Last commit not found
# training with captions | |
import argparse | |
import math | |
import os | |
from multiprocessing import Value | |
from typing import List | |
import toml | |
from tqdm import tqdm | |
import torch | |
from library.device_utils import init_ipex, clean_memory_on_device | |
init_ipex() | |
from accelerate.utils import set_seed | |
from diffusers import DDPMScheduler | |
from library import deepspeed_utils, sdxl_model_util | |
import library.train_util as train_util | |
from library.utils import setup_logging, add_logging_arguments | |
setup_logging() | |
import logging | |
logger = logging.getLogger(__name__) | |
import library.config_util as config_util | |
import library.sdxl_train_util as sdxl_train_util | |
from library.config_util import ( | |
ConfigSanitizer, | |
BlueprintGenerator, | |
) | |
import library.custom_train_functions as custom_train_functions | |
from library.custom_train_functions import ( | |
apply_snr_weight, | |
prepare_scheduler_for_custom_training, | |
scale_v_prediction_loss_like_noise_prediction, | |
add_v_prediction_like_loss, | |
apply_debiased_estimation, | |
apply_masked_loss, | |
) | |
from library.sdxl_original_unet import SdxlUNet2DConditionModel | |
UNET_NUM_BLOCKS_FOR_BLOCK_LR = 23 | |
def get_block_params_to_optimize(unet: SdxlUNet2DConditionModel, block_lrs: List[float]) -> List[dict]: | |
block_params = [[] for _ in range(len(block_lrs))] | |
for i, (name, param) in enumerate(unet.named_parameters()): | |
if name.startswith("time_embed.") or name.startswith("label_emb."): | |
block_index = 0 # 0 | |
elif name.startswith("input_blocks."): # 1-9 | |
block_index = 1 + int(name.split(".")[1]) | |
elif name.startswith("middle_block."): # 10-12 | |
block_index = 10 + int(name.split(".")[1]) | |
elif name.startswith("output_blocks."): # 13-21 | |
block_index = 13 + int(name.split(".")[1]) | |
elif name.startswith("out."): # 22 | |
block_index = 22 | |
else: | |
raise ValueError(f"unexpected parameter name: {name}") | |
block_params[block_index].append(param) | |
params_to_optimize = [] | |
for i, params in enumerate(block_params): | |
if block_lrs[i] == 0: # 0のときは学習しない do not optimize when lr is 0 | |
continue | |
params_to_optimize.append({"params": params, "lr": block_lrs[i]}) | |
return params_to_optimize | |
def append_block_lr_to_logs(block_lrs, logs, lr_scheduler, optimizer_type): | |
names = [] | |
block_index = 0 | |
while block_index < UNET_NUM_BLOCKS_FOR_BLOCK_LR + 2: | |
if block_index < UNET_NUM_BLOCKS_FOR_BLOCK_LR: | |
if block_lrs[block_index] == 0: | |
block_index += 1 | |
continue | |
names.append(f"block{block_index}") | |
elif block_index == UNET_NUM_BLOCKS_FOR_BLOCK_LR: | |
names.append("text_encoder1") | |
elif block_index == UNET_NUM_BLOCKS_FOR_BLOCK_LR + 1: | |
names.append("text_encoder2") | |
block_index += 1 | |
train_util.append_lr_to_logs_with_names(logs, lr_scheduler, optimizer_type, names) | |
def train(args): | |
train_util.verify_training_args(args) | |
train_util.prepare_dataset_args(args, True) | |
sdxl_train_util.verify_sdxl_training_args(args) | |
deepspeed_utils.prepare_deepspeed_args(args) | |
setup_logging(args, reset=True) | |
assert ( | |
not args.weighted_captions | |
), "weighted_captions is not supported currently / weighted_captionsは現在サポートされていません" | |
assert ( | |
not args.train_text_encoder or not args.cache_text_encoder_outputs | |
), "cache_text_encoder_outputs is not supported when training text encoder / text encoderを学習するときはcache_text_encoder_outputsはサポートされていません" | |
if args.block_lr: | |
block_lrs = [float(lr) for lr in args.block_lr.split(",")] | |
assert ( | |
len(block_lrs) == UNET_NUM_BLOCKS_FOR_BLOCK_LR | |
), f"block_lr must have {UNET_NUM_BLOCKS_FOR_BLOCK_LR} values / block_lrは{UNET_NUM_BLOCKS_FOR_BLOCK_LR}個の値を指定してください" | |
