimplementedMethodException()
|
379 |
+
|
380 |
+
def __delitem__(self):
|
381 |
+
raise UnimplementedMethodException()
|
382 |
+
|
383 |
+
def __eq__(self, other):
|
384 |
+
return np.all(self.xs == other.xs) and np.all(self.ps == other.ps)
|
385 |
+
|
386 |
+
def Copy(self, label=None):
|
387 |
+
"""Returns a copy of this Cdf.
|
388 |
+
|
389 |
+
label: string label for the new Cdf
|
390 |
+
"""
|
391 |
+
if label is None:
|
392 |
+
label = self.label
|
393 |
+
return Cdf(list(self.xs), list(self.ps), label=label)
|
394 |
+
|
395 |
+
def MakePmf(self, label=None):
|
396 |
+
"""Makes a Pmf."""
|
397 |
+
if label is None:
|
398 |
+
label = self.label
|
399 |
+
return Pmf(self, label=label)
|
400 |
+
|
401 |
+
def Values(self):
|
402 |
+
"""Returns a sorted list of values.
|
403 |
+
"""
|
404 |
+
return self.xs
|
405 |
+
|
406 |
+
def Items(self):
|
407 |
+
"""Returns a sorted sequence o
|
pairs/pair_23/output.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
f (value, probability) pairs.
|
2 |
+
|
3 |
+
Note: in Python3, returns an iterator.
|
4 |
+
"""
|
5 |
+
a = self.ps
|
6 |
+
b = np.roll(a, 1)
|
7 |
+
b[0] = 0
|
8 |
+
return zip(self.xs, a-b)
|
pairs/pair_24/input.txt
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
except ModuleNotFoundError:
|
2 |
+
return False
|
3 |
+
|
4 |
+
return spec is not None
|
5 |
+
|
6 |
+
|
7 |
+
def repo_dir(name):
|
8 |
+
return os.path.join(script_path, dir_repos, name)
|
9 |
+
|
10 |
+
|
11 |
+
def run_pip(command, desc=None, live=default_command_live):
|
12 |
+
if args.skip_install:
|
13 |
+
return
|
14 |
+
|
15 |
+
index_url_line = f' --index-url {index_url}' if index_url != '' else ''
|
16 |
+
return run(f'"{python}" -m pip {command} --prefer-binary{index_url_line}', desc=f"Installing {desc}", errdesc=f"Couldn't install {desc}", live=live)
|
17 |
+
|
18 |
+
|
19 |
+
def check_run_python(code: str) -> bool:
|
20 |
+
result = subprocess.run([python, "-c", code], capture_output=True, shell=False)
|
21 |
+
return result.returncode == 0
|
22 |
+
|
23 |
+
|
24 |
+
def git_fix_workspace(dir, name):
|
25 |
+
run(f'"{git}" -C "{dir}" fetch --refetch --no-auto-gc', f"Fetching all contents for {name}", f"Couldn't fetch {name}", live=True)
|
26 |
+
run(f'"{git}" -C "{dir}" gc --aggressive --prune=now', f"Pruning {name}", f"Couldn't prune {name}", live=True)
|
27 |
+
return
|
28 |
+
|
29 |
+
|
30 |
+
def run_git(dir, name, command, desc=None, errdesc=None, custom_env=None, live: bool = default_command_live, autofix=True):
|
31 |
+
try:
|
32 |
+
return run(f'"{git}" -C "{dir}" {command}', desc=desc, errdesc=errdesc, custom_env=custom_env, live=live)
|
33 |
+
except RuntimeError:
|
34 |
+
if not auto
|
pairs/pair_24/output.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
fix:
|
2 |
+
raise
|
3 |
+
|
4 |
+
print(f"{errdesc}, attempting autofix...")
|
5 |
+
git_fix_workspace(dir, name)
|
6 |
+
|
7 |
+
return run(f'"{git}" -C "{dir}" {command}', desc=desc, errdesc=errdesc, custom_env=custom_env, live=live)
|
pairs/pair_25/input.txt
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
f infer_params(state_dict):
|
2 |
+
# this code is copied from https://github.com/victorca25/iNNfer
|
3 |
+
scale2x = 0
|
4 |
+
scalemin = 6
|
5 |
+
n_uplayer = 0
|
6 |
+
plus = False
|
7 |
+
|
8 |
+
for block in list(state_dict):
|
9 |
+
parts = block.split(".")
