Last commit not found
import argparse | |
import os | |
import regex | |
import torch | |
from library.device_utils import init_ipex | |
init_ipex() | |
from library import sdxl_model_util, sdxl_train_util, train_util | |
import train_textual_inversion | |
class SdxlTextualInversionTrainer(train_textual_inversion.TextualInversionTrainer): | |
def __init__(self): | |
super().__init__() | |
self.vae_scale_factor = sdxl_model_util.VAE_SCALE_FACTOR | |
self.is_sdxl = True | |
def assert_extra_args(self, args, train_dataset_group): | |
super().assert_extra_args(args, train_dataset_group) | |
sdxl_train_util.verify_sdxl_training_args(args, supportTextEncoderCaching=False) | |
train_dataset_group.verify_bucket_reso_steps(32) | |
def load_target_model(self, args, weight_dtype, accelerator): | |
( | |
load_stable_diffusion_format, | |
text_encoder1, | |
text_encoder2, | |
vae, | |
unet, | |
logit_scale, | |
ckpt_info, | |
) = sdxl_train_util.load_target_model(args, accelerator, sdxl_model_util.MODEL_VERSION_SDXL_BASE_V1_0, weight_dtype) | |
self.load_stable_diffusion_format = load_stable_diffusion_format | |
self.logit_scale = logit_scale | |
self.ckpt_info = ckpt_info | |
return sdxl_model_util.MODEL_VERSION_SDXL_BASE_V1_0, [text_encoder1, text_encoder2], vae, unet | |
def load_tokenizer(self, args): | |
tokenizer = sdxl_train_util.load_tokenizers(args) | |
return tokenizer | |
def get_text_cond(self, args, accelerator, batch, tokenizers, text_encoders, weight_dtype): | |
input_ids1 = batch["input_ids"] | |
input_ids2 = batch["input_ids2"] | |
with torch.enable_grad(): | |
input_ids1 = input_ids1.to(accelerator.device) | |
input_ids2 = input_ids2.to(accelerator.device) | |
encoder_hidden_states1, encoder_hidden_states2, pool2 = train_util.get_hidden_states_sdxl( | |
args.max_token_length, | |
input_ids1, | |
input_ids2, | |
tokenizers[0], | |
tokenizers[1], | |
text_encoders[0], | |
text_encoders[1], | |
None if not args.full_fp16 else weight_dtype, | |
accelerator=accelerator, | |
) | |
return encoder_hidden_states1, encoder_hidden_states2, pool2 | |
def call_unet(self, args, accelerator, unet, noisy_latents, timesteps, text_conds, batch, weight_dtype): | |
noisy_latents = noisy_latents.to(weight_dtype) # TODO check why noisy_latents is not weight_dtype | |
# get size embeddings | |
orig_size = batch["original_sizes_hw"] | |
crop_size = batch["crop_top_lefts"] | |
target_size = batch["target_sizes_hw"] | |
embs = sdxl_train_util.get_size_embeddings(orig_size, crop_size, target_size, accelerator.device).to(weight_dtype) | |
# concat embeddings | |
encoder_hidden_states1, encoder_hidden_states2, pool2 = text_conds | |
vector_embedding = torch.cat([pool2, embs], dim=1).to(weight_dtype) | |
text_embedding = torch.cat([encoder_hidden_states1, encoder_hidden_states2], dim=2).to(weight_dtype) | |
noise_pred = unet(noisy_latents, timesteps, text_embedding, vector_embedding) | |
return noise_pred | |
def sample_images(self, accelerator, args, epoch, global_step, device, vae, tokenizer, text_encoder, unet, prompt_replacement): | |
sdxl_train_util.sample_images( | |
accelerator, args, epoch, global_step, device, vae, tokenizer, text_encoder, unet, prompt_replacement | |
) | |
def save_weights(self, file, updated_embs, save_dtype, metadata): | |
state_dict = {"clip_l": updated_embs[0], "clip_g": updated_embs[1]} | |
if save_dtype is not None: | |
for key in list(state_dict.keys()): | |
v = state_dict[key] | |
v = v.detach().clone().to("cpu").to(save_dtype) | |
state_dict[key] = v | |
if os.path.splitext(file)[1] == ".safetensors": | |
from safetensors.torch import save_file | |
save_file(state_dict, file, metadata) | |
else: | |
torch.save(state_dict, file) | |
def load_weights(self, file): | |
if os.path.splitext(file)[1] == ".safetensors": | |
from safetensors.torch import load_file | |
data = load_file(file) | |
else: | |
data = torch.load(file, map_location="cpu") | |
emb_l = data.get("clip_l", None) # ViT-L text encoder 1 | |
emb_g = data.get("clip_g", None) # BiG-G text encoder 2 | |
assert ( | |
emb_l is not None or emb_g is not None | |
), f"weight file does not contains weights for text encoder 1 or 2 / 重みファイルにテキストエンコーダー1または2の重みが含まれていません: {file}" | |
return [emb_l, emb_g] | |
def setup_parser() -> argparse.ArgumentParser: | |
parser = train_textual_inversion.setup_parser() | |
# don't add sdxl_train_util.add_sdxl_training_arguments(parser): because it only adds text encoder caching | |
# sdxl_train_util.add_sdxl_training_arguments(parser) | |
return parser | |
if __name__ == "__main__": | |
parser = setup_parser() | |
args = parser.parse_args() | |
train_util.verify_command_line_training_args(args) | |
args = train_util.read_config_from_file(args, parser) | |
trainer = SdxlTextualInversionTrainer() | |
trainer.train(args) | |