else: | |
block_lrs = None | |
cache_latents = args.cache_latents | |
use_dreambooth_method = args.in_json is None | |
if args.seed is not None: | |
set_seed(args.seed) # 乱数系列を初期化する | |
tokenizer1, tokenizer2 = sdxl_train_util.load_tokenizers(args) | |
# データセットを準備する | |
if args.dataset_class is None: | |
blueprint_generator = BlueprintGenerator(ConfigSanitizer(True, True, args.masked_loss, True)) | |
if args.dataset_config is not None: | |
logger.info(f"Load dataset config from {args.dataset_config}") | |
user_config = config_util.load_user_config(args.dataset_config) | |
ignored = ["train_data_dir", "in_json"] | |
if any(getattr(args, attr) is not None for attr in ignored): | |
logger.warning( | |
"ignore following options because config file is found: {0} / 設定ファイルが利用されるため以下のオプションは無視されます: {0}".format( | |
", ".join(ignored) | |
) | |
) | |
else: | |
if use_dreambooth_method: | |
logger.info("Using DreamBooth method.") | |
user_config = { | |
"datasets": [ | |
{ | |
"subsets": config_util.generate_dreambooth_subsets_config_by_subdirs( | |
args.train_data_dir, args.reg_data_dir | |
) | |
} | |
] | |
} | |
else: | |
logger.info("Training with captions.") | |
user_config = { | |
"datasets": [ | |
{ | |
"subsets": [ | |
{ | |
"image_dir": args.train_data_dir, | |
"metadata_file": args.in_json, | |
} | |
] | |
} | |
] | |
} | |
blueprint = blueprint_generator.generate(user_config, args, tokenizer=[tokenizer1, tokenizer2]) | |
train_dataset_group = config_util.generate_dataset_group_by_blueprint(blueprint.dataset_group) | |
else: | |
train_dataset_group = train_util.load_arbitrary_dataset(args, [tokenizer1, tokenizer2]) | |
current_epoch = Value("i", 0) | |
current_step = Value("i", 0) | |
ds_for_collator = train_dataset_group if args.max_data_loader_n_workers == 0 else None | |
collator = train_util.collator_class(current_epoch, current_step, ds_for_collator) | |
train_dataset_group.verify_bucket_reso_steps(32) | |
if args.debug_dataset: | |
train_util.debug_dataset(train_dataset_group, True) | |
return | |
if len(train_dataset_group) == 0: | |
logger.error( | |
"No data found. Please verify the metadata file and train_data_dir option. / 画像がありません。メタデータおよびtrain_data_dirオプションを確認してください。" | |
) | |
return | |
if cache_latents: | |
assert ( | |
train_dataset_group.is_latent_cacheable() | |
), "when caching latents, either color_aug or random_crop cannot be used / latentをキャッシュするときはcolor_augとrandom_cropは使えません" | |
if args.cache_text_encoder_outputs: | |
assert ( | |
train_dataset_group.is_text_encoder_output_cacheable() | |
), "when caching text encoder output, either caption_dropout_rate, shuffle_caption, token_warmup_step or caption_tag_dropout_rate cannot be used / text encoderの出力をキャッシュするときはcaption_dropout_rate, shuffle_caption, token_warmup_step, caption_tag_dropout_rateは使えません" | |
# acceleratorを準備する | |
logger.info("prepare accelerator") | |
accelerator = train_util.prepare_accelerator(args) | |
# mixed precisionに対応した型を用意しておき適宜castする | |
weight_dtype, save_dtype = train_util.prepare_dtype(args) | |
vae_dtype = torch.float32 if args.no_half_vae else weight_dtype | |
# モデルを読み込む | |
( | |
load_stable_diffusion_format, | |
text_encoder1, | |
text_encoder2, | |
vae, | |
unet, | |
logit_scale, | |
ckpt_info, | |
) = sdxl_train_util.load_target_model(args, accelerator, "sdxl", weight_dtype) | |
# logit_scale = logit_scale.to(accelerator.device, dtype=weight_dtype) | |
# verify load/save model formats | |
if load_stable_diffusion_format: | |
src_stable_diffusion_ckpt = args.pretrained_model_name_or_path | |
src_diffusers_model_path = None | |
else: | |
src_stable_diffusion_ckpt = None | |
src_diffusers_model_path = args.pretrained_model_name_or_path | |