|
10 |
+
n_parts = len(parts)
|
11 |
+
if n_parts == 5 and parts[2] == "sub":
|
12 |
+
nb = int(parts[3])
|
13 |
+
elif n_parts == 3:
|
14 |
+
part_num = int(parts[1])
|
15 |
+
if (part_num > scalemin
|
16 |
+
and parts[0] == "model"
|
17 |
+
and parts[2] == "weight"):
|
18 |
+
scale2x += 1
|
19 |
+
if part_num > n_uplayer:
|
20 |
+
n_uplayer = part_num
|
21 |
+
out_nc = state_dict[block].shape[0]
|
22 |
+
if not plus and "conv1x1" in block:
|
23 |
+
plus = True
|
24 |
+
|
25 |
+
nf = state_dict["model.0.weight"].shape[0]
|
26 |
+
in_nc = state_dict["model.0.weight"].shape[1]
|
27 |
+
out_nc = out_nc
|
28 |
+
scale = 2 ** scale2x
|
29 |
+
|
30 |
+
return in_nc, out_nc, nf, nb, plus, scale
|
31 |
+
|
32 |
+
|
33 |
+
class UpscalerESRGAN(Upscaler):
|
34 |
+
def __init__(self, dirname):
|
35 |
+
self.name = "ESRGAN"
|
36 |
+
self.model_url = "https://github.com/cszn/KAIR/releases/download/v1.0/ESRGAN.pth"
|
37 |
+
self.model_name = "ESRGAN_4x"
|
38 |
+
self.scalers = []
|
39 |
+
self.user_path = dirname
|
40 |
+
super().__init__()
|
41 |
+
model_paths = self.find_models(ext_filter=[".pt", ".pth"])
|
42 |
+
scalers = []
|
43 |
+
if len(model_paths) == 0:
|
44 |
+
scaler_data = UpscalerData(self.model_name, self.model_url, self, 4)
|
45 |
+
scalers.append(scaler_data)
|
46 |
+
for file in model_paths:
|
47 |
+
if file.startswith("http"):
|
48 |
+
name = self.model_name
|
49 |
+
else:
|
50 |
+
name = modelloader.friendly_name(file)
|
51 |
+
|
52 |
+
scaler_data = UpscalerData(name, file, self, 4)
|
53 |
+
self.scalers.append(scaler_data)
|
54 |
+
|
55 |
+
def do_upscale(self, img, selected_model):
|
56 |
+
try:
|
57 |
+
model = self.load_model(selected_model)
|
58 |
+
except Exception as e:
|
59 |
+
print(f"Unable to load ESRGAN model {selected_model}: {e}", file=sys.stderr)
|
60 |
+
return img
|
61 |
+
model.to(devices.device_esrgan)
|
62 |
+
img = esrgan_upscale(model, img)
|
63 |
+
return img
|
64 |
+
|
65 |
+
def load_model(self, path: str):
|
66 |
+
if path.startswith("http"):
|
67 |
+
# TODO: this doesn't use `path` at all?
|
68 |
+
filename = modelloader.load_file_from_url(
|
69 |
+
url=self.model_url,
|
70 |
+
model_dir=self.model_download_path,
|
71 |
+
file_name=f"{self.model_name}.pth",
|
72 |
+
)
|
73 |
+
else:
|
74 |
+
filename = path
|
75 |
+
|
76 |
+
state_
|
pairs/pair_25/output.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
dict = torch.load(filename, map_location='cpu' if devices.device_esrgan.type == 'mps' else None)
|
pairs/pair_26/input.txt
ADDED
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
elf.all_negative_prompts]
|
2 |
+
|
3 |
+
self.main_prompt = self.all_prompts[0]
|
4 |
+
self.main_negative_prompt = self.all_negative_prompts[0]
|
5 |
+
|
6 |
+
def cached_params(self, required_prompts, steps, extra_network_data, hires_steps=None, use_old_scheduling=False):
|
7 |
+
"""Returns parameters that invalidate the cond cache if changed"""
|
8 |
+
|
9 |
+
return (
|
10 |
+
required_prompts,
|
11 |
+
steps,
|
12 |
+
hires_steps,
|
13 |
+
use_old_scheduling,
|
14 |
+
opts.CLIP_stop_at_last_layers,
|
15 |
+
shared.sd_model.sd_checkpoint_info,
|
16 |
+
extra_network_data,
|
17 |
+
opts.sdxl_crop_left,
|
18 |
+
opts.sdxl_crop_top,
|
19 |
+
self.width,
|
20 |
+
self.height,
|
21 |
+
)
|
22 |
+
|
23 |
+
def get_conds_with_caching(self, function, required_prompts, steps, caches, extra_network_data, hires_steps=None):
|
24 |
+
"""
|
25 |
+
Returns the result of calling function(shared.sd_model, required_prompts, steps)
|
26 |
+
using a cache to store the result if the same arguments have been used before.
|
27 |
+
|
28 |
+
cache is an array containing two elements. The first element is a tuple
|
29 |
+
representing the previously used arguments, or None if no arguments
|
30 |
+
have been used before. The second element is where the previously
|
31 |
+
computed result is stored.
|
32 |
+
|
33 |
+
caches is a list with items described above.
