|
""" Evaluate Medical Tests Classification in LLMS """ |
|
|
|
|
|
import json |
|
import pandas as pd |
|
import os |
|
import openai |
|
from dotenv import load_dotenv, find_dotenv |
|
import argparse |
|
import re |
|
import subprocess |
|
|
|
from langchain.prompts import PromptTemplate |
|
from langchain.chat_models import ChatOpenAI |
|
from langchain.llms import OpenAI |
|
from langchain.llms import LlamaCpp |
|
|
|
from langchain.agents import initialize_agent, Tool |
|
from langchain.tools import tool |
|
from langchain.agents import AgentType |
|
from langchain.agents.react.base import DocstoreExplorer |
|
|
|
|
|
from langchain.retrievers import PubMedRetriever |
|
from langchain.utilities import WikipediaAPIWrapper |
|
from langchain.tools import DuckDuckGoSearchRun |
|
|
|
|
|
|
|
|
|
|
|
from langchain.output_parsers import ResponseSchema |
|
from langchain.output_parsers import StructuredOutputParser |
|
from langchain.output_parsers import OutputFixingParser |
|
|
|
from langchain.chains import LLMChain |
|
|
|
|
|
|
|
def download_and_rename(url, filename): |
|
"""Downloads a file from the given URL and renames it to the given new file name. |
|
|
|
Args: |
|
url: The URL of the file to download. |
|
new_file_name: The new file name for the downloaded file. |
|
""" |
|
|
|
os.makedirs(os.path.dirname(filename), exist_ok=True) |
|
|
|
print(f'Downloading the weights of the model: {url} ...') |
|
subprocess.run(["wget", "-q", "-O", filename, url]) |
|
print(f'Done!') |
|
|
|
def download_hugging_face_model(model_version='Llama-2-7b'): |
|
if model_version not in ['Llama-2-7b', 'Llama-2-13b', 'Llama-2-70b', 'Mistral-7b']: |
|
raise ValueError("Options for Llama model should be 7b, 13b or 70b, or Mistral-7b") |
|
|
|
MODEL_URL = { |
|
'Llama-2-7b': 'https://huggingface.co/TheBloke/Llama-2-7b-Chat-GGUF/resolve/main/llama-2-7b-chat.Q8_0.gguf', |
|
'Llama-2-13b': 'https://huggingface.co/TheBloke/Llama-2-13B-chat-GGUF/resolve/main/llama-2-13b-chat.Q8_0.gguf', |
|
'Llama-2-70b': 'https://huggingface.co/TheBloke/Llama-2-70B-chat-GGUF/resolve/main/llama-2-70b-chat.Q5_0.gguf', |
|
'Mistral-7b': 'https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.1-GGUF/resolve/main/mistral-7b-instruct-v0.1.Q8_0.gguf' |
|
} |
|
|
|
MODEL_URL = MODEL_URL[model_version] |
|
|
|
model_path = f'Models/{model_version}.gguf' |
|
|
|
if os.path.exists(model_path): |
|
confirmation = input(f"The model file '{model_path}' already exists. Do you want to overwrite it? (yes/no): ").strip().lower() |
|
if confirmation != 'yes': |
|
print("Model installation aborted.") |
|
return model_path |
|
|
|
download_and_rename(MODEL_URL, model_path) |
|
|
|
return model_path |
|
|
|
|
|
|
|
def is_valid_json(text): |
|
try: |
|
json.loads(text) |
|
return True |
|
except: |
|
return False |
|
|
|
|
|
def get_completion_from_messages(messages, |
|
model): |
|
|
|
|
|
response = model(messages)['output'] |
|
print('response') |
|
print(response) |
|
if is_valid_json(response): |
|
response = json.loads(response) |
|
|
|
print('Loaded JSON response:') |
|
print(response) |
|
|
|
return response |
|
else: |
|
if '"response": "a"' in response.lower() or '"response":"a"' in response.lower() or ': "a"' in response.lower() or ':"a"' in response.lower() or '"response": a' in response.lower() or '"response":a' in response.lower() or ': a' in response.lower() or ':a' in response.lower() or "'response': 'a'" in response.lower() or "'response':'a'" in response.lower() or ": 'a'" in response.lower() or ":'a'" in response.lower() or "'response': a" in response.lower() or "'response':a" in response.lower(): |
|
response = {'response': 'a'} |
|
elif '"response": "b"' in response.lower() or '"response":"b"' in response.lower() or ': "b"' in response.lower() or ':"b"' in response.lower() or '"response": b' in response.lower() or '"response":b' in response.lower() or ': b' in response.lower() or ':b' in response.lower() or "'response': 'b'" in response.lower() or "'response':'b'" in response.lower() or ": 'b'" in response.lower() or ":'b'" in response.lower() or "'response': b" in response.lower() or "'response':b" in response.lower(): |
|
response = {'response': 'b'} |
|