if args.save_model_as is None: | |
save_stable_diffusion_format = load_stable_diffusion_format | |
use_safetensors = args.use_safetensors | |
else: | |
save_stable_diffusion_format = args.save_model_as.lower() == "ckpt" or args.save_model_as.lower() == "safetensors" | |
use_safetensors = args.use_safetensors or ("safetensors" in args.save_model_as.lower()) | |
# assert save_stable_diffusion_format, "save_model_as must be ckpt or safetensors / save_model_asはckptかsafetensorsである必要があります" | |
# Diffusers版のxformers使用フラグを設定する関数 | |
def set_diffusers_xformers_flag(model, valid): | |
def fn_recursive_set_mem_eff(module: torch.nn.Module): | |
if hasattr(module, "set_use_memory_efficient_attention_xformers"): | |
module.set_use_memory_efficient_attention_xformers(valid) | |
for child in module.children(): | |
fn_recursive_set_mem_eff(child) | |
fn_recursive_set_mem_eff(model) | |
# モデルに xformers とか memory efficient attention を組み込む | |
if args.diffusers_xformers: | |
# もうU-Netを独自にしたので動かないけどVAEのxformersは動くはず | |
accelerator.print("Use xformers by Diffusers") | |
# set_diffusers_xformers_flag(unet, True) | |
set_diffusers_xformers_flag(vae, True) | |
else: | |
# Windows版のxformersはfloatで学習できなかったりするのでxformersを使わない設定も可能にしておく必要がある | |
accelerator.print("Disable Diffusers' xformers") | |
train_util.replace_unet_modules(unet, args.mem_eff_attn, args.xformers, args.sdpa) | |
if torch.__version__ >= "2.0.0": # PyTorch 2.0.0 以上対応のxformersなら以下が使える | |
vae.set_use_memory_efficient_attention_xformers(args.xformers) | |
# 学習を準備する | |
if cache_latents: | |
vae.to(accelerator.device, dtype=vae_dtype) | |
vae.requires_grad_(False) | |
vae.eval() | |
with torch.no_grad(): | |
train_dataset_group.cache_latents(vae, args.vae_batch_size, args.cache_latents_to_disk, accelerator.is_main_process) | |
vae.to("cpu") | |
clean_memory_on_device(accelerator.device) | |
accelerator.wait_for_everyone() | |
# 学習を準備する:モデルを適切な状態にする | |
if args.gradient_checkpointing: | |
unet.enable_gradient_checkpointing() | |
train_unet = args.learning_rate > 0 | |
train_text_encoder1 = False | |
train_text_encoder2 = False | |
if args.train_text_encoder: | |
# TODO each option for two text encoders? | |
accelerator.print("enable text encoder training") | |
if args.gradient_checkpointing: | |
text_encoder1.gradient_checkpointing_enable() | |
text_encoder2.gradient_checkpointing_enable() | |
lr_te1 = args.learning_rate_te1 if args.learning_rate_te1 is not None else args.learning_rate # 0 means not train | |
lr_te2 = args.learning_rate_te2 if args.learning_rate_te2 is not None else args.learning_rate # 0 means not train | |
train_text_encoder1 = lr_te1 > 0 | |
train_text_encoder2 = lr_te2 > 0 | |
# caching one text encoder output is not supported | |
if not train_text_encoder1: | |
text_encoder1.to(weight_dtype) | |
if not train_text_encoder2: | |
text_encoder2.to(weight_dtype) | |
text_encoder1.requires_grad_(train_text_encoder1) | |
text_encoder2.requires_grad_(train_text_encoder2) | |
text_encoder1.train(train_text_encoder1) | |
text_encoder2.train(train_text_encoder2) | |
else: | |
text_encoder1.to(weight_dtype) | |
text_encoder2.to(weight_dtype) | |
text_encoder1.requires_grad_(False) | |
text_encoder2.requires_grad_(False) | |
text_encoder1.eval() | |
text_encoder2.eval() | |
# TextEncoderの出力をキャッシュする | |
if args.cache_text_encoder_outputs: | |
# Text Encodes are eval and no grad | |
with torch.no_grad(), accelerator.autocast(): | |
train_dataset_group.cache_text_encoder_outputs( | |
(tokenizer1, tokenizer2), | |
(text_encoder1, text_encoder2), | |
accelerator.device, | |
None, | |
args.cache_text_encoder_outputs_to_disk, | |
accelerator.is_main_process, | |
) | |
accelerator.wait_for_everyone() | |
if not cache_latents: | |