|
34 |
+
"""
|
35 |
+
|
36 |
+
if shared.opts.use_old_scheduling:
|
37 |
+
old_schedules = prompt_parser.get_learned_conditioning_prompt_schedules(required_prompts, steps, hires_steps, False)
|
38 |
+
new_schedules = prompt_parser.get_learned_conditioning_prompt_schedules(required_prompts, steps, hires_steps, True)
|
39 |
+
if old_schedules != new_schedules:
|
40 |
+
self.extra_generation_params["Old prompt editing timelines"] = True
|
41 |
+
|
42 |
+
cached_params = self.cached_params(required_prompts, steps, extra_network_data, hires_steps, shared.opts.use_old_scheduling)
|
43 |
+
|
44 |
+
for cache in caches:
|
45 |
+
if cache[0] is not None and cached_params == cache[0]:
|
46 |
+
return cache[1]
|
47 |
+
|
48 |
+
cache = caches[0]
|
49 |
+
|
50 |
+
with devices.autocast():
|
51 |
+
cache[1] = function(shared.sd_model, required_prompts, steps, hires_steps, shared.opts.use_old_scheduling)
|
52 |
+
|
53 |
+
cache[0] = cached_params
|
54 |
+
return cache[1]
|
55 |
+
|
56 |
+
def setup_conds(self):
|
57 |
+
prompts = prompt_parser.SdConditioning(self.prompts, width=self.width, height=self.height)
|
58 |
+
negative_prompts = prompt_parser.SdConditioning(self.negative_prompts, width=self.width, height=self.height, is_negative_prompt=True)
|
59 |
+
|
60 |
+
sampler_config = sd_samplers.find_sampler_config(self.sampler_name)
|
61 |
+
total_steps = sampler_config.total_steps(self.steps) if sampler_config else self.steps
|
62 |
+
self.step_multiplier = total_steps // self.steps
|
63 |
+
self.firstpass_steps = total_steps
|
64 |
+
|
65 |
+
self.uc = self.get_conds_with_caching(prompt_parser.get_learned_conditioning, negative_prompts, total_steps, [self.cached_uc], self.extra_network_data)
|
66 |
+
self.c = self.get_conds_with_caching(prompt_parser.get_multicond_learned_conditioning, prompts, total_steps, [self.cached_c], self.extra_network_data)
|
67 |
+
|
68 |
+
def get_conds(self):
|
69 |
+
return self.c, self.uc
|
70 |
+
|
71 |
+
def parse_extra_network_prompts(self):
|
72 |
+
self.prompts, self.extra_network_data = extra_networks.parse_prompts(self.prompts)
|
73 |
+
|
74 |
+
def save_samples(self) -> bool:
|
75 |
+
"""Returns whether generated images need to be written to disk"""
|
76 |
+
return opts.samples_save and not self.do_not_save_samples and (opts.save_incomplete_images or not state.interrupted and not state.skipped)
|
77 |
+
|
78 |
+
|
79 |
+
class Processed:
|
80 |
+
def __init__(self, p: StableDiffusionProcessing, images_list, seed=-1, info="", subseed=None, all_prompts=None, all_negative_prompts=None, all_seeds=None, all_subseeds=None, index_of_first_image=0, infotexts=None, comments=""):
|
81 |
+
self.images = images_list
|
82 |
+
self.prompt = p.prompt
|
83 |
+
self.negative_prompt = p.negative_prompt
|
84 |
+
self.seed = seed
|
85 |
+
self.subseed = subseed
|
86 |
+
self.subseed_strength = p.subseed_strength
|
87 |
+
self.info = info
|
88 |
+
self.comments = "".join(f"{comment}\n" for comment in p.comments)
|
89 |
+
self.width = p.width
|
90 |
+
self.height = p.height
|
91 |
+
self.sampler_name = p.sampler_name
|
92 |
+
self.cfg_scale = p.cfg_scale
|
93 |
+
self.image_cfg_scale = getattr(p, 'image_cfg_scale', None)
|
94 |
+
self.steps = p.steps
|
95 |
+
self.batch_size = p.batch_size
|
96 |
+
self.restore_faces = p.restore_faces
|
97 |
+
self.face_restoration_model = opts.face_restoration_model if p.restore_faces else None
|
98 |
+
self.sd_model_name = p.sd_model_name
|
99 |
+
self.sd_model_hash = p.sd_model_hash
|
100 |
+
self.sd_vae_name = p.sd_vae_name
|
101 |
+
self.sd_vae_hash = p.sd_vae_hash
|
102 |
+
self.seed_resize_from_w = p.seed_resize_from_w
|
103 |
+
self.seed_resize_from_h = p.seed_resize_from_h
|
104 |
+
self.den
|
pairs/pair_26/output.txt
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
oising_strength = getattr(p, 'denoising_strength', None)
|
2 |
+
self.extra_generation_params = p.extra_generation_params
|
3 |
+
self.index_of_first_image = index_of_first_image
|
4 |
+
self.styles = p.styles
|
5 |
+
self.job_timestamp = state.job_timestamp
|
6 |
+
self.clip_skip = opts.CLIP_stop_at_last_layers
|
7 |
+
self.token_merging_ratio = p.token_merging_ratio
|
8 |
+
self.token_merging_ratio_hr = p.token_merging_ratio_hr
|
9 |
+
|
10 |
+
self.eta = p.eta
|
11 |
+
self.ddim_discretize = p.ddim_discretize
|
12 |
+
self.s_churn = p.s_churn
|
13 |
+
self.s_tmin = p.s_tmin
|
14 |
+
self.s_tmax = p.s_tmax
|
15 |
+
self.s_noise = p.s_noise
|
16 |
+
self.s_min_uncond = p.s_min_uncond
|
17 |
+
self.sampler_noise_scheduler_override = p.sampler_noise_scheduler_override
|
18 |
+
self.prompt = self.prompt if not isinstance(self.prompt, list) else self.prompt[0]
|
19 |
+
self.negative_prompt = self.negative_prompt if not isinstance(self.negative_prompt, list) else self.negative_prompt[0]
|
20 |
+
self.seed = int(self.seed if not isinstance(self.seed, list) else self.seed[0]) if self.seed is not None else -1
|
21 |
+
self.subseed = int(self.subseed if not isinstance(self.subseed, list) else self.subseed[0]) if self.subseed is not None else -1
|
22 |
+
self.is_using_inpainting_conditioning = p.is_using_inpainting_conditioning
|
23 |
+
|
24 |
+
self.all_prompts = all_prompts or p.all_prompts or [self.prompt]
|
25 |
+
self.all_negative_prompts = all_negative_prompts or p.all_negative_prompts or [self.negative_prompt]
|
26 |
+
self.all_seeds = all_seeds or p.all_seeds or [self.seed]
|
27 |
+
self.all_subseeds = all_subseeds or p.all_subseeds or [self.subseed]
|
28 |
+
self.infotexts = infotexts or [info]
|
pairs/pair_27/input.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
import json
|
3 |
+
import logging
|
4 |
+
import math
|
pairs/pair_27/output.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
import hashlib
|
4 |
+
from dataclasses import dataclass, field
|
pairs/pair_28/input.txt
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Reproductions/tests for crashes/read errors in TiffDecode.c
