import pandas as pd import fitz # PyMuPDF from langchain.prompts import PromptTemplate from langchain_openai import ChatOpenAI from langchain_core.messages import HumanMessage, SystemMessage from tqdm.notebook import tqdm # Function to read a PDF and convert to text def pdf_to_text(pdf_path): pdf_text = "" with fitz.open(pdf_path) as pdf_document: for page_num in range(len(pdf_document)): page = pdf_document.load_page(page_num) pdf_text += page.get_text() return pdf_text # Load dataset # Extract the last 30 English questions and answers last_30_QA = QA.tail(80) # Read PDF and convert to text pdf_path = 'ahmed.pdf' # Replace with your actual PDF path pdf_text = pdf_to_text(pdf_path) # Setup LangChain with ChatOpenAI llm = ChatOpenAI( model="gpt-4", temperature=0, max_tokens=None, timeout=None, max_retries=2, api_key="""""", # Replace with your actual API key ) # Define the prompt template manually prompt_template = PromptTemplate( template="You are a helpful assistant. Please rewrite the following into a RAG-able paragraph.\n\n{text}", input_variables=["text"] ) # Initialize list to store RAG-able texts rag_able_texts = [] # Process each question and answer for index, row in tqdm(last_30_QA.iterrows(), total=last_30_QA.shape[0]): question = row['english'] answer = row['answer'] combined_text = f"\n\n{index + 1}. {question} correct answer {answer} + \t\n\n" # Define the system and human messages system_message = SystemMessage(content="You are a helpful assistant. Please rewrite the following into a RAG-able paragraph.") human_message = HumanMessage(content=combined_text) # Generate the RAG-able text # response = llm([system_message, human_message]) # print(response) # rag_able_text = response.content rag_able_text = combined_text # Append the generated text to the list rag_able_texts.append(rag_able_text) # Combine all the RAG-able texts final_rag_able_text = pdf_text +"END__"+"\n\n".join(rag_able_texts) # Save the final RAG-able text to a file with open('final_rag_able_text.txt', 'w') as file: file.write(final_rag_able_text) print("RAG-able text created successfully.")