vae.requires_grad_(False) | |
vae.eval() | |
vae.to(accelerator.device, dtype=vae_dtype) | |
unet.requires_grad_(train_unet) | |
if not train_unet: | |
unet.to(accelerator.device, dtype=weight_dtype) # because of unet is not prepared | |
training_models = [] | |
params_to_optimize = [] | |
if train_unet: | |
training_models.append(unet) | |
if block_lrs is None: | |
params_to_optimize.append({"params": list(unet.parameters()), "lr": args.learning_rate}) | |
else: | |
params_to_optimize.extend(get_block_params_to_optimize(unet, block_lrs)) | |
if train_text_encoder1: | |
training_models.append(text_encoder1) | |
params_to_optimize.append({"params": list(text_encoder1.parameters()), "lr": args.learning_rate_te1 or args.learning_rate}) | |
if train_text_encoder2: | |
training_models.append(text_encoder2) | |
params_to_optimize.append({"params": list(text_encoder2.parameters()), "lr": args.learning_rate_te2 or args.learning_rate}) | |
# calculate number of trainable parameters | |
n_params = 0 | |
for params in params_to_optimize: | |
for p in params["params"]: | |
n_params += p.numel() | |
accelerator.print(f"train unet: {train_unet}, text_encoder1: {train_text_encoder1}, text_encoder2: {train_text_encoder2}") | |
accelerator.print(f"number of models: {len(training_models)}") | |
accelerator.print(f"number of trainable parameters: {n_params}") | |
# 学習に必要なクラスを準備する | |
accelerator.print("prepare optimizer, data loader etc.") | |
_, _, optimizer = train_util.get_optimizer(args, trainable_params=params_to_optimize) | |
# dataloaderを準備する | |
# DataLoaderのプロセス数:0 は persistent_workers が使えないので注意 | |
n_workers = min(args.max_data_loader_n_workers, os.cpu_count()) # cpu_count or max_data_loader_n_workers | |
train_dataloader = torch.utils.data.DataLoader( | |
train_dataset_group, | |
batch_size=1, | |
shuffle=True, | |
collate_fn=collator, | |
num_workers=n_workers, | |
persistent_workers=args.persistent_data_loader_workers, | |
) | |
# 学習ステップ数を計算する | |
if args.max_train_epochs is not None: | |
args.max_train_steps = args.max_train_epochs * math.ceil( | |
len(train_dataloader) / accelerator.num_processes / args.gradient_accumulation_steps | |
) | |
accelerator.print( | |
f"override steps. steps for {args.max_train_epochs} epochs is / 指定エポックまでのステップ数: {args.max_train_steps}" | |
) | |
# データセット側にも学習ステップを送信 | |
train_dataset_group.set_max_train_steps(args.max_train_steps) | |
# lr schedulerを用意する | |
lr_scheduler = train_util.get_scheduler_fix(args, optimizer, accelerator.num_processes) | |
# 実験的機能:勾配も含めたfp16/bf16学習を行う モデル全体をfp16/bf16にする | |
if args.full_fp16: | |
assert ( | |
args.mixed_precision == "fp16" | |
), "full_fp16 requires mixed precision='fp16' / full_fp16を使う場合はmixed_precision='fp16'を指定してください。" | |
accelerator.print("enable full fp16 training.") | |
unet.to(weight_dtype) | |
text_encoder1.to(weight_dtype) | |
text_encoder2.to(weight_dtype) | |
elif args.full_bf16: | |
assert ( | |
args.mixed_precision == "bf16" | |
), "full_bf16 requires mixed precision='bf16' / full_bf16を使う場合はmixed_precision='bf16'を指定してください。" | |
accelerator.print("enable full bf16 training.") | |
unet.to(weight_dtype) | |
text_encoder1.to(weight_dtype) | |
text_encoder2.to(weight_dtype) | |
# freeze last layer and final_layer_norm in te1 since we use the output of the penultimate layer | |
if train_text_encoder1: | |
text_encoder1.text_model.encoder.layers[-1].requires_grad_(False) | |
text_encoder1.text_model.final_layer_norm.requires_grad_(False) | |
if args.deepspeed: | |
ds_model = deepspeed_utils.prepare_deepspeed_model( | |
args, | |
unet=unet if train_unet else None, | |
text_encoder1=text_encoder1 if train_text_encoder1 else None, | |
text_encoder2=text_encoder2 if train_text_encoder2 else None, | |