|
2 |
+
|
3 |
+
# When run in Python, all of these images should fail for
|
4 |
+
# one reason or another, either as a buffer overrun,
|
5 |
+
# unrecognized datastream, or truncated image file.
|
6 |
+
# There shouldn't be any segfaults.
|
7 |
+
#
|
8 |
+
# if run like
|
9 |
+
# `valgrind --tool=memcheck pytest test_tiff_crashes.py 2>&1 | grep TiffDecode.c`
|
10 |
+
# the output should be empty. There may be Python issues
|
11 |
+
# in the valgrind especially if run in a debug Python
|
12 |
+
# version.
|
13 |
+
|
14 |
+
import pytest
|
15 |
+
|
16 |
+
from PIL import Image
|
17 |
+
|
18 |
+
from .helper import on_ci
|
19 |
+
|
20 |
+
|
21 |
+
@pytest.mark.parametrize(
|
22 |
+
"test_file",
|
23 |
+
[
|
24 |
+
"Tests/images/crash_1.tif",
|
25 |
+
"Tests/images/crash_2.tif",
|
26 |
+
"Tests/images/crash-2020-10-test.tif",
|
27 |
+
"Tests/images/crash-0c7e0e8e11ce787078f00b5b0ca409a167f070e0.tif",
|
28 |
+
"Tests/images/crash-0e16d3bfb83be87356d026d66919deaefca44dac.tif",
|
29 |
+
"Tests/images/crash-1152ec2d1a1a71395b6f2ce6721c38924d025bf3.tif",
|
30 |
+
"Tests/images/crash-1185209cf7655b5aed8ae5e77784dfdd18ab59e9.tif",
|
31 |
+
"Tests/images/crash-338516dbd2f0e83caddb8ce256c22db3bd6dc40f.tif",
|
32 |
+
"Tests/images/crash-4f085cc12ece8cde18758d42608bed6a2a2cfb1c.tif",
|
33 |
+
"Tests/images/crash-86214e58da443d2b80820cff9677a38a33dcbbca.tif",
|
34 |
+
"Tests/images/crash-f46f5b2f43c370fe65706c11449f567ecc345e74.tif",
|
35 |
+
"T
|
pairs/pair_28/output.txt
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
ests/images/crash-63b1dffefc8c075ddc606c0a2f5fdc15ece78863.tif",
|
2 |
+
"Tests/images/crash-74d2a78403a5a59db1fb0a2b8735ac068a75f6e3.tif",
|
3 |
+
"Tests/images/crash-81154a65438ba5aaeca73fd502fa4850fbde60f8.tif",
|
4 |
+
"Tests/images/crash-0da013a13571cc8eb457a39fee8db18f8a3c7127.tif",
|
5 |
+
],
|
6 |
+
)
|
7 |
+
@pytest.mark.filterwarnings("ignore:Possibly corrupt EXIF data")
|
8 |
+
@pytest.mark.filterwarnings("ignore:Metadata warning")
|
9 |
+
@pytest.mark.filterwarnings("ignore:Truncated File Read")
|
10 |
+
def test_tiff_crashes(test_file):
|
11 |
+
try:
|
12 |
+
with Image.open(test_file) as im:
|
13 |
+
im.load()
|
14 |
+
except FileNotFoundError:
|
15 |
+
if not on_ci():
|
16 |
+
pytest.skip("test image not found")
|
17 |
+
return
|
18 |
+
raise
|
19 |
+
except OSError:
|
20 |
+
pass
|
pairs/pair_29/input.txt
ADDED
@@ -0,0 +1,263 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
ent"] = s
|
2 |
+
self.app["COM"] = s # compatibility
|
3 |
+
self.applist.append(("COM", s))
|
4 |
+
|
5 |
+
|
6 |
+
def SOF(self, marker):
