Datasets:
Multi-Opthalingua
/
LLMs_Language_bias-main
/baselines
/.ipynb_checkpoints
/parse_text-checkpoint.py
import pandas as pd | |
import fitz # PyMuPDF | |
from langchain.prompts import PromptTemplate | |
from langchain_openai import ChatOpenAI | |
from langchain_core.messages import HumanMessage, SystemMessage | |
from tqdm.notebook import tqdm | |
# Function to read a PDF and convert to text | |
def pdf_to_text(pdf_path): | |
pdf_text = "" | |
with fitz.open(pdf_path) as pdf_document: | |
for page_num in range(len(pdf_document)): | |
page = pdf_document.load_page(page_num) | |
pdf_text += page.get_text() | |
return pdf_text | |
# Load dataset | |
QA = pd.read_csv('/home/chenweiw/MIT_LLMs_Language_bias-main/data/full_dataset-Copy1.csv') | |
# Extract the last 30 English questions and answers | |
last_30_QA = QA.tail(80) | |
# Read PDF and convert to text | |
pdf_path = 'ahmed.pdf' # Replace with your actual PDF path | |
pdf_text = pdf_to_text(pdf_path) | |
# Setup LangChain with ChatOpenAI | |
llm = ChatOpenAI( | |
model="gpt-4o", | |
temperature=0, | |
max_tokens=None, | |
timeout=None, | |
max_retries=2, | |
api_key="""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""", # Replace with your actual API key | |
) | |
# Define the prompt template manually | |
prompt_template = PromptTemplate( | |
template="You are a helpful assistant. Please rewrite the following into a RAG-able paragraph.\n\n{text}", | |
input_variables=["text"] | |
) | |
# Initialize list to store RAG-able texts | |
rag_able_texts = [] | |
# Process each question and answer | |
for index, row in tqdm(last_30_QA.iterrows(), total=last_30_QA.shape[0]): | |
question = row['english'] | |
answer = row['answer'] | |
combined_text = f"\n\n{index + 1}. {question} correct answer {answer} + \t\n\n" | |
# Define the system and human messages | |
system_message = SystemMessage(content="You are a helpful assistant. Please rewrite the following into a RAG-able paragraph.") | |
human_message = HumanMessage(content=combined_text) | |
# Generate the RAG-able text | |
# response = llm([system_message, human_message]) | |
# print(response) | |
# rag_able_text = response.content | |
rag_able_text = combined_text | |
# Append the generated text to the list | |
rag_able_texts.append(rag_able_text) | |
# Combine all the RAG-able texts | |
final_rag_able_text = pdf_text +"END__"+"\n\n".join(rag_able_texts) | |
# Save the final RAG-able text to a file | |
with open('final_rag_able_text.txt', 'w') as file: | |
file.write(final_rag_able_text) | |
print("RAG-able text created successfully.") | |