) | |
# most of ZeRO stage uses optimizer partitioning, so we have to prepare optimizer and ds_model at the same time. # pull/1139#issuecomment-1986790007 | |
ds_model, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( | |
ds_model, optimizer, train_dataloader, lr_scheduler | |
) | |
training_models = [ds_model] | |
else: | |
# acceleratorがなんかよろしくやってくれるらしい | |
if train_unet: | |
unet = accelerator.prepare(unet) | |
if train_text_encoder1: | |
text_encoder1 = accelerator.prepare(text_encoder1) | |
if train_text_encoder2: | |
text_encoder2 = accelerator.prepare(text_encoder2) | |
optimizer, train_dataloader, lr_scheduler = accelerator.prepare(optimizer, train_dataloader, lr_scheduler) | |
# TextEncoderの出力をキャッシュするときにはCPUへ移動する | |
if args.cache_text_encoder_outputs: | |
# move Text Encoders for sampling images. Text Encoder doesn't work on CPU with fp16 | |
text_encoder1.to("cpu", dtype=torch.float32) | |
text_encoder2.to("cpu", dtype=torch.float32) | |
clean_memory_on_device(accelerator.device) | |
else: | |
# make sure Text Encoders are on GPU | |
text_encoder1.to(accelerator.device) | |
text_encoder2.to(accelerator.device) | |
# 実験的機能:勾配も含めたfp16学習を行う PyTorchにパッチを当ててfp16でのgrad scaleを有効にする | |
if args.full_fp16: | |
# During deepseed training, accelerate not handles fp16/bf16|mixed precision directly via scaler. Let deepspeed engine do. | |
# -> But we think it's ok to patch accelerator even if deepspeed is enabled. | |
train_util.patch_accelerator_for_fp16_training(accelerator) | |
# resumeする | |
train_util.resume_from_local_or_hf_if_specified(accelerator, args) | |
# epoch数を計算する | |
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) | |
num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) | |
if (args.save_n_epoch_ratio is not None) and (args.save_n_epoch_ratio > 0): | |
args.save_every_n_epochs = math.floor(num_train_epochs / args.save_n_epoch_ratio) or 1 | |
# 学習する | |
# total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps | |
accelerator.print("running training / 学習開始") | |
accelerator.print(f" num examples / サンプル数: {train_dataset_group.num_train_images}") | |
accelerator.print(f" num batches per epoch / 1epochのバッチ数: {len(train_dataloader)}") | |
accelerator.print(f" num epochs / epoch数: {num_train_epochs}") | |
accelerator.print( | |
f" batch size per device / バッチサイズ: {', '.join([str(d.batch_size) for d in train_dataset_group.datasets])}" | |
) | |
# accelerator.print( | |
# f" total train batch size (with parallel & distributed & accumulation) / 総バッチサイズ(並列学習、勾配合計含む): {total_batch_size}" | |
# ) | |
accelerator.print(f" gradient accumulation steps / 勾配を合計するステップ数 = {args.gradient_accumulation_steps}") | |
accelerator.print(f" total optimization steps / 学習ステップ数: {args.max_train_steps}") | |
progress_bar = tqdm(range(args.max_train_steps), smoothing=0, disable=not accelerator.is_local_main_process, desc="steps") | |
global_step = 0 | |
noise_scheduler = DDPMScheduler( | |
beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000, clip_sample=False | |
) | |
prepare_scheduler_for_custom_training(noise_scheduler, accelerator.device) | |
if args.zero_terminal_snr: | |
custom_train_functions.fix_noise_scheduler_betas_for_zero_terminal_snr(noise_scheduler) | |
if accelerator.is_main_process: | |
init_kwargs = {} | |
if args.wandb_run_name: | |
init_kwargs["wandb"] = {"name": args.wandb_run_name} | |
if args.log_tracker_config is not None: | |
init_kwargs = toml.load(args.log_tracker_config) | |
accelerator.init_trackers("finetuning" if args.log_tracker_name is None else args.log_tracker_name, init_kwargs=init_kwargs) | |
# For --sample_at_first | |
sdxl_train_util.sample_images( | |
accelerator, args, 0, global_step, accelerator.device, vae, [tokenizer1, tokenizer2], [text_encoder1, text_encoder2], unet | |