|
7 |
+
#
|
8 |
+
# Start of frame marker. Defines the size and mode of the
|
9 |
+
# image. JPEG is colour blind, so we use some simple
|
10 |
+
# heuristics to map the number of layers to an appropriate
|
11 |
+
# mode. Note that this could be made a bit brighter, by
|
12 |
+
# looking for JFIF and Adobe APP markers.
|
13 |
+
|
14 |
+
n = i16(self.fp.read(2)) - 2
|
15 |
+
s = ImageFile._safe_read(self.fp, n)
|
16 |
+
self._size = i16(s, 3), i16(s, 1)
|
17 |
+
|
18 |
+
self.bits = s[0]
|
19 |
+
if self.bits != 8:
|
20 |
+
msg = f"cannot handle {self.bits}-bit layers"
|
21 |
+
raise SyntaxError(msg)
|
22 |
+
|
23 |
+
self.layers = s[5]
|
24 |
+
if self.layers == 1:
|
25 |
+
self._mode = "L"
|
26 |
+
elif self.layers == 3:
|
27 |
+
self._mode = "RGB"
|
28 |
+
elif self.layers == 4:
|
29 |
+
self._mode = "CMYK"
|
30 |
+
else:
|
31 |
+
msg = f"cannot handle {self.layers}-layer images"
|
32 |
+
raise SyntaxError(msg)
|
33 |
+
|
34 |
+
if marker in [0xFFC2, 0xFFC6, 0xFFCA, 0xFFCE]:
|
35 |
+
self.info["progressive"] = self.info["progression"] = 1
|
36 |
+
|
37 |
+
if self.icclist:
|
38 |
+
# fixup icc profile
|
39 |
+
self.icclist.sort() # sort by sequence number
|
40 |
+
if self.icclist[0][13] == len(self.icclist):
|
41 |
+
profile = []
|
42 |
+
for p in self.icclist:
|
43 |
+
profile.append(p[14:])
|
44 |
+
icc_profile = b"".join(profile)
|
45 |
+
else:
|
46 |
+
icc_profile = None # wrong number of fragments
|
47 |
+
self.info["icc_profile"] = icc_profile
|
48 |
+
self.icclist = []
|
49 |
+
|
50 |
+
for i in range(6, len(s), 3):
|
51 |
+
t = s[i : i + 3]
|
52 |
+
# 4-tuples: id, vsamp, hsamp, qtable
|
53 |
+
self.layer.append((t[0], t[1] // 16, t[1] & 15, t[2]))
|
54 |
+
|
55 |
+
|
56 |
+
def DQT(self, marker):
|
57 |
+
#
|
58 |
+
# Define quantization table. Note that there might be more
|
59 |
+
# than one table in each marker.
|
60 |
+
|
61 |
+
# FIXME: The quantization tables can be used to estimate the
|
62 |
+
# compression quality.
|
63 |
+
|
64 |
+
n = i16(self.fp.read(2)) - 2
|
65 |
+
s = ImageFile._safe_read(self.fp, n)
|
66 |
+
while len(s):
|
67 |
+
v = s[0]
|
68 |
+
precision = 1 if (v // 16 == 0) else 2 # in bytes
|
69 |
+
qt_length = 1 + precision * 64
|
70 |
+
if len(s) < qt_length:
|
71 |
+
msg = "bad quantization table marker"
|
72 |
+
raise SyntaxError(msg)
|
73 |
+
data = array.array("B" if precision == 1 else "H", s[1:qt_length])
|
74 |
+
if sys.byteorder == "little" and precision > 1:
|
75 |
+
data.byteswap() # the values are always big-endian
|
76 |
+
self.quantization[v & 15] = [data[i] for i in zigzag_index]
|
77 |
+
s = s[qt_length:]
|
78 |
+
|
79 |
+
|
80 |
+
#
|
81 |
+
# JPEG marker table
|
82 |
+
|
83 |
+
MARKER = {
|
84 |
+
0xFFC0: ("SOF0", "Baseline DCT", SOF),
|
85 |
+
0xFFC1: ("SOF1", "Extended Sequential DCT", SOF),
|
86 |
+
0xFFC2: ("SOF2", "Progressive DCT", SOF),
|
87 |
+
0xFFC3: ("SOF3", "Spatial lossless", SOF),
|
88 |
+
0xFFC4: ("DHT", "Define Huffman table", Skip),
|
89 |
+
0xFFC5: ("SOF5", "Differential sequential DCT", SOF),
|
90 |
+
0xFFC6: ("SOF6", "Differential progressive DCT", SOF),
|
91 |
+
0xFFC7: ("SOF7", "Differential spatial", SOF),
|
92 |
+
0xFFC8: ("JPG", "Extension", None),
|
93 |
+
0xFFC9: ("SOF9", "Extended sequential DCT (AC)", SOF),
|
94 |
+
0xFFCA: ("SOF10", "Progressive DCT (AC)", SOF),
|
95 |
+
0xFFCB: ("SOF11", "Spatial lossless DCT (AC)", SOF),
|
96 |
+
0xFFCC: ("DAC", "Define arithmetic coding conditioning", Skip),
|
97 |
+
0xFFCD: ("SOF13", "Differential sequential DCT (AC)", SOF),
|
98 |
+
0xFFCE: ("SOF14", "Differential progressive DCT (AC)", SOF),
|
99 |
+
0xFFCF: ("SOF15", "Differential spatial (AC)", SOF),
|
100 |
+
0xFFD0: ("RST0", "Restart 0", None),
|
101 |
+
0xFFD1: ("RST1", "Restart 1", None),
|
102 |
+
0xFFD2: ("RST2", "Restart 2", None),
|
103 |
+
0xFFD3: ("RST3", "Restart 3", None),
|
104 |
+
0xFFD4: ("RST4", "Restart 4", None),
|
105 |
+
0xFFD5: ("RST5", "Restart 5", None),
|
106 |
+
0xFFD6: ("RST6", "Restart 6", None),
|
107 |
+
0xFFD7: ("RST7", "Restart 7", None),
|
108 |
+
0xFFD8: ("SOI", "Start of image", None),
|
109 |
+
0xFFD9: ("EOI", "End of image", None),
|
110 |
+
0xFFDA: ("SOS", "Start of scan", Skip),
|
111 |
+
0xFFDB: ("DQT", "Define quantization table", DQT),
|
112 |
+
0xFFDC: ("DNL", "Define number of lines", Skip),
|
113 |
+
0xFFDD: ("DRI", "Define restart interval", Skip),
|
114 |
+
0xFFDE: ("DHP", "Define hierarchical progression", SOF),
|
115 |
+
0xFFDF: ("EXP", "Expand reference component", Skip),
|
116 |
+
0xFFE0: ("APP0", "Application segment 0", APP),
|
117 |
+
0xFFE1: ("APP1", "Application segment 1", APP),
|
118 |
+
0xFFE2: ("APP2", "Application segment 2", APP),
|
119 |
+
0xFFE3: ("APP3", "Application segment 3", APP),
|
120 |
+
0xFFE4: ("APP4", "Application segment 4", APP),
|
121 |
+
0xFFE5: ("APP5", "Application segment 5", APP),
|
122 |
+
0xFFE6: ("APP6", "Application segment 6", APP),
|
123 |
+
0xFFE7: ("APP7", "Application segment 7", APP),
|
124 |
+
0xFFE8: ("APP8", "Application segment 8", APP),
|
125 |
+
0xFFE9: ("APP9", "Application segment 9", APP),
|
126 |
+
0xFFEA: ("APP10", "Application segment 10", APP),
|
127 |
+
0xFFEB: ("APP11", "Application segment 11", APP),
|
128 |
+
0xFFEC: ("APP12", "Application segment 12", APP),
|
129 |
+
0xFFED: ("APP13", "Application segment 13", APP),
|
130 |
+
0xFFEE: ("APP14", "Application segment 14", APP),
|
131 |
+
0xFFEF: ("APP15", "Application segment 15", APP),
|
132 |
+
0xFFF0: ("JPG0", "Extension 0", None),
|
133 |
+
0xFFF1: ("JPG1", "Extension 1", None),
|
134 |
+
0xFFF2: ("JPG2", "Extension 2", None),
|
135 |
+
0xFFF3: ("JPG3", "Extension 3", None),
|
136 |
+
0xFFF4: ("JPG4", "Extension 4", None),
|
137 |
+
0xFFF5: ("JPG5", "Extension 5", None),
|
138 |
+
0xFFF6: ("JPG6", "Extension 6", None),
|
139 |
+
0xFFF7: ("JPG7", "Extension 7", None),
|
140 |
+
0xFFF8: ("JPG8", "Extension 8", None),
|
141 |
+
0xFFF9: ("JPG9", "Extension 9", None),
|
142 |
+
0xFFFA: ("JPG10", "Extension 10", None),
|
143 |
+
0xFFFB: ("JPG11", "Extension 11", None),
|
144 |
+
0xFFFC: ("JPG12", "Extension 12", None),
|
145 |
+
0xFFFD: ("JPG13", "Extension 13", None),
|
146 |
+
0xFFFE: ("COM", "Comment", COM),
|
147 |
+
}
|
148 |
+
|
149 |
+
|
150 |
+
def _accept(prefix):
|
151 |
+
# Magic number was taken from https://en.wikipedia.org/wiki/JPEG
|
152 |
+
return prefix[:3] == b"\xFF\xD8\xFF"
|
153 |
+
|
154 |
+
|
155 |
+
##
|
156 |
+
# Image plugin for JPEG and JFIF images.
|
157 |
+
|
158 |
+
|
159 |
+
class JpegImageFile(ImageFile.ImageFile):
|
160 |
+
format = "JPEG"
|
161 |
+
format_description = "JPEG (ISO 10918)"
|
162 |
+
|
163 |
+
def _open(self):
|
164 |
+
s = self.fp.read(3)
|
165 |
+
|
166 |
+
if not _accept(s):
|
167 |
+
msg = "not a JPEG file"
|
168 |
+
raise SyntaxError(msg)
|
169 |
+
s = b"\xFF"
|
170 |
+
|
171 |
+
# Create attributes
|
172 |
+
self.bits = self.layers = 0
|
173 |
+
|
174 |
+
# JPEG specifics (internal)
|
175 |
+
self.layer = []
|
176 |
+
self.huffman_dc = {}
|
177 |
+
self.huffman_ac = {}
|
178 |
+
self.quantization = {}
|
179 |
+
self.app = {} # compatibility
|
180 |
+
self.applist = []
|
181 |
+
self.icclist = []
|
182 |
+
|
183 |
+
while True:
|
184 |
+
i = s[0]
|
185 |
+
if i == 0xFF:
|
186 |
+
s = s + self.fp.read(1)
|
187 |
+
i = i16(s)
|
188 |
+
else:
|
189 |
+
# Skip non-0xFF junk
|
190 |
+
s = self.fp.read(1)
|
191 |
+
continue
|
192 |
+
|
193 |
+
if i in MARKER:
|
194 |
+
name, description, handler = MARKER[i]
|
195 |
+
if handler is not None:
|
196 |
+
handler(self, i)
|
197 |
+
if i == 0xFFDA: # start of scan
|
198 |
+
rawmode = self.mode
|
199 |
+
if self.mode == "CMYK":
|
200 |
+
rawmode = "CMYK;I" # assume adobe conventions
|
201 |
+
self.tile = [("jpeg", (0, 0) + self.size, 0, (rawmode, ""))]
|
202 |
+
# self.__offset = self.fp.tell()
|
203 |
+
break
|
204 |
+
s = self.fp.read(1)
|
205 |
+
elif i == 0 or i == 0xFFFF:
|
206 |
+
# padded marker or junk; move on
|
207 |
+
s = b"\xff"
|
208 |
+
elif i == 0xFF00: # Skip extraneous data (escaped 0xFF)
|
209 |
+
s = self.fp.read(1)
|
210 |
+
else:
|
211 |
+
msg = "no marker found"
|
212 |
+
raise SyntaxError(msg)
|
213 |
+
|
214 |
+
def load_read(self, read_bytes):
|
215 |
+
"""
|
216 |
+
internal: read more image data
|
217 |
+
For premature EOF and LOAD_TRUNCATED_IMAGES adds EOI marker
|
218 |
+
so libjpeg can finish decoding
|
219 |
+
"""
|
220 |
+
s = self.fp.read(read_bytes)
|
221 |
+
|
222 |
+
if not s and ImageFile.LOAD_TRUNCATED_IMAGES and not hasattr(self, "_ended"):
