File size: 17,706 Bytes
10bf19f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
""" Evaluate Medical Tests Classification in LLMS """
## Setup
#### Load the API key and libaries.
import os
import re

import json
import pandas as pd
import argparse
import subprocess
import time

# Create a class to handle the GPT API
class GPT:
    # build the constructor
    def __init__(self, model='gpt-3.5-turbo', temperature=0.0, n_repetitions=1, reasoning=False, languages=['english', 'portuguese'], path='data/Portuguese.csv', max_tokens=500):
        
        import openai
        from dotenv import load_dotenv, find_dotenv
        _ = load_dotenv(find_dotenv()) # read local .env file
        openai.api_key  = os.environ['OPENAI_API_KEY']

        self.path = path
        self.model = model
        self.temperature = temperature
        self.n_repetitions = n_repetitions if n_repetitions > 0 else 1
        self.reasoning = reasoning
        self.languages = languages
        self.max_tokens = max_tokens
        
        self.delimiter = "####"
        self.responses = ['A', 'B', 'C', 'D']
        self.extra_message = ""

        if self.reasoning:
            self.output_keys = ['response', 'reasoning']
        else:
            self.output_keys = ['response']

        self.update_system_message()


    def update_system_message(self):
        """
        Update the system message based on the current configuration.
        """

        if self.reasoning:
            self.system_message = f"""
You will be provided with medical queries in this languages: {", ".join(self.languages)}. \
The medical query will be delimited with {self.delimiter} characters.
Each question will have {len(self.responses)} possible answer options.\
provide the letter with the answer and a short sentence answering why the answer was selected. \
{self.extra_message}

Provide your output in json format with the \
keys: {", ".join(self.output_keys)}.

Responses: {", ".join(self.responses)}.

            """
        else:
            self.system_message = f"""
You will be provided with medical queries in this languages: {", ".join(self.languages)}. \
The medical query will be delimited with {self.delimiter} characters.
Each question will have {len(self.responses)} possible answer options.\

provide only the letter with the response.
{self.extra_message}

Provide your output in json format with:

the keys: {", ".join(self.output_keys)}.

Responses: {", ".join(self.responses)}.

E.g. if response is 'a', the output should be: {{"response" : "a"}}        
"""

    # function to change the delimiter
    def change_delimiter(self, delimiter):
        """ Change the delimiter """
        self.delimiter = delimiter        
        self.update_system_message()

    # function to change the responses
    def change_responses(self, responses):
        self.responses = responses
        self.update_system_message()
    
    def change_output_keys(self, output_keys):
        self.output_keys = output_keys
        self.update_system_message()
    
    def add_output_key(self, output_key):
        self.output_keys.append(output_key)
        self.update_system_message()

    def change_languages(self, languages):
        self.languages = languages
        self.update_system_message()
    
    def add_extra_message(self, extra_message):
        self.extra_message = extra_message
        self.update_system_message()
    
    def change_system_message(self, system_message):
        self.system_message = system_message

    def change_reasoning(self, reasoning=None):
        if type(reasoning) == bool:
            self.reasoning = reasoning
        else:
            if reasoning:
                print(f'Reasoning should be boolean. Changing reasoning from {self.reasoning} to {not(self.reasoning)}.')        
            self.reasoning = False if self.reasoning else True
        
        if self.reasoning:
            self.output_keys.append('reasoning')
            # remove duplicates
            self.output_keys = list(set(self.output_keys))
        else:
            try:
                self.output_keys.remove('reasoning')
            except:
                pass
        self.update_system_message()

    #### Template for the Questions
    def generate_question(self, question):

        user_message = f"""/
        {question}"""
        
        messages =  [  
        {'role':'system', 
        'content': self.system_message}, 
        {'role':'user', 
        'content': f"{self.delimiter}{user_message}{self.delimiter}"},  
        ] 
        
        return messages

    #### Get the completion from the messages
    def get_completion_from_messages(self, prompt):
        
        messages = self.generate_question(prompt)

        try:        
            response = openai.ChatCompletion.create(
                model=self.model,
                messages=messages,
                temperature=self.temperature, 
                max_tokens=self.max_tokens,
                request_timeout=10
            )
        except:
            # Could be due to TPM or RPM, so sleep one minute
            time.sleep(61)
            response = self.get_completion_from_messages(prompt)
            return response

        response = response.choices[0].message["content"]

        # Convert the string into a JSON object
        response = json.loads(response)
    
        return response


        ### Questions from a csv file:
        df = pd.read_csv(self.path)

        ### Evaluate the model in question answering per language:
        responses = {}
        for key in self.output_keys:
            responses[key] = {}
            for language in self.languages:
                responses[key][language] = [[] for n in range(self.n_repetitions)]

        for row in range(df.shape[0]):
            print('*'*50)
            print(f'Question {row+1}: ')
            for language in self.languages:
                print(f'Language: {language}')                   
                question = df[language][row]                    
                print('Question: ')
                print(question)                        
                for n in range(self.n_repetitions): 
                    print(f'Test #{n}: ')
                    response = self.get_completion_from_messages(question)
                    print(response)
                    for key in self.output_keys:
                        # Append to the list:
                        responses[key][language][n].append(response[key])
            print('*'*50)

        ### Save the results in a csv file:
        for language in self.languages:
            if self.n_repetitions == 1:
                for key in self.output_keys:
                    df[f'{key}_{language}'] = responses[key][language][0]
            else:
                for n in range(self.n_repetitions):
                    for key in self.output_keys:
                        df[f'{key}_{language}_{n}'] = responses[key][language][n]
        if save:
            if not os.path.exists('responses'):
                os.makedirs('responses')
            if self.n_repetitions == 1:
                df.to_csv(f"responses/{self.model}_Temperature{str(self.temperature).replace('.', '_')}.csv", index=False)
            else:
                df.to_csv(f"responses/{self.model}_Temperature{str(self.temperature).replace('.', '_')}_{self.n_repetitions}Repetitions.csv", index=False)

        return df

    
    
# Create a class to handle the LLAMA 2
class LLAMA:
    # build the constructor
    def __init__(self, model='Llama-2-7b', temperature=0.0, n_repetitions=1, reasoning=False, languages=['english', 'portuguese'], path='data/Portuguese.csv', max_tokens=500, verbose=False):
        
        self.model = model
        model_path = self.download_hugging_face_model(model)
        
        from llama_cpp import Llama
        self.llm = Llama(model_path=model_path, verbose=verbose)
        
        self.path = path
        
        self.temperature = temperature
        self.n_repetitions = n_repetitions if n_repetitions > 0 else 1
        self.reasoning = reasoning
        self.languages = languages
        self.max_tokens = max_tokens
        
        self.delimiter = "####"
        self.responses = ['A', 'B', 'C', 'D']
        self.extra_message = ""

        if self.reasoning:
            self.output_keys = ['response', 'reasoning']
        else:
            self.output_keys = ['response']

        self.update_system_message()


    def update_system_message(self):
        """
        Update the system message based on the current configuration.
        """

        if self.reasoning:
            self.system_message = f"""
            You will be provided with medical queries in this languages: {", ".join(self.languages)}. \
            The medical query will be delimited with \
            {self.delimiter} characters.
            Each question will have {len(self.responses)} possible answer options.\
            provide the letter with the answer and a short sentence answering why the answer was selected. \
            {self.extra_message}

            Provide your output in json format with the \
            keys: {", ".join(self.output_keys)}. Make sure to always use the those keys, do not modify the keys.
            Be very careful with the resulting JSON file, make sure to add curly braces, quotes to define the strings, and commas to separate the items within the JSON.

            Responses: {", ".join(self.responses)}.
            """
        else:
            self.system_message = f"""
            You will be provided with medical queries in this languages: {", ".join(self.languages)}. \
            The medical query will be delimited with \
            {self.delimiter} characters.
            Each question will have {len(self.responses)} possible answer options.\
            {self.extra_message}

            Provide your output in json format with the \
            keys: {", ".join(self.output_keys)}. Make sure to always use the those keys, do not modify the keys.
            Be very careful with the resulting JSON file, make sure to add curly braces, quotes to define the strings, and commas to separate the items within the JSON.

            Responses: {", ".join(self.responses)}.
            """
    def download_and_rename(self, url, filename):
        """Downloads a file from the given URL and renames it to the given new file name.

        Args:
            url: The URL of the file to download.
            new_file_name: The new file name for the downloaded file.
        """

        os.makedirs(os.path.dirname(filename), exist_ok=True)

        print(f'Downloading the weights of the model: {url} ...')
        subprocess.run(["wget", "-q", "-O", filename, url])
        print(f'Done!')
        
    def download_hugging_face_model(self, model_version='Llama-2-7b'):
        if model_version not in ['Llama-2-7b', 'Llama-2-13b', 'Llama-2-70b']:
            raise ValueError("Options for Llama model should be 7b, 13b or 70b")

        MODEL_URL = {
            'Llama-2-7b': 'https://huggingface.co/TheBloke/Llama-2-7b-Chat-GGUF/resolve/main/llama-2-7b-chat.Q8_0.gguf', 
            'Llama-2-13b': 'https://huggingface.co/TheBloke/Llama-2-13B-chat-GGUF/resolve/main/llama-2-13b-chat.Q8_0.gguf', 
            'Llama-2-70b': 'https://huggingface.co/TheBloke/Llama-2-70B-chat-GGUF/resolve/main/llama-2-70b-chat.Q5_0.gguf'
        }