) | |
loss_recorder = train_util.LossRecorder() | |
for epoch in range(num_train_epochs): | |
accelerator.print(f"\nepoch {epoch+1}/{num_train_epochs}") | |
current_epoch.value = epoch + 1 | |
for m in training_models: | |
m.train() | |
for step, batch in enumerate(train_dataloader): | |
current_step.value = global_step | |
with accelerator.accumulate(*training_models): | |
if "latents" in batch and batch["latents"] is not None: | |
latents = batch["latents"].to(accelerator.device).to(dtype=weight_dtype) | |
else: | |
with torch.no_grad(): | |
# latentに変換 | |
latents = vae.encode(batch["images"].to(vae_dtype)).latent_dist.sample().to(weight_dtype) | |
# NaNが含まれていれば警告を表示し0に置き換える | |
if torch.any(torch.isnan(latents)): | |
accelerator.print("NaN found in latents, replacing with zeros") | |
latents = torch.nan_to_num(latents, 0, out=latents) | |
latents = latents * sdxl_model_util.VAE_SCALE_FACTOR | |
if "text_encoder_outputs1_list" not in batch or batch["text_encoder_outputs1_list"] is None: | |
input_ids1 = batch["input_ids"] | |
input_ids2 = batch["input_ids2"] | |
with torch.set_grad_enabled(args.train_text_encoder): | |
# Get the text embedding for conditioning | |
# TODO support weighted captions | |
# if args.weighted_captions: | |
# encoder_hidden_states = get_weighted_text_embeddings( | |
# tokenizer, | |
# text_encoder, | |
# batch["captions"], | |
# accelerator.device, | |
# args.max_token_length // 75 if args.max_token_length else 1, | |
# clip_skip=args.clip_skip, | |
# ) | |
# else: | |
input_ids1 = input_ids1.to(accelerator.device) | |
input_ids2 = input_ids2.to(accelerator.device) | |
# unwrap_model is fine for models not wrapped by accelerator | |
encoder_hidden_states1, encoder_hidden_states2, pool2 = train_util.get_hidden_states_sdxl( | |
args.max_token_length, | |
input_ids1, | |
input_ids2, | |
tokenizer1, | |
tokenizer2, | |
text_encoder1, | |
text_encoder2, | |
None if not args.full_fp16 else weight_dtype, | |
accelerator=accelerator, | |
) | |
else: | |
encoder_hidden_states1 = batch["text_encoder_outputs1_list"].to(accelerator.device).to(weight_dtype) | |
encoder_hidden_states2 = batch["text_encoder_outputs2_list"].to(accelerator.device).to(weight_dtype) | |
pool2 = batch["text_encoder_pool2_list"].to(accelerator.device).to(weight_dtype) | |
# # verify that the text encoder outputs are correct | |
# ehs1, ehs2, p2 = train_util.get_hidden_states_sdxl( | |
# args.max_token_length, | |
# batch["input_ids"].to(text_encoder1.device), | |
# batch["input_ids2"].to(text_encoder1.device), | |
# tokenizer1, | |
# tokenizer2, | |
# text_encoder1, | |
# text_encoder2, | |
# None if not args.full_fp16 else weight_dtype, | |
# ) | |
# b_size = encoder_hidden_states1.shape[0] | |
# assert ((encoder_hidden_states1.to("cpu") - ehs1.to(dtype=weight_dtype)).abs().max() > 1e-2).sum() <= b_size * 2 | |
# assert ((encoder_hidden_states2.to("cpu") - ehs2.to(dtype=weight_dtype)).abs().max() > 1e-2).sum() <= b_size * 2 | |
# assert ((pool2.to("cpu") - p2.to(dtype=weight_dtype)).abs().max() > 1e-2).sum() <= b_size * 2 | |
# logger.info("text encoder outputs verified") | |
# get size embeddings | |
orig_size = batch["original_sizes_hw"] | |
crop_size = batch["crop_top_lefts"] | |
target_size = batch["target_sizes_hw"] | |
embs = sdxl_train_util.get_size_embeddings(orig_size, crop_size, target_size, accelerator.device).to(weight_dtype) | |
# concat embeddings | |
vector_embedding = torch.cat([pool2, embs], dim=1).to(weight_dtype) | |
text_embedding = torch.cat([encoder_hidden_states1, encoder_hidden_states2], dim=2).to(weight_dtype) | |
# Sample noise, sample a random timestep for each image, and add noise to the latents, | |
# with noise offset and/or multires noise if specified | |
noise, noisy_latents, timesteps, huber_c = train_util.get_noise_noisy_latents_and_timesteps(args, noise_scheduler, latents) | |
noisy_latents = noisy_latents.to(weight_dtype) # TODO check why noisy_latents is not weight_dtype | |
# Predict the noise residual | |
with accelerator.autocast(): | |
noise_pred = unet(noisy_latents, timesteps, text_embedding, vector_embedding) | |
target = noise | |
if ( | |
args.min_snr_gamma | |
or args.scale_v_pred_loss_like_noise_pred | |
or args.v_pred_like_loss | |
or args.debiased_estimation_loss | |
or args.masked_loss | |
): | |
# do not mean over batch dimension for snr weight or scale v-pred loss | |
loss = train_util.conditional_loss(noise_pred.float(), target.float(), reduction="none", loss_type=args.loss_type, huber_c=huber_c) | |
if args.masked_loss: | |
loss = apply_masked_loss(loss, batch) | |
loss = loss.mean([1, 2, 3]) | |
if args.min_snr_gamma: | |
loss = apply_snr_weight(loss, timesteps, noise_scheduler, args.min_snr_gamma) | |
if args.scale_v_pred_loss_like_noise_pred: | |
loss = scale_v_prediction_loss_like_noise_prediction(loss, timesteps, noise_scheduler) | |
if args.v_pred_like_loss: | |
loss = add_v_prediction_like_loss(loss, timesteps, noise_scheduler, args.v_pred_like_loss) | |
if args.debiased_estimation_loss: | |
loss = apply_debiased_estimation(loss, timesteps, noise_scheduler) | |
loss = loss.mean() # mean over batch dimension | |
else: | |
loss = train_util.conditional_loss(noise_pred.float(), target.float(), reduction="mean", loss_type=args.loss_type, huber_c=huber_c) | |
accelerator.backward(loss) | |
if accelerator.sync_gradients and args.max_grad_norm != 0.0: | |
params_to_clip = [] | |
for m in training_models: | |
params_to_clip.extend(m.parameters()) | |
accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm) | |
optimizer.step() | |
lr_scheduler.step() | |
optimizer.zero_grad(set_to_none=True) | |
# Checks if the accelerator has performed an optimization step behind the scenes | |
if accelerator.sync_gradients: | |
progress_bar.update(1) | |
global_step += 1 | |
sdxl_train_util.sample_images( | |
accelerator, | |
args, | |
None, | |
global_step, | |
accelerator.device, | |
vae, | |
[tokenizer1, tokenizer2], | |
[text_encoder1, text_encoder2], | |
unet, | |
) | |
# 指定ステップごとにモデルを保存 | |
if args.save_every_n_steps is not None and global_step % args.save_every_n_steps == 0: | |
accelerator.wait_for_everyone() | |
if accelerator.is_main_process: | |
src_path = src_stable_diffusion_ckpt if save_stable_diffusion_format else src_diffusers_model_path | |
sdxl_train_util.save_sd_model_on_epoch_end_or_stepwise( | |
args, | |
False, | |
accelerator, | |
src_path, | |
save_stable_diffusion_format, | |
use_safetensors, | |
save_dtype, | |
epoch, | |
num_train_epochs, | |
global_step, | |
accelerator.unwrap_model(text_encoder1), | |
accelerator.unwrap_model(text_encoder2), | |
accelerator.unwrap_model(unet), | |
vae, | |
logit_scale, | |
ckpt_info, | |
) | |
current_loss = loss.detach().item() # 平均なのでbatch sizeは関係ないはず | |
if args.logging_dir is not None: | |
logs = {"loss": current_loss} | |
if block_lrs is None: | |
train_util.append_lr_to_logs(logs, lr_scheduler, args.optimizer_type, including_unet=train_unet) | |
else: | |
append_block_lr_to_logs(block_lrs, logs, lr_scheduler, args.optimizer_type) # U-Net is included in block_lrs | |
accelerator.log(logs, step=global_step) | |
loss_recorder.add(epoch=epoch, step=step, loss=current_loss) | |
avr_loss: float = loss_recorder.moving_average | |
logs = {"avr_loss": avr_loss} # , "lr": lr_scheduler.get_last_lr()[0]} | |
progress_bar.set_postfix(**logs) | |
if global_step >= args.max_train_steps: | |
break | |