|
223 |
+
# Premature EOF.
|
224 |
+
# Pretend file is finished adding EOI marker
|
225 |
+
self._ended = True
|
226 |
+
return b"\xFF\xD9"
|
227 |
+
|
228 |
+
return s
|
229 |
+
|
230 |
+
def draft(self, mode, size):
|
231 |
+
if len(self.tile) != 1:
|
232 |
+
return
|
233 |
+
|
234 |
+
# Protect from second call
|
235 |
+
if self.decoderconfig:
|
236 |
+
return
|
237 |
+
|
238 |
+
d, e, o, a = self.tile[0]
|
239 |
+
scale = 1
|
240 |
+
original_size = self.size
|
241 |
+
|
242 |
+
if a[0] == "RGB" and mode in ["L", "YCbCr"]:
|
243 |
+
self._mode = mode
|
244 |
+
a = mode, ""
|
245 |
+
|
246 |
+
if size:
|
247 |
+
scale = min(self.size[0] // size[0], self.size[1] // size[1])
|
248 |
+
for s in [8, 4, 2, 1]:
|
249 |
+
if scale >= s:
|
250 |
+
break
|
251 |
+
e = (
|
252 |
+
e[0],
|
253 |
+
e[1],
|
254 |
+
(e[2] - e[0] + s - 1) // s + e[0],
|
255 |
+
(e[3] - e[1] + s - 1) // s + e[1],
|
256 |
+
)
|
257 |
+
self._size = ((self.size[0] + s - 1) // s, (self.size[1] + s - 1) // s)
|
258 |
+
scale = s
|
259 |
+
|
260 |
+
self.tile = [(d, e, o, a)]
|
261 |
+
self.decoderconfig = (scale, 0)
|
262 |
+
|
263 |
+
b
|
pairs/pair_29/output.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
ox = (0, 0, original_size[0] / scale, original_size[1] / scale)
|
2 |
+
return self.mode, box
|
pairs/pair_3/input.txt
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
for camera_model in CAMERA_MODELS])
|
2 |
+
|
3 |
+
|
4 |
+
def qvec2rotmat(qvec):
|
5 |
+
return np.array([
|
6 |
+
[1 - 2 * qvec[2]**2 - 2 * qvec[3]**2,
|
7 |
+
2 * qvec[1] * qvec[2] - 2 * qvec[0] * qvec[3],
|
8 |
+
2 * qvec[3] * qvec[1] + 2 * qvec[0] * qvec[2]],
|
9 |
+
[2 * qvec[1] * qvec[2] + 2 * qvec[0] * qvec[3],
|
10 |
+
1 - 2 * qvec[1]**2 - 2 * qvec[3]**2,
|
11 |
+
2 * qvec[2] * qvec[3] - 2 * qvec[0] * qvec[1]],
|
12 |
+
[2 * qvec[3] * qvec[1] - 2 * qvec[0] * qvec[2],
|
13 |
+
2 * qvec[2] * qvec[3] + 2 * qvec[0] * qvec[1],
|
14 |
+
1 - 2 * qvec[1]**2 - 2 * qvec[2]**2]])
|
15 |
+
|
16 |
+
def rotmat2qvec(R):
|
17 |
+
Rxx, Ryx, Rzx, Rxy, Ryy, Rzy, Rxz, Ryz, Rzz = R.flat
|
18 |
+
K = np.array([
|
19 |
+
[Rxx - Ryy - Rzz, 0, 0, 0],
|
20 |
+
[Ryx + Rxy, Ryy - Rxx - Rzz, 0, 0],
|
21 |
+
[Rzx + Rxz, Rzy + Ryz, Rzz - Rxx - Ryy, 0],
|
22 |
+
[Ryz - Rzy, Rzx - Rxz, Rxy - Ryx, Rxx + Ryy + Rzz]]) / 3.0
|
23 |
+
eigvals, eigvecs = np.linalg.eigh(K)
|
24 |
+
qvec = eigvecs[[3, 0, 1, 2], np.argmax(eigvals)]
|
25 |
+
if qvec[0] < 0:
|
26 |
+
qvec *= -1
|
27 |
+
return qvec
|
28 |
+
|
29 |
+
class Image(BaseImage):
|
30 |
+
def qvec2rotmat(self):
|
31 |
+
return qvec2rotmat(self.qvec)
|
32 |
+
|
33 |
+
def read_next_bytes(fid, num_bytes, format_char_sequence, endian_character="<"):
|
34 |
+
"""Read and unpack the next bytes from a binary file.
|
35 |
+
:param fid:
|
36 |
+
:param num_bytes: Sum of combination of {2, 4, 8}, e.g. 2, 6, 16, 30, etc.