        MODEL_URL = MODEL_URL[model_version]

        model_path = f'Models/{model_version}.gguf'

        if os.path.exists(model_path):
            confirmation = input(f"The model file '{model_path}' already exists. Do you want to overwrite it? (yes/no): ").strip().lower()
            if confirmation != 'yes':
                print("Model installation aborted.")
                return model_path

        self.download_and_rename(MODEL_URL, model_path)

        return model_path

    # function to change the delimiter
    def change_delimiter(self, delimiter):
        """ Change the delimiter """
        self.delimiter = delimiter        
        self.update_system_message()

    # function to change the responses
    def change_responses(self, responses):
        self.responses = responses
        self.update_system_message()
    
    def change_output_keys(self, output_keys):
        self.output_keys = output_keys
        self.update_system_message()
    
    def add_output_key(self, output_key):
        self.output_keys.append(output_key)
        self.update_system_message()

    def change_languages(self, languages):
        self.languages = languages
        self.update_system_message()
    
    def add_extra_message(self, extra_message):
        self.extra_message = extra_message
        self.update_system_message()
    
    def change_system_message(self, system_message):
        self.system_message = system_message

    def change_reasoning(self, reasoning=None):
        if type(reasoning) == bool:
            self.reasoning = reasoning
        else:
            if reasoning:
                print(f'Reasoning should be boolean. Changing reasoning from {self.reasoning} to {not(self.reasoning)}.')        
            self.reasoning = False if self.reasoning else True
        
        if self.reasoning:
            self.output_keys.append('reasoning')
            # remove duplicates
            self.output_keys = list(set(self.output_keys))
        else:
            try:
                self.output_keys.remove('reasoning')
            except:
                pass
        self.update_system_message()

    #### Template for the Questions
    def generate_question(self, question):

        user_message = f"""/
        {question}"""
        
        messages =  [  
        {'role':'system', 
        'content': self.system_message}, 
        {'role':'user', 
        'content': f"{self.delimiter}{user_message}{self.delimiter}"},  
        ] 
        
        return messages

    #### Get the completion from the messages
    def get_completion_from_messages(self, prompt):
        
        messages = self.generate_question(prompt)

        response = self.llm.create_chat_completion(
            messages,
            temperature=self.temperature,
            max_tokens=self.max_tokens)
        
        self.llm.set_cache(None)

        response = response['choices'][0]['message']["content"]        

        # Convert the string into a JSON object
        try:
            # Use regular expressions to extract JSON
            json_pattern = r'\{.*\}'  # Match everything between '{' and '}'
            match = re.search(json_pattern, response, re.DOTALL)
            response = match.group()

            # Define a regex pattern to identify unquoted string values
            pattern = r'("[^"]*":\s*)([A-Za-z_][A-Za-z0-9_]*)'
            # Use a lambda function to add quotes to unquoted string values
            response = re.sub(pattern, lambda m: f'{m.group(1)}"{m.group(2)}"', response)
            
            # Convert
            response = json.loads(response)
        except:
            print(f'Error converting respose to json: {response}')
            print('Generating new response...')
            response = self.get_completion_from_messages(prompt)
            return response
        
        if self.reasoning:
            # Iterate through the keys of the dictionary
            for key in list(response.keys()):
                if 'reas' in key.lower():
                    # Update the dictionary with the new key and its corresponding value
                    response['reasoning'] = response.pop(key)
            
        return response


    def llm_language_evaluation(self, save=True):

        ### Questions from a csv file:
        df = pd.read_csv(self.path)

        ### Evaluate the model in question answering per language:
        responses = {}
        for key in self.output_keys:
            responses[key] = {}
            for language in self.languages:
                responses[key][language] = [[] for n in range(self.n_repetitions)]

        for row in range(df.shape[0]):
            print('*'*50)
            print(f'Question {row+1}: ')
            for language in self.languages:
                print(f'Language: {language}')                   
                question = df[language][row]                    
                print('Question: ')
                print(question)                        
                for n in range(self.n_repetitions): 
                    print(f'Test #{n}: ')
                    response = self.get_completion_from_messages(question)
                    print(response)
                    for key in self.output_keys:
                        # Append to the list:
                        responses[key][language][n].append(response[key])
            print('*'*50)
        

        ### Save the results in a csv file:
        for language in self.languages:
            if self.n_repetitions == 1:
                for key in self.output_keys:
                    df[f'{key}_{language}'] = responses[key][language][0]
            else:
                for n in range(self.n_repetitions):
                    for key in self.output_keys:
                        df[f'{key}_{language}_{n}'] = responses[key][language][n]
        if save:
            if not os.path.exists('responses'):
                os.makedirs('responses')
            if self.n_repetitions == 1:
                df.to_csv(f"responses/{self.model}_Temperature{str(self.temperature).replace('.', '_')}.csv", index=False)
            else:
                df.to_csv(f"responses/{self.model}_Temperature{str(self.temperature).replace('.', '_')}_{self.n_repetitions}Repetitions.csv", index=False)

        return df