if args.logging_dir is not None: | |
logs = {"loss/epoch": loss_recorder.moving_average} | |
accelerator.log(logs, step=epoch + 1) | |
accelerator.wait_for_everyone() | |
if args.save_every_n_epochs is not None: | |
if accelerator.is_main_process: | |
src_path = src_stable_diffusion_ckpt if save_stable_diffusion_format else src_diffusers_model_path | |
sdxl_train_util.save_sd_model_on_epoch_end_or_stepwise( | |
args, | |
True, | |
accelerator, | |
src_path, | |
save_stable_diffusion_format, | |
use_safetensors, | |
save_dtype, | |
epoch, | |
num_train_epochs, | |
global_step, | |
accelerator.unwrap_model(text_encoder1), | |
accelerator.unwrap_model(text_encoder2), | |
accelerator.unwrap_model(unet), | |
vae, | |
logit_scale, | |
ckpt_info, | |
) | |
sdxl_train_util.sample_images( | |
accelerator, | |
args, | |
epoch + 1, | |
global_step, | |
accelerator.device, | |
vae, | |
[tokenizer1, tokenizer2], | |
[text_encoder1, text_encoder2], | |
unet, | |
) | |
is_main_process = accelerator.is_main_process | |
# if is_main_process: | |
unet = accelerator.unwrap_model(unet) | |
text_encoder1 = accelerator.unwrap_model(text_encoder1) | |
text_encoder2 = accelerator.unwrap_model(text_encoder2) | |
accelerator.end_training() | |
if args.save_state or args.save_state_on_train_end: | |
train_util.save_state_on_train_end(args, accelerator) | |
del accelerator # この後メモリを使うのでこれは消す | |
if is_main_process: | |
src_path = src_stable_diffusion_ckpt if save_stable_diffusion_format else src_diffusers_model_path | |
sdxl_train_util.save_sd_model_on_train_end( | |
args, | |
src_path, | |
save_stable_diffusion_format, | |
use_safetensors, | |
save_dtype, | |
epoch, | |
global_step, | |
text_encoder1, | |
text_encoder2, | |
unet, | |
vae, | |
logit_scale, | |
ckpt_info, | |
) | |
logger.info("model saved.") | |
def setup_parser() -> argparse.ArgumentParser: | |
parser = argparse.ArgumentParser() | |
add_logging_arguments(parser) | |
train_util.add_sd_models_arguments(parser) | |
train_util.add_dataset_arguments(parser, True, True, True) | |
train_util.add_training_arguments(parser, False) | |
train_util.add_masked_loss_arguments(parser) | |
deepspeed_utils.add_deepspeed_arguments(parser) | |
train_util.add_sd_saving_arguments(parser) | |
train_util.add_optimizer_arguments(parser) | |
config_util.add_config_arguments(parser) | |
custom_train_functions.add_custom_train_arguments(parser) | |
sdxl_train_util.add_sdxl_training_arguments(parser) | |
parser.add_argument( | |
"--learning_rate_te1", | |
type=float, | |
default=None, | |
help="learning rate for text encoder 1 (ViT-L) / text encoder 1 (ViT-L)の学習率", | |
) | |
parser.add_argument( | |
"--learning_rate_te2", | |
type=float, | |
default=None, | |
help="learning rate for text encoder 2 (BiG-G) / text encoder 2 (BiG-G)の学習率", | |
) | |
parser.add_argument( | |
"--diffusers_xformers", action="store_true", help="use xformers by diffusers / Diffusersでxformersを使用する" | |
) | |
parser.add_argument("--train_text_encoder", action="store_true", help="train text encoder / text encoderも学習する") | |
parser.add_argument( | |
"--no_half_vae", | |
action="store_true", | |
help="do not use fp16/bf16 VAE in mixed precision (use float VAE) / mixed precisionでも fp16/bf16 VAEを使わずfloat VAEを使う", | |
) | |
parser.add_argument( | |
"--block_lr", | |
type=str, | |
default=None, | |
help=f"learning rates for each block of U-Net, comma-separated, {UNET_NUM_BLOCKS_FOR_BLOCK_LR} values / " | |
+ f"U-Netの各ブロックの学習率、カンマ区切り、{UNET_NUM_BLOCKS_FOR_BLOCK_LR}個の値", | |
) | |
return parser | |
if __name__ == "__main__": | |
parser = setup_parser() | |
args = parser.parse_args() | |
train_util.verify_command_line_training_args(args) | |
args = train_util.read_config_from_file(args, parser) | |
train(args) | |