|
37 |
+
:param format_char_sequence: List of {c, e, f, d, h, H, i, I, l, L, q, Q}.
|
38 |
+
:param endian_character: Any of {@, =, <, >, !}
|
39 |
+
:return: Tuple of read and unpacked values.
|
40 |
+
"""
|
41 |
+
data = fid.read(num_bytes)
|
42 |
+
return struct.unpack(endian_character + format_char_sequence, data)
|
43 |
+
|
44 |
+
def read_points3D_text(path):
|
45 |
+
"""
|
46 |
+
see: src/base/reconstruction.cc
|
47 |
+
void Reconstruction::ReadPoints3DText(const std::string& path)
|
48 |
+
void Reconstruction::WritePoints3DText(const std::string& path)
|
49 |
+
"""
|
50 |
+
xyzs = None
|
51 |
+
rgbs = None
|
52 |
+
errors = None
|
53 |
+
num_points = 0
|
54 |
+
with open(path, "r") as fid:
|
55 |
+
while True:
|
56 |
+
line = fid.readline()
|
57 |
+
if not line:
|
58 |
+
break
|
59 |
+
line = line.strip()
|
60 |
+
if len(line) > 0 and line[0] != "#":
|
61 |
+
num_points += 1
|
62 |
+
|
63 |
+
|
64 |
+
xyzs = np.empty((num_points, 3))
|
65 |
+
rgbs = np.empty((num_points, 3))
|
66 |
+
errors = np.empty((num_points, 1))
|
67 |
+
count = 0
|
68 |
+
with open(path, "r") as fid:
|
69 |
+
while True:
|
70 |
+
line = fid.readline()
|
71 |
+
if not line:
|
72 |
+
break
|
73 |
+
line = line.strip()
|
74 |
+
if len(line) > 0 and line[0] != "#":
|
75 |
+
elems = line.split()
|
76 |
+
xyz = np.array(tuple(map(float, elems[1:4])))
|
77 |
+
|
pairs/pair_3/output.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
rgb = np.array(tuple(map(int, elems[4:7])))
|
2 |
+
error = np.array(float(elems[7]))
|
3 |
+
xyzs[count] = xyz
|
4 |
+
rgbs[count] = rgb
|
5 |
+
errors[count] = error
|
6 |
+
count += 1
|
7 |
+
|
8 |
+
return xyzs, rgbs, errors
|
pairs/pair_30/input.txt
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import contextlib
|
2 |
+
import os.path
|
3 |
+
|
4 |
+
import pytest
|
5 |
+
|
6 |
+
from PIL import Image, ImageColor, ImageDraw, ImageFont, features
|
7 |
+
|
8 |
+
from .helper import (
|
9 |
+
assert_image_equal,
|
10 |
+
assert_image_equal_tofile,
|
11 |
+
assert_image_similar_tofile,
|
12 |
+
hopper,
|
13 |
+
skip_unless_feature,
|
14 |
+
)
|
15 |
+
|
16 |
+
BLACK = (0, 0, 0)
|
17 |
+
WHITE = (255, 255, 255)
|
18 |
+
GRAY = (190, 190, 190)
|
19 |
+
DEFAULT_MODE = "RGB"
|
20 |
+
IMAGES_PATH = os.path.join("Tests", "images", "imagedraw")
|
21 |
+
|
22 |
+
# Image size
|
23 |
+
W, H = 100, 100
|
24 |
+
|
25 |
+
# Bounding box points
|
26 |
+
X0 = int(W / 4)
|
27 |
+
X1 = int(X0 * 3)
|
28 |
+
Y0 = int(H / 4)
|
29 |
+
Y1 = int(X0 * 3)
|
30 |
+
|
31 |
+
# Bounding boxes
|
32 |
+
BBOX = (((X0, Y0), (X1, Y1)), [(X0, Y0), (X1, Y1)], (X0, Y0, X1, Y1), [X0, Y0, X1, Y1])
|
33 |
+
|
34 |
+
# Coordinate sequences
|
35 |
+
POINTS = (
|
36 |
+
((10, 10), (20, 40), (30, 30)),
|
37 |
+
[(10, 10), (20, 40), (30, 30)],
|
38 |
+
(10, 10, 20, 40, 30, 30),
|
39 |
+
[10, 10, 20, 40, 30, 30],
|
40 |
+
)
|
41 |
+
|
42 |
+
KITE_POINTS = (
|
43 |
+
((10, 50), (70, 10), (90, 50), (70, 90), (10, 50)),
|
44 |
+
[(10, 50), (70, 10), (90, 50), (70, 90), (10, 50)],
|
45 |
+
)
|
46 |
+
|
47 |
+
|
48 |
+
def test_sanity():
|
49 |
+
im = hopper("RGB").copy()
|
50 |
+
|
51 |
+
draw = ImageDraw.ImageDraw(im)
|
52 |
+
draw = ImageDraw.Draw(im)
|
53 |
+
|
54 |
+
draw.ellipse(list(range(4)))
|
55 |
+
draw.line(list(range(10)))
|
56 |
+
draw.polygon(list(range(100)))
|
57 |
+
draw.rectangle(list(range(4)))
|
58 |
+
|
59 |
+
|
60 |
+
def test_valueerror():
|
61 |
+
with Image.open("Tests/images/chi.gif") as im:
|
62 |
+
draw
|
pairs/pair_30/output.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
= ImageDraw.Draw(im)
|
2 |
+
draw.line((0, 0), fill=(0, 0, 0))
|