elif '"response": "c"' in response.lower() or '"response":"c"' in response.lower() or ': "c"' in response.lower() or ':"c"' in response.lower() or '"response": c' in response.lower() or '"response":c' in response.lower() or ': c' in response.lower() or ':c' in response.lower() or "'response': 'c'" in response.lower() or "'response':'c'" in response.lower() or ": 'c'" in response.lower() or ":'c'" in response.lower() or "'response': c" in response.lower() or "'response':c" in response.lower(): |
|
response = {'response': 'c'} |
|
elif '"response": "d"' in response.lower() or '"response":"d"' in response.lower() or ': "d"' in response.lower() or ':"d"' in response.lower() or '"response": d' in response.lower() or '"response":d' in response.lower() or ': d' in response.lower() or ':d' in response.lower() or "'response': 'd'" in response.lower() or "'response':'d'" in response.lower() or ": 'd'" in response.lower() or ":'d'" in response.lower() or "'response': d" in response.lower() or "'response':d" in response.lower(): |
|
response = {'response': 'd'} |
|
|
|
return response |
|
|
|
|
|
|
|
def llm_language_evaluation(path='data/Portuguese.csv', model='gpt-3.5-turbo', temperature=0.0, n_repetitions=1, reasoning=False, languages=['english', 'portuguese'], llm_chain=False): |
|
|
|
|
|
if 'gpt' in model: |
|
_ = load_dotenv(find_dotenv()) |
|
openai.api_key = os.environ['OPENAI_API_KEY'] |
|
llm = OpenAI(temperature=temperature, model_name=model) |
|
|
|
elif 'Llama-2' in model or ('Mistral-7b' in model): |
|
|
|
model_path = download_hugging_face_model(model_version=model) |
|
llm = LlamaCpp( |
|
model_path=model_path, |
|
temperature=temperature, |
|
n_ctx=2048, |
|
verbose=False, |
|
) |
|
|
|
else: |
|
print('Model should be a GPT, Llama-2, or Mistral-7b model') |
|
return 0 |
|
|
|
|
|
PATH = path |
|
MODEL = model |
|
TEMPERATURE = temperature |
|
N_REPETITIONS = n_repetitions |
|
REASONING = reasoning |
|
LANGUAGES = languages |
|
|
|
|
|
|
|
pubmed = PubMedRetriever() |
|
wikipedia = WikipediaAPIWrapper() |
|
search = DuckDuckGoSearchRun() |
|
|
|
@tool |
|
def json_format(response: str) -> dict: |
|
"""Given the correct response's letter a, b, c or d; generates the output json. If input is not a, b, c or d, returns an error message.""" |
|
if response in ['a', 'b', 'c', 'd']: |
|
return {"response": response} |
|
else: |
|
return "Error: response should be a, b, c or d." |
|
|
|
|
|
tools = [ |
|
Tool( |
|
name = "Pubmed search", |
|
func=pubmed.run, |
|
description="useful for when you need to search for a medical topic, treatment or outcome on pubmed" |
|
), |
|
Tool( |
|
name = "JSON format", |
|
func=json_format, |
|
description="Given the correct response's letter a, b, c or d; generates the output json. If input is not a, b, c or d, returns an error message." |
|
), |
|
|
|
|
|
|
|
|
|
|
|
Tool( |
|
name='DuckDuckGo Search', |
|
func= search.run, |
|
description="Useful for when you need to do a search on the internet to find information that another tool can't find. be specific with your input." |
|
) |
|
] |
|
|
|
|
|
react_agent = initialize_agent(tools, llm, agent="zero-shot-react-description", verbose=True, handle_parsing_errors="Check your output and make sure it is a JSON file with the key response and value a letter a, b, c, or d. Make sure you can parse that using Python", max_iterations=10) |
|
|
|
|
|
|
|
prompt = ''' |
|
Answer the following questions as best you can. You have access to the following tools: |
|
|
|
Pubmed search: useful for when you need to search for a medical topic, treatment or outcome on pubmed |
|
JSON format: Given the correct response's letter a, b, c or d; generates the output json. If input is not a, b, c or d, returns an error message. |
|
|
|
DuckDuckGo Search: Useful for when you need to do a search on the internet to find information that another tool can't find. be specific with your input. |
|
|
|
|
|
Use the following format: |
|
|
|
Question: the input question you must answer |
|
Thought: you should always think about what to do |
|
Action: the action to take, should be one of [Pubmed search, JSON format, DuckDuckGo Search]. Don't use the same tool more than 3 times. |
|
Action Input: the input to the action |
