Last commit not found
import argparse | |
import os | |
import torch | |
from safetensors import safe_open | |
from safetensors.torch import load_file, save_file | |
from tqdm import tqdm | |
from library.utils import setup_logging | |
setup_logging() | |
import logging | |
logger = logging.getLogger(__name__) | |
def is_unet_key(key): | |
# VAE or TextEncoder, the last one is for SDXL | |
return not ("first_stage_model" in key or "cond_stage_model" in key or "conditioner." in key) | |
TEXT_ENCODER_KEY_REPLACEMENTS = [ | |
("cond_stage_model.transformer.embeddings.", "cond_stage_model.transformer.text_model.embeddings."), | |
("cond_stage_model.transformer.encoder.", "cond_stage_model.transformer.text_model.encoder."), | |
("cond_stage_model.transformer.final_layer_norm.", "cond_stage_model.transformer.text_model.final_layer_norm."), | |
] | |
# support for models with different text encoder keys | |
def replace_text_encoder_key(key): | |
for rep_from, rep_to in TEXT_ENCODER_KEY_REPLACEMENTS: | |
if key.startswith(rep_from): | |
return True, rep_to + key[len(rep_from) :] | |
return False, key | |
def merge(args): | |
if args.precision == "fp16": | |
dtype = torch.float16 | |
elif args.precision == "bf16": | |
dtype = torch.bfloat16 | |
else: | |
dtype = torch.float | |
if args.saving_precision == "fp16": | |
save_dtype = torch.float16 | |
elif args.saving_precision == "bf16": | |
save_dtype = torch.bfloat16 | |
else: | |
save_dtype = torch.float | |
# check if all models are safetensors | |
for model in args.models: | |
if not model.endswith("safetensors"): | |
logger.info(f"Model {model} is not a safetensors model") | |
exit() | |
if not os.path.isfile(model): | |
logger.info(f"Model {model} does not exist") | |
exit() | |
assert args.ratios is None or len(args.models) == len(args.ratios), "ratios must be the same length as models" | |
# load and merge | |
ratio = 1.0 / len(args.models) # default | |
supplementary_key_ratios = {} # [key] = ratio, for keys not in all models, add later | |
merged_sd = None | |
first_model_keys = set() # check missing keys in other models | |
for i, model in enumerate(args.models): | |
if args.ratios is not None: | |
ratio = args.ratios[i] | |
if merged_sd is None: | |
# load first model | |
logger.info(f"Loading model {model}, ratio = {ratio}...") | |
merged_sd = {} | |
with safe_open(model, framework="pt", device=args.device) as f: | |
for key in tqdm(f.keys()): | |
value = f.get_tensor(key) | |
_, key = replace_text_encoder_key(key) | |
first_model_keys.add(key) | |
if not is_unet_key(key) and args.unet_only: | |
supplementary_key_ratios[key] = 1.0 # use first model's value for VAE or TextEncoder | |
continue | |
value = ratio * value.to(dtype) # first model's value * ratio | |
merged_sd[key] = value | |
logger.info(f"Model has {len(merged_sd)} keys " + ("(UNet only)" if args.unet_only else "")) | |
continue | |
# load other models | |
logger.info(f"Loading model {model}, ratio = {ratio}...") | |
with safe_open(model, framework="pt", device=args.device) as f: | |
model_keys = f.keys() | |
for key in tqdm(model_keys): | |
_, new_key = replace_text_encoder_key(key) | |
if new_key not in merged_sd: | |
if args.show_skipped and new_key not in first_model_keys: | |
logger.info(f"Skip: {new_key}") | |
continue | |
value = f.get_tensor(key) | |
merged_sd[new_key] = merged_sd[new_key] + ratio * value.to(dtype) | |
# enumerate keys not in this model | |
model_keys = set(model_keys) | |
for key in merged_sd.keys(): | |
if key in model_keys: | |
continue | |
logger.warning(f"Key {key} not in model {model}, use first model's value") | |
if key in supplementary_key_ratios: | |
supplementary_key_ratios[key] += ratio | |
else: | |
supplementary_key_ratios[key] = ratio | |
# add supplementary keys' value (including VAE and TextEncoder) | |
if len(supplementary_key_ratios) > 0: | |
logger.info("add first model's value") | |
with safe_open(args.models[0], framework="pt", device=args.device) as f: | |
for key in tqdm(f.keys()): | |
_, new_key = replace_text_encoder_key(key) | |
if new_key not in supplementary_key_ratios: | |
continue | |
if is_unet_key(new_key): # not VAE or TextEncoder | |
logger.warning(f"Key {new_key} not in all models, ratio = {supplementary_key_ratios[new_key]}") | |
value = f.get_tensor(key) # original key | |
if new_key not in merged_sd: | |
merged_sd[new_key] = supplementary_key_ratios[new_key] * value.to(dtype) | |
else: | |
merged_sd[new_key] = merged_sd[new_key] + supplementary_key_ratios[new_key] * value.to(dtype) | |
# save | |
output_file = args.output | |
if not output_file.endswith(".safetensors"): | |
output_file = output_file + ".safetensors" | |
logger.info(f"Saving to {output_file}...") | |
# convert to save_dtype | |
for k in merged_sd.keys(): | |
merged_sd[k] = merged_sd[k].to(save_dtype) | |
save_file(merged_sd, output_file) | |
logger.info("Done!") | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser(description="Merge models") | |
parser.add_argument("--models", nargs="+", type=str, help="Models to merge") | |
parser.add_argument("--output", type=str, help="Output model") | |
parser.add_argument("--ratios", nargs="+", type=float, help="Ratios of models, default is equal, total = 1.0") | |
parser.add_argument("--unet_only", action="store_true", help="Only merge unet") | |
parser.add_argument("--device", type=str, default="cpu", help="Device to use, default is cpu") | |
parser.add_argument( | |
"--precision", type=str, default="float", choices=["float", "fp16", "bf16"], help="Calculation precision, default is float" | |
) | |
parser.add_argument( | |
"--saving_precision", | |
type=str, | |
default="float", | |
choices=["float", "fp16", "bf16"], | |
help="Saving precision, default is float", | |
) | |
parser.add_argument("--show_skipped", action="store_true", help="Show skipped keys (keys not in first model)") | |
args = parser.parse_args() | |
merge(args) | |