|
Observation: the result of the action |
|
... (this Thought/Action/Action Input/Observation can repeat 4 times maximum, then you should answer the question. Don't iterate more than 4 times. Just provide a response to the question after that in the expected format.) |
|
Thought: I now know the final answer, or I reached the limit of iterations. I will provide the final answer now. |
|
Final Answer: the final answer to the original input question. The final answer should be a JSON object with the key "response" and the value being the letter a, b, c or d with the correct answer. |
|
|
|
Begin! |
|
|
|
Question: {input} |
|
Thought:{agent_scratchpad} |
|
''' |
|
|
|
react_agent.agent.llm_chain.prompt.template = prompt |
|
|
|
|
|
|
|
if N_REPETITIONS <= 0 or (N_REPETITIONS != int(N_REPETITIONS)): |
|
print(f'N_REPETITIONS should be a positive integer, not {N_REPETITIONS}') |
|
print('N_REPETITIONS will be set to 1') |
|
N_REPETITIONS = 1 |
|
|
|
|
|
df = pd.read_csv(PATH) |
|
|
|
|
|
responses = {} |
|
reasoning = {} |
|
for language in LANGUAGES: |
|
responses[language] = [[] for n in range(N_REPETITIONS)] |
|
|
|
if REASONING: |
|
reasoning[language] = [[] for n in range(N_REPETITIONS)] |
|
|
|
|
|
for row in range(df.shape[0]): |
|
|
|
print('*'*50) |
|
print(f'Question {row+1}: ') |
|
for language in LANGUAGES: |
|
print(f'Language: {language}') |
|
question = df[language][row] |
|
print('Question: ') |
|
print(question) |
|
|
|
for n in range(N_REPETITIONS): |
|
print(f'Test #{n}: ') |
|
|
|
response = get_completion_from_messages(question, react_agent) |
|
|
|
print(type(response)) |
|
print(response) |
|
|
|
|
|
responses[language][n].append(response['response']) |
|
if REASONING: |
|
reasoning[language][n].append(response['reasoning']) |
|
|
|
print('*'*50) |
|
|
|
|
|
for language in LANGUAGES: |
|
if N_REPETITIONS == 1: |
|
df[f'responses_{language}'] = responses[language][0] |
|
if REASONING: |
|
df[f'reasoning_{language}'] = reasoning[language][0] |
|
|
|
for n in range(N_REPETITIONS): |
|
df[f'responses_{language}_{n}'] = responses[language][n] |
|
if REASONING: |
|
df[f'reasoning_{language}_{n}'] = reasoning[language][n] |
|
|
|
if not os.path.exists('responses'): |
|
os.makedirs('responses') |
|
if N_REPETITIONS == 1: |
|
df.to_csv(f"responses/rag_{MODEL}_Temperature{str(TEMPERATURE).replace('.', '_')}.csv", index=False) |
|
else: |
|
df.to_csv(f"responses/rag_{MODEL}_Temperature{str(TEMPERATURE).replace('.', '_')}_{N_REPETITIONS}Repetitions.csv", index=False) |
|
|
|
def main(): |
|
|
|
parser = argparse.ArgumentParser(description="Evaluate Medical Tests Classification in LLMS") |
|
parser.add_argument("--csv_file", default="data/Portuguese.csv", help="Path to the CSV file with the questions") |
|
parser.add_argument("--model", default="gpt-3.5-turbo", help="LLM to use e.g: gpt-3.5-turbo, gpt-4, Llama-2-7b, Llama-2-13b, or Llama-2-70b") |
|
parser.add_argument("--temperature", type=float, default=0.0, help="Temperature parameter of the model between 0 and 1. Used to modifiy the model's creativity. 0 is deterministic and 1 is the most creative") |
|
parser.add_argument("--n_repetitions", type=int, default=1, help="Number of repetitions to run each experiment. Used to measure the model's hallucinations") |
|
parser.add_argument("--reasoning", action="store_true", default=False, help="Enable reasoning mode. If set to True, the model will be asked to provide a reasoning for its answer. If set to True the model uses more tokens") |
|
parser.add_argument("--languages", nargs='+', default=['english', 'portuguese'], help="List of languages") |
|
parser.add_argument("--llm_chain", action="store_true", default=False, help="Enable the use of ") |
|
|
|
args = parser.parse_args() |
|
|
|
|
|
PATH = args.csv_file |
|
MODEL = args.model |
|
TEMPERATURE = args.temperature |
|
N_REPETITIONS = args.n_repetitions |
|
REASONING = args.reasoning |
|
LANGUAGES = args.languages |
|
llm_chain = args.llm_chain |
|
|
|
llm_language_evaluation(path=PATH, model=MODEL, temperature=TEMPERATURE, n_repetitions=N_REPETITIONS, reasoning=REASONING, languages=LANGUAGES, llm_chain=llm_chain) |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |