diff --git a/CodeFormer/.gitattributes b/CodeFormer/.gitattributes deleted file mode 100644 index 453e9c0aa1644a4275f0bdd3150bc2494cb19ab7..0000000000000000000000000000000000000000 --- a/CodeFormer/.gitattributes +++ /dev/null @@ -1,31 +0,0 @@ -*.7z filter=lfs diff=lfs merge=lfs -text -*.arrow filter=lfs diff=lfs merge=lfs -text -*.bin filter=lfs diff=lfs merge=lfs -text -*.bz2 filter=lfs diff=lfs merge=lfs -text -*.ftz filter=lfs diff=lfs merge=lfs -text -*.gz filter=lfs diff=lfs merge=lfs -text -*.h5 filter=lfs diff=lfs merge=lfs -text -*.joblib filter=lfs diff=lfs merge=lfs -text -*.lfs.* filter=lfs diff=lfs merge=lfs -text -*.model filter=lfs diff=lfs merge=lfs -text -*.msgpack filter=lfs diff=lfs merge=lfs -text -*.npy filter=lfs diff=lfs merge=lfs -text -*.npz filter=lfs diff=lfs merge=lfs -text -*.onnx filter=lfs diff=lfs merge=lfs -text -*.ot filter=lfs diff=lfs merge=lfs -text -*.parquet filter=lfs diff=lfs merge=lfs -text -*.pickle filter=lfs diff=lfs merge=lfs -text -*.pkl filter=lfs diff=lfs merge=lfs -text -*.pb filter=lfs diff=lfs merge=lfs -text -*.pt filter=lfs diff=lfs merge=lfs -text -*.pth filter=lfs diff=lfs merge=lfs -text -*.rar filter=lfs diff=lfs merge=lfs -text -saved_model/**/* filter=lfs diff=lfs merge=lfs -text -*.tar.* filter=lfs diff=lfs merge=lfs -text -*.tflite filter=lfs diff=lfs merge=lfs -text -*.tgz filter=lfs diff=lfs merge=lfs -text -*.wasm filter=lfs diff=lfs merge=lfs -text -*.xz filter=lfs diff=lfs merge=lfs -text -*.zip filter=lfs diff=lfs merge=lfs -text -*.zst filter=lfs diff=lfs merge=lfs -text -*tfevents* filter=lfs diff=lfs merge=lfs -text \ No newline at end of file diff --git a/CodeFormer/01.png b/CodeFormer/01.png deleted file mode 100644 index f2a837cc702e897561cfba707b685dcf0d100a4a..0000000000000000000000000000000000000000 --- a/CodeFormer/01.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2828f119e044674f89da002ec3f4453e971e9f712a62d63c4f151d1f91e341ff -size 683546 diff --git a/CodeFormer/02.jpg b/CodeFormer/02.jpg deleted file mode 100644 index 71cc09afd0d8d89fffab931a1d385ae3c144a190..0000000000000000000000000000000000000000 --- a/CodeFormer/02.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:13fc7dcaece8d2f26f6895d6ff86a42c643d8c7621d75366a8b4d7467e23e8e2 -size 6769 diff --git a/CodeFormer/03.jpg b/CodeFormer/03.jpg deleted file mode 100644 index 684b4c8976c0b8c0f10ec315ff6759d29f8d9c29..0000000000000000000000000000000000000000 --- a/CodeFormer/03.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:757986993aabee5a0d3bde3d5cd6a0ef3026605a0189ac28ed689256c0b833b9 -size 15482 diff --git a/CodeFormer/04.jpg b/CodeFormer/04.jpg deleted file mode 100644 index 95d23bd1c6e3c0a8095a7725ceb2ee0aa3442017..0000000000000000000000000000000000000000 --- a/CodeFormer/04.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2f553ac88964d61edad7bdc65bb9bcecc7c828747a165630d214a5f6de3615d9 -size 365789 diff --git a/CodeFormer/05.jpg b/CodeFormer/05.jpg deleted file mode 100644 index ea7cd31c1d053986798d547c5634bc0e34a70d48..0000000000000000000000000000000000000000 --- a/CodeFormer/05.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0342b435bc7b00720788c316a3945fc4d559cc7fc043f698eba722861bc3bf9b -size 113474 diff --git a/CodeFormer/06.png b/CodeFormer/06.png deleted file mode 100644 index bace2e7c2a2bbb3a3f2f22c7182c59a26ee8dc55..0000000000000000000000000000000000000000 --- a/CodeFormer/06.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7c4637d11916672025d47073247ed61cbfe6537e42552cf8cb7525af0d6ab0a8 -size 172957 diff --git a/CodeFormer/CodeFormer/.gitignore b/CodeFormer/CodeFormer/.gitignore deleted file mode 100644 index 18b62a49768403d1a155456e487b22491d1554cb..0000000000000000000000000000000000000000 --- a/CodeFormer/CodeFormer/.gitignore +++ /dev/null @@ -1,129 +0,0 @@ -.vscode - -# ignored files -version.py - -# ignored files with suffix -*.html -# *.png -# *.jpeg -# *.jpg -*.pt -*.gif -*.pth -*.dat -*.zip - -# template - -# Byte-compiled / optimized / DLL files -__pycache__/ -*.py[cod] -*$py.class - -# C extensions -*.so - -# Distribution / packaging -.Python -build/ -develop-eggs/ -dist/ -downloads/ -eggs/ -.eggs/ -lib/ -lib64/ -parts/ -sdist/ -var/ -wheels/ -*.egg-info/ -.installed.cfg -*.egg -MANIFEST - -# PyInstaller -# Usually these files are written by a python script from a template -# before PyInstaller builds the exe, so as to inject date/other infos into it. -*.manifest -*.spec - -# Installer logs -pip-log.txt -pip-delete-this-directory.txt - -# Unit test / coverage reports -htmlcov/ -.tox/ -.coverage -.coverage.* -.cache -nosetests.xml -coverage.xml -*.cover -.hypothesis/ -.pytest_cache/ - -# Translations -*.mo -*.pot - -# Django stuff: -*.log -local_settings.py -db.sqlite3 - -# Flask stuff: -instance/ -.webassets-cache - -# Scrapy stuff: -.scrapy - -# Sphinx documentation -docs/_build/ - -# PyBuilder -target/ - -# Jupyter Notebook -.ipynb_checkpoints - -# pyenv -.python-version - -# celery beat schedule file -celerybeat-schedule - -# SageMath parsed files -*.sage.py - -# Environments -.env -.venv -env/ -venv/ -ENV/ -env.bak/ -venv.bak/ - -# Spyder project settings -.spyderproject -.spyproject - -# Rope project settings -.ropeproject - -# mkdocs documentation -/site - -# mypy -.mypy_cache/ - -# project -results/ -dlib/ -*.pth -*_old* - diff --git a/CodeFormer/CodeFormer/README.md b/CodeFormer/CodeFormer/README.md deleted file mode 100644 index 65810cdf4ce36d8ba152de80df00fa4c8802ee81..0000000000000000000000000000000000000000 --- a/CodeFormer/CodeFormer/README.md +++ /dev/null @@ -1,123 +0,0 @@ -

- -

- -## Towards Robust Blind Face Restoration with Codebook Lookup Transformer - -[Paper](https://arxiv.org/abs/2206.11253) | [Project Page](https://shangchenzhou.com/projects/CodeFormer/) | [Video](https://youtu.be/d3VDpkXlueI) - - -google colab logo [![Replicate](https://img.shields.io/badge/Demo-%F0%9F%9A%80%20Replicate-blue)](https://replicate.com/sczhou/codeformer) ![visitors](https://visitor-badge.glitch.me/badge?page_id=sczhou/CodeFormer) - -[Shangchen Zhou](https://shangchenzhou.com/), [Kelvin C.K. Chan](https://ckkelvinchan.github.io/), [Chongyi Li](https://li-chongyi.github.io/), [Chen Change Loy](https://www.mmlab-ntu.com/person/ccloy/) - -S-Lab, Nanyang Technological University - - - - -:star: If CodeFormer is helpful to your images or projects, please help star this repo. Thanks! :hugs: - -### Update - -- **2022.09.09**: Integrated to :rocket: [Replicate](https://replicate.com/). Try out online demo! [![Replicate](https://img.shields.io/badge/Demo-%F0%9F%9A%80%20Replicate-blue)](https://replicate.com/sczhou/codeformer) -- **2022.09.04**: Add face upsampling `--face_upsample` for high-resolution AI-created face enhancement. -- **2022.08.23**: Some modifications on face detection and fusion for better AI-created face enhancement. -- **2022.08.07**: Integrate [Real-ESRGAN](https://github.com/xinntao/Real-ESRGAN) to support background image enhancement. -- **2022.07.29**: Integrate new face detectors of `['RetinaFace'(default), 'YOLOv5']`. -- **2022.07.17**: Add Colab demo of CodeFormer. google colab logo -- **2022.07.16**: Release inference code for face restoration. :blush: -- **2022.06.21**: This repo is created. - -### TODO -- [ ] Add checkpoint for face inpainting -- [ ] Add training code and config files -- [x] ~~Add background image enhancement~~ - -#### Face Restoration - - - - -#### Face Color Enhancement and Restoration - - - -#### Face Inpainting - - - - - -### Dependencies and Installation - -- Pytorch >= 1.7.1 -- CUDA >= 10.1 -- Other required packages in `requirements.txt` -``` -# git clone this repository -git clone https://github.com/sczhou/CodeFormer -cd CodeFormer - -# create new anaconda env -conda create -n codeformer python=3.8 -y -conda activate codeformer - -# install python dependencies -pip3 install -r requirements.txt -python basicsr/setup.py develop -``` - - -### Quick Inference - -##### Download Pre-trained Models: -Download the facelib pretrained models from [[Google Drive](https://drive.google.com/drive/folders/1b_3qwrzY_kTQh0-SnBoGBgOrJ_PLZSKm?usp=sharing) | [OneDrive](https://entuedu-my.sharepoint.com/:f:/g/personal/s200094_e_ntu_edu_sg/EvDxR7FcAbZMp_MA9ouq7aQB8XTppMb3-T0uGZ_2anI2mg?e=DXsJFo)] to the `weights/facelib` folder. You can manually download the pretrained models OR download by runing the following command. -``` -python scripts/download_pretrained_models.py facelib -``` - -Download the CodeFormer pretrained models from [[Google Drive](https://drive.google.com/drive/folders/1CNNByjHDFt0b95q54yMVp6Ifo5iuU6QS?usp=sharing) | [OneDrive](https://entuedu-my.sharepoint.com/:f:/g/personal/s200094_e_ntu_edu_sg/EoKFj4wo8cdIn2-TY2IV6CYBhZ0pIG4kUOeHdPR_A5nlbg?e=AO8UN9)] to the `weights/CodeFormer` folder. You can manually download the pretrained models OR download by runing the following command. -``` -python scripts/download_pretrained_models.py CodeFormer -``` - -##### Prepare Testing Data: -You can put the testing images in the `inputs/TestWhole` folder. If you would like to test on cropped and aligned faces, you can put them in the `inputs/cropped_faces` folder. - - -##### Testing on Face Restoration: -``` -# For cropped and aligned faces -python inference_codeformer.py --w 0.5 --has_aligned --test_path [input folder] - -# For the whole images -# Add '--bg_upsampler realesrgan' to enhance the background regions with Real-ESRGAN -# Add '--face_upsample' to further upsample restorated face with Real-ESRGAN -python inference_codeformer.py --w 0.7 --test_path [input folder] -``` - -NOTE that *w* is in [0, 1]. Generally, smaller *w* tends to produce a higher-quality result, while larger *w* yields a higher-fidelity result. - -The results will be saved in the `results` folder. - -### Citation -If our work is useful for your research, please consider citing: - - @article{zhou2022codeformer, - author = {Zhou, Shangchen and Chan, Kelvin C.K. and Li, Chongyi and Loy, Chen Change}, - title = {Towards Robust Blind Face Restoration with Codebook Lookup TransFormer}, - journal = {arXiv preprint arXiv:2206.11253}, - year = {2022} - } - -### License - -Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. - -### Acknowledgement - -This project is based on [BasicSR](https://github.com/XPixelGroup/BasicSR). We also borrow some codes from [Unleashing Transformers](https://github.com/samb-t/unleashing-transformers), [YOLOv5-face](https://github.com/deepcam-cn/yolov5-face), and [FaceXLib](https://github.com/xinntao/facexlib). Thanks for their awesome works. - -### Contact -If you have any question, please feel free to reach me out at `shangchenzhou@gmail.com`. \ No newline at end of file diff --git a/CodeFormer/CodeFormer/assets/CodeFormer_logo.png b/CodeFormer/CodeFormer/assets/CodeFormer_logo.png deleted file mode 100644 index 4cce53bd4945d43aef405f40279c184511a67f07..0000000000000000000000000000000000000000 --- a/CodeFormer/CodeFormer/assets/CodeFormer_logo.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9f47e6d67d4aabffe5f3794d9e46c301b953f59c3328dd7dcafd94ccb615d29c -size 5259 diff --git a/CodeFormer/CodeFormer/assets/color_enhancement_result1.png b/CodeFormer/CodeFormer/assets/color_enhancement_result1.png deleted file mode 100644 index 9ffb42b76445130cad0f67754a0e41cdfe40f689..0000000000000000000000000000000000000000 --- a/CodeFormer/CodeFormer/assets/color_enhancement_result1.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0e5fd836661f974b8f691d2a779d15b0f1419ffc6be1e57ce864b9c3562754a2 -size 684585 diff --git a/CodeFormer/CodeFormer/assets/color_enhancement_result2.png b/CodeFormer/CodeFormer/assets/color_enhancement_result2.png deleted file mode 100644 index 4fe33ea5edab942e3b40f1540ee334ce45a6d537..0000000000000000000000000000000000000000 --- a/CodeFormer/CodeFormer/assets/color_enhancement_result2.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7b7d0166964c1752083ffc3a8bf247b70e8509cda66ca75c61f70f6800a268c8 -size 515164 diff --git a/CodeFormer/CodeFormer/assets/inpainting_result1.png b/CodeFormer/CodeFormer/assets/inpainting_result1.png deleted file mode 100644 index b07b2b61a5d275ccdd6524f0c6150f365783823a..0000000000000000000000000000000000000000 --- a/CodeFormer/CodeFormer/assets/inpainting_result1.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e3fd793921f1916e442b36664b21c1fa7cbac7d8206990b44c682eca891d0618 -size 687066 diff --git a/CodeFormer/CodeFormer/assets/inpainting_result2.png b/CodeFormer/CodeFormer/assets/inpainting_result2.png deleted file mode 100644 index 6ffdb8f039f6b4dd6f72afcaf20265ea636e8f5b..0000000000000000000000000000000000000000 --- a/CodeFormer/CodeFormer/assets/inpainting_result2.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7354e20981cfa84fd4b63ddb9b312ceedabdedc47da3e0dd2967096af6440534 -size 766951 diff --git a/CodeFormer/CodeFormer/assets/network.jpg b/CodeFormer/CodeFormer/assets/network.jpg deleted file mode 100644 index 3e9f35c634f6de930c717808344c67d6d9894afe..0000000000000000000000000000000000000000 --- a/CodeFormer/CodeFormer/assets/network.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:81903e45d27c7078a04dec0c5666be8c54c2c4313a65715240dc5c8639b22d19 -size 238250 diff --git a/CodeFormer/CodeFormer/assets/restoration_result1.png b/CodeFormer/CodeFormer/assets/restoration_result1.png deleted file mode 100644 index a6b9beeea52f378f5b9c05c2e3ac73c0c4ba1c49..0000000000000000000000000000000000000000 --- a/CodeFormer/CodeFormer/assets/restoration_result1.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4ee9b266878328066d33af365f2434633988d69ccabb34a98997d19944e90e4a -size 830702 diff --git a/CodeFormer/CodeFormer/assets/restoration_result2.png b/CodeFormer/CodeFormer/assets/restoration_result2.png deleted file mode 100644 index 6e34f1df2fb92426beccc4813b71e69a2f8c9e79..0000000000000000000000000000000000000000 --- a/CodeFormer/CodeFormer/assets/restoration_result2.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:716b3ba5fc642e0bef4648093ac346fd90878bcf6fbeb6d1f685ce682557b3c7 -size 824234 diff --git a/CodeFormer/CodeFormer/assets/restoration_result3.png b/CodeFormer/CodeFormer/assets/restoration_result3.png deleted file mode 100644 index a25619facae4c9891758d3a513676c4c4b9b2eca..0000000000000000000000000000000000000000 --- a/CodeFormer/CodeFormer/assets/restoration_result3.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:05ff467e78b5412870d825fb17eec8ed4230d8e2bb546c554bf93eb8a06a6a27 -size 752469 diff --git a/CodeFormer/CodeFormer/assets/restoration_result4.png b/CodeFormer/CodeFormer/assets/restoration_result4.png deleted file mode 100644 index 02f7e710fe9a90cf5edebd8cf5127feca06ae196..0000000000000000000000000000000000000000 --- a/CodeFormer/CodeFormer/assets/restoration_result4.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4fd54cfbb531e4be7a1476fd4d238aea20c05522e7c098a892b47191cc4ce4cb -size 697265 diff --git a/CodeFormer/CodeFormer/basicsr/VERSION b/CodeFormer/CodeFormer/basicsr/VERSION deleted file mode 100644 index 1892b926767774e9ba91f1e584fa71b4c56abb69..0000000000000000000000000000000000000000 --- a/CodeFormer/CodeFormer/basicsr/VERSION +++ /dev/null @@ -1 +0,0 @@ -1.3.2 diff --git a/CodeFormer/CodeFormer/basicsr/__init__.py b/CodeFormer/CodeFormer/basicsr/__init__.py deleted file mode 100644 index c7ffcccd7fc0f33b59d99d73d0436d60e561b0fc..0000000000000000000000000000000000000000 --- a/CodeFormer/CodeFormer/basicsr/__init__.py +++ /dev/null @@ -1,11 +0,0 @@ -# https://github.com/xinntao/BasicSR -# flake8: noqa -from .archs import * -from .data import * -from .losses import * -from .metrics import * -from .models import * -from .ops import * -from .train import * -from .utils import * -from .version import __gitsha__, __version__ diff --git a/CodeFormer/CodeFormer/basicsr/__pycache__/__init__.cpython-310.pyc b/CodeFormer/CodeFormer/basicsr/__pycache__/__init__.cpython-310.pyc deleted file mode 100644 index 3d5fa279a549e73007bc3117a9764ffb2a0ce689..0000000000000000000000000000000000000000 Binary files a/CodeFormer/CodeFormer/basicsr/__pycache__/__init__.cpython-310.pyc and /dev/null differ diff --git a/CodeFormer/CodeFormer/basicsr/__pycache__/train.cpython-310.pyc b/CodeFormer/CodeFormer/basicsr/__pycache__/train.cpython-310.pyc deleted file mode 100644 index 62905e9f910de94695999c19d6afea363c973d56..0000000000000000000000000000000000000000 Binary files a/CodeFormer/CodeFormer/basicsr/__pycache__/train.cpython-310.pyc and /dev/null differ diff --git a/CodeFormer/CodeFormer/basicsr/__pycache__/version.cpython-310.pyc b/CodeFormer/CodeFormer/basicsr/__pycache__/version.cpython-310.pyc deleted file mode 100644 index 1c94ae66b61252df70b332bce092c736f3883474..0000000000000000000000000000000000000000 Binary files a/CodeFormer/CodeFormer/basicsr/__pycache__/version.cpython-310.pyc and /dev/null differ diff --git a/CodeFormer/CodeFormer/basicsr/archs/__init__.py b/CodeFormer/CodeFormer/basicsr/archs/__init__.py deleted file mode 100644 index cfb1e4d7bb221c429082bd389d9140e5b1cc07b0..0000000000000000000000000000000000000000 --- a/CodeFormer/CodeFormer/basicsr/archs/__init__.py +++ /dev/null @@ -1,25 +0,0 @@ -import importlib -from copy import deepcopy -from os import path as osp - -from basicsr.utils import get_root_logger, scandir -from basicsr.utils.registry import ARCH_REGISTRY - -__all__ = ['build_network'] - -# automatically scan and import arch modules for registry -# scan all the files under the 'archs' folder and collect files ending with -# '_arch.py' -arch_folder = osp.dirname(osp.abspath(__file__)) -arch_filenames = [osp.splitext(osp.basename(v))[0] for v in scandir(arch_folder) if v.endswith('_arch.py')] -# import all the arch modules -_arch_modules = [importlib.import_module(f'basicsr.archs.{file_name}') for file_name in arch_filenames] - - -def build_network(opt): - opt = deepcopy(opt) - network_type = opt.pop('type') - net = ARCH_REGISTRY.get(network_type)(**opt) - logger = get_root_logger() - logger.info(f'Network [{net.__class__.__name__}] is created.') - return net diff --git a/CodeFormer/CodeFormer/basicsr/archs/__pycache__/__init__.cpython-310.pyc b/CodeFormer/CodeFormer/basicsr/archs/__pycache__/__init__.cpython-310.pyc deleted file mode 100644 index 6b843e319a9be31e7e1365316034c99f53f3c5c3..0000000000000000000000000000000000000000 Binary files a/CodeFormer/CodeFormer/basicsr/archs/__pycache__/__init__.cpython-310.pyc and /dev/null differ diff --git a/CodeFormer/CodeFormer/basicsr/archs/__pycache__/arcface_arch.cpython-310.pyc b/CodeFormer/CodeFormer/basicsr/archs/__pycache__/arcface_arch.cpython-310.pyc deleted file mode 100644 index 0d09e52285fbc4606d86097934a9f16c12999f23..0000000000000000000000000000000000000000 Binary files a/CodeFormer/CodeFormer/basicsr/archs/__pycache__/arcface_arch.cpython-310.pyc and /dev/null differ diff --git a/CodeFormer/CodeFormer/basicsr/archs/__pycache__/arch_util.cpython-310.pyc b/CodeFormer/CodeFormer/basicsr/archs/__pycache__/arch_util.cpython-310.pyc deleted file mode 100644 index 0cfd49f2ca069e34581b93924277137ac58a1863..0000000000000000000000000000000000000000 Binary files a/CodeFormer/CodeFormer/basicsr/archs/__pycache__/arch_util.cpython-310.pyc and /dev/null differ diff --git a/CodeFormer/CodeFormer/basicsr/archs/__pycache__/codeformer_arch.cpython-310.pyc b/CodeFormer/CodeFormer/basicsr/archs/__pycache__/codeformer_arch.cpython-310.pyc deleted file mode 100644 index 183ffda4b59d9b4b6cdef69e56a6e15724d56e50..0000000000000000000000000000000000000000 Binary files a/CodeFormer/CodeFormer/basicsr/archs/__pycache__/codeformer_arch.cpython-310.pyc and /dev/null differ diff --git a/CodeFormer/CodeFormer/basicsr/archs/__pycache__/rrdbnet_arch.cpython-310.pyc b/CodeFormer/CodeFormer/basicsr/archs/__pycache__/rrdbnet_arch.cpython-310.pyc deleted file mode 100644 index 86769689ad9c900e9ddf50a1d5a2810ddb1412d7..0000000000000000000000000000000000000000 Binary files a/CodeFormer/CodeFormer/basicsr/archs/__pycache__/rrdbnet_arch.cpython-310.pyc and /dev/null differ diff --git a/CodeFormer/CodeFormer/basicsr/archs/__pycache__/vgg_arch.cpython-310.pyc b/CodeFormer/CodeFormer/basicsr/archs/__pycache__/vgg_arch.cpython-310.pyc deleted file mode 100644 index db927908aa0aafb180041d4d5dd5550e27f582a7..0000000000000000000000000000000000000000 Binary files a/CodeFormer/CodeFormer/basicsr/archs/__pycache__/vgg_arch.cpython-310.pyc and /dev/null differ diff --git a/CodeFormer/CodeFormer/basicsr/archs/__pycache__/vqgan_arch.cpython-310.pyc b/CodeFormer/CodeFormer/basicsr/archs/__pycache__/vqgan_arch.cpython-310.pyc deleted file mode 100644 index 1a15758a461cb8f7da2782a393f142d8ba636aa9..0000000000000000000000000000000000000000 Binary files a/CodeFormer/CodeFormer/basicsr/archs/__pycache__/vqgan_arch.cpython-310.pyc and /dev/null differ diff --git a/CodeFormer/CodeFormer/basicsr/archs/arcface_arch.py b/CodeFormer/CodeFormer/basicsr/archs/arcface_arch.py deleted file mode 100644 index fe5afb7bd2b359e0c2b7efdf628ab10b63964d87..0000000000000000000000000000000000000000 --- a/CodeFormer/CodeFormer/basicsr/archs/arcface_arch.py +++ /dev/null @@ -1,245 +0,0 @@ -import torch.nn as nn -from basicsr.utils.registry import ARCH_REGISTRY - - -def conv3x3(inplanes, outplanes, stride=1): - """A simple wrapper for 3x3 convolution with padding. - - Args: - inplanes (int): Channel number of inputs. - outplanes (int): Channel number of outputs. - stride (int): Stride in convolution. Default: 1. - """ - return nn.Conv2d(inplanes, outplanes, kernel_size=3, stride=stride, padding=1, bias=False) - - -class BasicBlock(nn.Module): - """Basic residual block used in the ResNetArcFace architecture. - - Args: - inplanes (int): Channel number of inputs. - planes (int): Channel number of outputs. - stride (int): Stride in convolution. Default: 1. - downsample (nn.Module): The downsample module. Default: None. - """ - expansion = 1 # output channel expansion ratio - - def __init__(self, inplanes, planes, stride=1, downsample=None): - super(BasicBlock, self).__init__() - self.conv1 = conv3x3(inplanes, planes, stride) - self.bn1 = nn.BatchNorm2d(planes) - self.relu = nn.ReLU(inplace=True) - self.conv2 = conv3x3(planes, planes) - self.bn2 = nn.BatchNorm2d(planes) - self.downsample = downsample - self.stride = stride - - def forward(self, x): - residual = x - - out = self.conv1(x) - out = self.bn1(out) - out = self.relu(out) - - out = self.conv2(out) - out = self.bn2(out) - - if self.downsample is not None: - residual = self.downsample(x) - - out += residual - out = self.relu(out) - - return out - - -class IRBlock(nn.Module): - """Improved residual block (IR Block) used in the ResNetArcFace architecture. - - Args: - inplanes (int): Channel number of inputs. - planes (int): Channel number of outputs. - stride (int): Stride in convolution. Default: 1. - downsample (nn.Module): The downsample module. Default: None. - use_se (bool): Whether use the SEBlock (squeeze and excitation block). Default: True. - """ - expansion = 1 # output channel expansion ratio - - def __init__(self, inplanes, planes, stride=1, downsample=None, use_se=True): - super(IRBlock, self).__init__() - self.bn0 = nn.BatchNorm2d(inplanes) - self.conv1 = conv3x3(inplanes, inplanes) - self.bn1 = nn.BatchNorm2d(inplanes) - self.prelu = nn.PReLU() - self.conv2 = conv3x3(inplanes, planes, stride) - self.bn2 = nn.BatchNorm2d(planes) - self.downsample = downsample - self.stride = stride - self.use_se = use_se - if self.use_se: - self.se = SEBlock(planes) - - def forward(self, x): - residual = x - out = self.bn0(x) - out = self.conv1(out) - out = self.bn1(out) - out = self.prelu(out) - - out = self.conv2(out) - out = self.bn2(out) - if self.use_se: - out = self.se(out) - - if self.downsample is not None: - residual = self.downsample(x) - - out += residual - out = self.prelu(out) - - return out - - -class Bottleneck(nn.Module): - """Bottleneck block used in the ResNetArcFace architecture. - - Args: - inplanes (int): Channel number of inputs. - planes (int): Channel number of outputs. - stride (int): Stride in convolution. Default: 1. - downsample (nn.Module): The downsample module. Default: None. - """ - expansion = 4 # output channel expansion ratio - - def __init__(self, inplanes, planes, stride=1, downsample=None): - super(Bottleneck, self).__init__() - self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False) - self.bn1 = nn.BatchNorm2d(planes) - self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) - self.bn2 = nn.BatchNorm2d(planes) - self.conv3 = nn.Conv2d(planes, planes * self.expansion, kernel_size=1, bias=False) - self.bn3 = nn.BatchNorm2d(planes * self.expansion) - self.relu = nn.ReLU(inplace=True) - self.downsample = downsample - self.stride = stride - - def forward(self, x): - residual = x - - out = self.conv1(x) - out = self.bn1(out) - out = self.relu(out) - - out = self.conv2(out) - out = self.bn2(out) - out = self.relu(out) - - out = self.conv3(out) - out = self.bn3(out) - - if self.downsample is not None: - residual = self.downsample(x) - - out += residual - out = self.relu(out) - - return out - - -class SEBlock(nn.Module): - """The squeeze-and-excitation block (SEBlock) used in the IRBlock. - - Args: - channel (int): Channel number of inputs. - reduction (int): Channel reduction ration. Default: 16. - """ - - def __init__(self, channel, reduction=16): - super(SEBlock, self).__init__() - self.avg_pool = nn.AdaptiveAvgPool2d(1) # pool to 1x1 without spatial information - self.fc = nn.Sequential( - nn.Linear(channel, channel // reduction), nn.PReLU(), nn.Linear(channel // reduction, channel), - nn.Sigmoid()) - - def forward(self, x): - b, c, _, _ = x.size() - y = self.avg_pool(x).view(b, c) - y = self.fc(y).view(b, c, 1, 1) - return x * y - - -@ARCH_REGISTRY.register() -class ResNetArcFace(nn.Module): - """ArcFace with ResNet architectures. - - Ref: ArcFace: Additive Angular Margin Loss for Deep Face Recognition. - - Args: - block (str): Block used in the ArcFace architecture. - layers (tuple(int)): Block numbers in each layer. - use_se (bool): Whether use the SEBlock (squeeze and excitation block). Default: True. - """ - - def __init__(self, block, layers, use_se=True): - if block == 'IRBlock': - block = IRBlock - self.inplanes = 64 - self.use_se = use_se - super(ResNetArcFace, self).__init__() - - self.conv1 = nn.Conv2d(1, 64, kernel_size=3, padding=1, bias=False) - self.bn1 = nn.BatchNorm2d(64) - self.prelu = nn.PReLU() - self.maxpool = nn.MaxPool2d(kernel_size=2, stride=2) - self.layer1 = self._make_layer(block, 64, layers[0]) - self.layer2 = self._make_layer(block, 128, layers[1], stride=2) - self.layer3 = self._make_layer(block, 256, layers[2], stride=2) - self.layer4 = self._make_layer(block, 512, layers[3], stride=2) - self.bn4 = nn.BatchNorm2d(512) - self.dropout = nn.Dropout() - self.fc5 = nn.Linear(512 * 8 * 8, 512) - self.bn5 = nn.BatchNorm1d(512) - - # initialization - for m in self.modules(): - if isinstance(m, nn.Conv2d): - nn.init.xavier_normal_(m.weight) - elif isinstance(m, nn.BatchNorm2d) or isinstance(m, nn.BatchNorm1d): - nn.init.constant_(m.weight, 1) - nn.init.constant_(m.bias, 0) - elif isinstance(m, nn.Linear): - nn.init.xavier_normal_(m.weight) - nn.init.constant_(m.bias, 0) - - def _make_layer(self, block, planes, num_blocks, stride=1): - downsample = None - if stride != 1 or self.inplanes != planes * block.expansion: - downsample = nn.Sequential( - nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False), - nn.BatchNorm2d(planes * block.expansion), - ) - layers = [] - layers.append(block(self.inplanes, planes, stride, downsample, use_se=self.use_se)) - self.inplanes = planes - for _ in range(1, num_blocks): - layers.append(block(self.inplanes, planes, use_se=self.use_se)) - - return nn.Sequential(*layers) - - def forward(self, x): - x = self.conv1(x) - x = self.bn1(x) - x = self.prelu(x) - x = self.maxpool(x) - - x = self.layer1(x) - x = self.layer2(x) - x = self.layer3(x) - x = self.layer4(x) - x = self.bn4(x) - x = self.dropout(x) - x = x.view(x.size(0), -1) - x = self.fc5(x) - x = self.bn5(x) - - return x \ No newline at end of file diff --git a/CodeFormer/CodeFormer/basicsr/archs/arch_util.py b/CodeFormer/CodeFormer/basicsr/archs/arch_util.py deleted file mode 100644 index bad45ab34e901c47fb539152fca714a3795b0de2..0000000000000000000000000000000000000000 --- a/CodeFormer/CodeFormer/basicsr/archs/arch_util.py +++ /dev/null @@ -1,318 +0,0 @@ -import collections.abc -import math -import torch -import torchvision -import warnings -from distutils.version import LooseVersion -from itertools import repeat -from torch import nn as nn -from torch.nn import functional as F -from torch.nn import init as init -from torch.nn.modules.batchnorm import _BatchNorm - -from basicsr.ops.dcn import ModulatedDeformConvPack, modulated_deform_conv -from basicsr.utils import get_root_logger - - -@torch.no_grad() -def default_init_weights(module_list, scale=1, bias_fill=0, **kwargs): - """Initialize network weights. - - Args: - module_list (list[nn.Module] | nn.Module): Modules to be initialized. - scale (float): Scale initialized weights, especially for residual - blocks. Default: 1. - bias_fill (float): The value to fill bias. Default: 0 - kwargs (dict): Other arguments for initialization function. - """ - if not isinstance(module_list, list): - module_list = [module_list] - for module in module_list: - for m in module.modules(): - if isinstance(m, nn.Conv2d): - init.kaiming_normal_(m.weight, **kwargs) - m.weight.data *= scale - if m.bias is not None: - m.bias.data.fill_(bias_fill) - elif isinstance(m, nn.Linear): - init.kaiming_normal_(m.weight, **kwargs) - m.weight.data *= scale - if m.bias is not None: - m.bias.data.fill_(bias_fill) - elif isinstance(m, _BatchNorm): - init.constant_(m.weight, 1) - if m.bias is not None: - m.bias.data.fill_(bias_fill) - - -def make_layer(basic_block, num_basic_block, **kwarg): - """Make layers by stacking the same blocks. - - Args: - basic_block (nn.module): nn.module class for basic block. - num_basic_block (int): number of blocks. - - Returns: - nn.Sequential: Stacked blocks in nn.Sequential. - """ - layers = [] - for _ in range(num_basic_block): - layers.append(basic_block(**kwarg)) - return nn.Sequential(*layers) - - -class ResidualBlockNoBN(nn.Module): - """Residual block without BN. - - It has a style of: - ---Conv-ReLU-Conv-+- - |________________| - - Args: - num_feat (int): Channel number of intermediate features. - Default: 64. - res_scale (float): Residual scale. Default: 1. - pytorch_init (bool): If set to True, use pytorch default init, - otherwise, use default_init_weights. Default: False. - """ - - def __init__(self, num_feat=64, res_scale=1, pytorch_init=False): - super(ResidualBlockNoBN, self).__init__() - self.res_scale = res_scale - self.conv1 = nn.Conv2d(num_feat, num_feat, 3, 1, 1, bias=True) - self.conv2 = nn.Conv2d(num_feat, num_feat, 3, 1, 1, bias=True) - self.relu = nn.ReLU(inplace=True) - - if not pytorch_init: - default_init_weights([self.conv1, self.conv2], 0.1) - - def forward(self, x): - identity = x - out = self.conv2(self.relu(self.conv1(x))) - return identity + out * self.res_scale - - -class Upsample(nn.Sequential): - """Upsample module. - - Args: - scale (int): Scale factor. Supported scales: 2^n and 3. - num_feat (int): Channel number of intermediate features. - """ - - def __init__(self, scale, num_feat): - m = [] - if (scale & (scale - 1)) == 0: # scale = 2^n - for _ in range(int(math.log(scale, 2))): - m.append(nn.Conv2d(num_feat, 4 * num_feat, 3, 1, 1)) - m.append(nn.PixelShuffle(2)) - elif scale == 3: - m.append(nn.Conv2d(num_feat, 9 * num_feat, 3, 1, 1)) - m.append(nn.PixelShuffle(3)) - else: - raise ValueError(f'scale {scale} is not supported. Supported scales: 2^n and 3.') - super(Upsample, self).__init__(*m) - - -def flow_warp(x, flow, interp_mode='bilinear', padding_mode='zeros', align_corners=True): - """Warp an image or feature map with optical flow. - - Args: - x (Tensor): Tensor with size (n, c, h, w). - flow (Tensor): Tensor with size (n, h, w, 2), normal value. - interp_mode (str): 'nearest' or 'bilinear'. Default: 'bilinear'. - padding_mode (str): 'zeros' or 'border' or 'reflection'. - Default: 'zeros'. - align_corners (bool): Before pytorch 1.3, the default value is - align_corners=True. After pytorch 1.3, the default value is - align_corners=False. Here, we use the True as default. - - Returns: - Tensor: Warped image or feature map. - """ - assert x.size()[-2:] == flow.size()[1:3] - _, _, h, w = x.size() - # create mesh grid - grid_y, grid_x = torch.meshgrid(torch.arange(0, h).type_as(x), torch.arange(0, w).type_as(x)) - grid = torch.stack((grid_x, grid_y), 2).float() # W(x), H(y), 2 - grid.requires_grad = False - - vgrid = grid + flow - # scale grid to [-1,1] - vgrid_x = 2.0 * vgrid[:, :, :, 0] / max(w - 1, 1) - 1.0 - vgrid_y = 2.0 * vgrid[:, :, :, 1] / max(h - 1, 1) - 1.0 - vgrid_scaled = torch.stack((vgrid_x, vgrid_y), dim=3) - output = F.grid_sample(x, vgrid_scaled, mode=interp_mode, padding_mode=padding_mode, align_corners=align_corners) - - # TODO, what if align_corners=False - return output - - -def resize_flow(flow, size_type, sizes, interp_mode='bilinear', align_corners=False): - """Resize a flow according to ratio or shape. - - Args: - flow (Tensor): Precomputed flow. shape [N, 2, H, W]. - size_type (str): 'ratio' or 'shape'. - sizes (list[int | float]): the ratio for resizing or the final output - shape. - 1) The order of ratio should be [ratio_h, ratio_w]. For - downsampling, the ratio should be smaller than 1.0 (i.e., ratio - < 1.0). For upsampling, the ratio should be larger than 1.0 (i.e., - ratio > 1.0). - 2) The order of output_size should be [out_h, out_w]. - interp_mode (str): The mode of interpolation for resizing. - Default: 'bilinear'. - align_corners (bool): Whether align corners. Default: False. - - Returns: - Tensor: Resized flow. - """ - _, _, flow_h, flow_w = flow.size() - if size_type == 'ratio': - output_h, output_w = int(flow_h * sizes[0]), int(flow_w * sizes[1]) - elif size_type == 'shape': - output_h, output_w = sizes[0], sizes[1] - else: - raise ValueError(f'Size type should be ratio or shape, but got type {size_type}.') - - input_flow = flow.clone() - ratio_h = output_h / flow_h - ratio_w = output_w / flow_w - input_flow[:, 0, :, :] *= ratio_w - input_flow[:, 1, :, :] *= ratio_h - resized_flow = F.interpolate( - input=input_flow, size=(output_h, output_w), mode=interp_mode, align_corners=align_corners) - return resized_flow - - -# TODO: may write a cpp file -def pixel_unshuffle(x, scale): - """ Pixel unshuffle. - - Args: - x (Tensor): Input feature with shape (b, c, hh, hw). - scale (int): Downsample ratio. - - Returns: - Tensor: the pixel unshuffled feature. - """ - b, c, hh, hw = x.size() - out_channel = c * (scale**2) - assert hh % scale == 0 and hw % scale == 0 - h = hh // scale - w = hw // scale - x_view = x.view(b, c, h, scale, w, scale) - return x_view.permute(0, 1, 3, 5, 2, 4).reshape(b, out_channel, h, w) - - -class DCNv2Pack(ModulatedDeformConvPack): - """Modulated deformable conv for deformable alignment. - - Different from the official DCNv2Pack, which generates offsets and masks - from the preceding features, this DCNv2Pack takes another different - features to generate offsets and masks. - - Ref: - Delving Deep into Deformable Alignment in Video Super-Resolution. - """ - - def forward(self, x, feat): - out = self.conv_offset(feat) - o1, o2, mask = torch.chunk(out, 3, dim=1) - offset = torch.cat((o1, o2), dim=1) - mask = torch.sigmoid(mask) - - offset_absmean = torch.mean(torch.abs(offset)) - if offset_absmean > 50: - logger = get_root_logger() - logger.warning(f'Offset abs mean is {offset_absmean}, larger than 50.') - - if LooseVersion(torchvision.__version__) >= LooseVersion('0.9.0'): - return torchvision.ops.deform_conv2d(x, offset, self.weight, self.bias, self.stride, self.padding, - self.dilation, mask) - else: - return modulated_deform_conv(x, offset, mask, self.weight, self.bias, self.stride, self.padding, - self.dilation, self.groups, self.deformable_groups) - - -def _no_grad_trunc_normal_(tensor, mean, std, a, b): - # From: https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/layers/weight_init.py - # Cut & paste from PyTorch official master until it's in a few official releases - RW - # Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf - def norm_cdf(x): - # Computes standard normal cumulative distribution function - return (1. + math.erf(x / math.sqrt(2.))) / 2. - - if (mean < a - 2 * std) or (mean > b + 2 * std): - warnings.warn( - 'mean is more than 2 std from [a, b] in nn.init.trunc_normal_. ' - 'The distribution of values may be incorrect.', - stacklevel=2) - - with torch.no_grad(): - # Values are generated by using a truncated uniform distribution and - # then using the inverse CDF for the normal distribution. - # Get upper and lower cdf values - low = norm_cdf((a - mean) / std) - up = norm_cdf((b - mean) / std) - - # Uniformly fill tensor with values from [low, up], then translate to - # [2l-1, 2u-1]. - tensor.uniform_(2 * low - 1, 2 * up - 1) - - # Use inverse cdf transform for normal distribution to get truncated - # standard normal - tensor.erfinv_() - - # Transform to proper mean, std - tensor.mul_(std * math.sqrt(2.)) - tensor.add_(mean) - - # Clamp to ensure it's in the proper range - tensor.clamp_(min=a, max=b) - return tensor - - -def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.): - r"""Fills the input Tensor with values drawn from a truncated - normal distribution. - - From: https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/layers/weight_init.py - - The values are effectively drawn from the - normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)` - with values outside :math:`[a, b]` redrawn until they are within - the bounds. The method used for generating the random values works - best when :math:`a \leq \text{mean} \leq b`. - - Args: - tensor: an n-dimensional `torch.Tensor` - mean: the mean of the normal distribution - std: the standard deviation of the normal distribution - a: the minimum cutoff value - b: the maximum cutoff value - - Examples: - >>> w = torch.empty(3, 5) - >>> nn.init.trunc_normal_(w) - """ - return _no_grad_trunc_normal_(tensor, mean, std, a, b) - - -# From PyTorch -def _ntuple(n): - - def parse(x): - if isinstance(x, collections.abc.Iterable): - return x - return tuple(repeat(x, n)) - - return parse - - -to_1tuple = _ntuple(1) -to_2tuple = _ntuple(2) -to_3tuple = _ntuple(3) -to_4tuple = _ntuple(4) -to_ntuple = _ntuple \ No newline at end of file diff --git a/CodeFormer/CodeFormer/basicsr/archs/codeformer_arch.py b/CodeFormer/CodeFormer/basicsr/archs/codeformer_arch.py deleted file mode 100644 index 4d0d8027c8c4ffb26af6f4ba361514e93e320e8d..0000000000000000000000000000000000000000 --- a/CodeFormer/CodeFormer/basicsr/archs/codeformer_arch.py +++ /dev/null @@ -1,276 +0,0 @@ -import math -import numpy as np -import torch -from torch import nn, Tensor -import torch.nn.functional as F -from typing import Optional, List - -from basicsr.archs.vqgan_arch import * -from basicsr.utils import get_root_logger -from basicsr.utils.registry import ARCH_REGISTRY - -def calc_mean_std(feat, eps=1e-5): - """Calculate mean and std for adaptive_instance_normalization. - - Args: - feat (Tensor): 4D tensor. - eps (float): A small value added to the variance to avoid - divide-by-zero. Default: 1e-5. - """ - size = feat.size() - assert len(size) == 4, 'The input feature should be 4D tensor.' - b, c = size[:2] - feat_var = feat.view(b, c, -1).var(dim=2) + eps - feat_std = feat_var.sqrt().view(b, c, 1, 1) - feat_mean = feat.view(b, c, -1).mean(dim=2).view(b, c, 1, 1) - return feat_mean, feat_std - - -def adaptive_instance_normalization(content_feat, style_feat): - """Adaptive instance normalization. - - Adjust the reference features to have the similar color and illuminations - as those in the degradate features. - - Args: - content_feat (Tensor): The reference feature. - style_feat (Tensor): The degradate features. - """ - size = content_feat.size() - style_mean, style_std = calc_mean_std(style_feat) - content_mean, content_std = calc_mean_std(content_feat) - normalized_feat = (content_feat - content_mean.expand(size)) / content_std.expand(size) - return normalized_feat * style_std.expand(size) + style_mean.expand(size) - - -class PositionEmbeddingSine(nn.Module): - """ - This is a more standard version of the position embedding, very similar to the one - used by the Attention is all you need paper, generalized to work on images. - """ - - def __init__(self, num_pos_feats=64, temperature=10000, normalize=False, scale=None): - super().__init__() - self.num_pos_feats = num_pos_feats - self.temperature = temperature - self.normalize = normalize - if scale is not None and normalize is False: - raise ValueError("normalize should be True if scale is passed") - if scale is None: - scale = 2 * math.pi - self.scale = scale - - def forward(self, x, mask=None): - if mask is None: - mask = torch.zeros((x.size(0), x.size(2), x.size(3)), device=x.device, dtype=torch.bool) - not_mask = ~mask - y_embed = not_mask.cumsum(1, dtype=torch.float32) - x_embed = not_mask.cumsum(2, dtype=torch.float32) - if self.normalize: - eps = 1e-6 - y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale - x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale - - dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device) - dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats) - - pos_x = x_embed[:, :, :, None] / dim_t - pos_y = y_embed[:, :, :, None] / dim_t - pos_x = torch.stack( - (pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4 - ).flatten(3) - pos_y = torch.stack( - (pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4 - ).flatten(3) - pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2) - return pos - -def _get_activation_fn(activation): - """Return an activation function given a string""" - if activation == "relu": - return F.relu - if activation == "gelu": - return F.gelu - if activation == "glu": - return F.glu - raise RuntimeError(F"activation should be relu/gelu, not {activation}.") - - -class TransformerSALayer(nn.Module): - def __init__(self, embed_dim, nhead=8, dim_mlp=2048, dropout=0.0, activation="gelu"): - super().__init__() - self.self_attn = nn.MultiheadAttention(embed_dim, nhead, dropout=dropout) - # Implementation of Feedforward model - MLP - self.linear1 = nn.Linear(embed_dim, dim_mlp) - self.dropout = nn.Dropout(dropout) - self.linear2 = nn.Linear(dim_mlp, embed_dim) - - self.norm1 = nn.LayerNorm(embed_dim) - self.norm2 = nn.LayerNorm(embed_dim) - self.dropout1 = nn.Dropout(dropout) - self.dropout2 = nn.Dropout(dropout) - - self.activation = _get_activation_fn(activation) - - def with_pos_embed(self, tensor, pos: Optional[Tensor]): - return tensor if pos is None else tensor + pos - - def forward(self, tgt, - tgt_mask: Optional[Tensor] = None, - tgt_key_padding_mask: Optional[Tensor] = None, - query_pos: Optional[Tensor] = None): - - # self attention - tgt2 = self.norm1(tgt) - q = k = self.with_pos_embed(tgt2, query_pos) - tgt2 = self.self_attn(q, k, value=tgt2, attn_mask=tgt_mask, - key_padding_mask=tgt_key_padding_mask)[0] - tgt = tgt + self.dropout1(tgt2) - - # ffn - tgt2 = self.norm2(tgt) - tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt2)))) - tgt = tgt + self.dropout2(tgt2) - return tgt - -class Fuse_sft_block(nn.Module): - def __init__(self, in_ch, out_ch): - super().__init__() - self.encode_enc = ResBlock(2*in_ch, out_ch) - - self.scale = nn.Sequential( - nn.Conv2d(in_ch, out_ch, kernel_size=3, padding=1), - nn.LeakyReLU(0.2, True), - nn.Conv2d(out_ch, out_ch, kernel_size=3, padding=1)) - - self.shift = nn.Sequential( - nn.Conv2d(in_ch, out_ch, kernel_size=3, padding=1), - nn.LeakyReLU(0.2, True), - nn.Conv2d(out_ch, out_ch, kernel_size=3, padding=1)) - - def forward(self, enc_feat, dec_feat, w=1): - enc_feat = self.encode_enc(torch.cat([enc_feat, dec_feat], dim=1)) - scale = self.scale(enc_feat) - shift = self.shift(enc_feat) - residual = w * (dec_feat * scale + shift) - out = dec_feat + residual - return out - - -@ARCH_REGISTRY.register() -class CodeFormer(VQAutoEncoder): - def __init__(self, dim_embd=512, n_head=8, n_layers=9, - codebook_size=1024, latent_size=256, - connect_list=['32', '64', '128', '256'], - fix_modules=['quantize','generator']): - super(CodeFormer, self).__init__(512, 64, [1, 2, 2, 4, 4, 8], 'nearest',2, [16], codebook_size) - - if fix_modules is not None: - for module in fix_modules: - for param in getattr(self, module).parameters(): - param.requires_grad = False - - self.connect_list = connect_list - self.n_layers = n_layers - self.dim_embd = dim_embd - self.dim_mlp = dim_embd*2 - - self.position_emb = nn.Parameter(torch.zeros(latent_size, self.dim_embd)) - self.feat_emb = nn.Linear(256, self.dim_embd) - - # transformer - self.ft_layers = nn.Sequential(*[TransformerSALayer(embed_dim=dim_embd, nhead=n_head, dim_mlp=self.dim_mlp, dropout=0.0) - for _ in range(self.n_layers)]) - - # logits_predict head - self.idx_pred_layer = nn.Sequential( - nn.LayerNorm(dim_embd), - nn.Linear(dim_embd, codebook_size, bias=False)) - - self.channels = { - '16': 512, - '32': 256, - '64': 256, - '128': 128, - '256': 128, - '512': 64, - } - - # after second residual block for > 16, before attn layer for ==16 - self.fuse_encoder_block = {'512':2, '256':5, '128':8, '64':11, '32':14, '16':18} - # after first residual block for > 16, before attn layer for ==16 - self.fuse_generator_block = {'16':6, '32': 9, '64':12, '128':15, '256':18, '512':21} - - # fuse_convs_dict - self.fuse_convs_dict = nn.ModuleDict() - for f_size in self.connect_list: - in_ch = self.channels[f_size] - self.fuse_convs_dict[f_size] = Fuse_sft_block(in_ch, in_ch) - - def _init_weights(self, module): - if isinstance(module, (nn.Linear, nn.Embedding)): - module.weight.data.normal_(mean=0.0, std=0.02) - if isinstance(module, nn.Linear) and module.bias is not None: - module.bias.data.zero_() - elif isinstance(module, nn.LayerNorm): - module.bias.data.zero_() - module.weight.data.fill_(1.0) - - def forward(self, x, w=0, detach_16=True, code_only=False, adain=False): - # ################### Encoder ##################### - enc_feat_dict = {} - out_list = [self.fuse_encoder_block[f_size] for f_size in self.connect_list] - for i, block in enumerate(self.encoder.blocks): - x = block(x) - if i in out_list: - enc_feat_dict[str(x.shape[-1])] = x.clone() - - lq_feat = x - # ################# Transformer ################### - # quant_feat, codebook_loss, quant_stats = self.quantize(lq_feat) - pos_emb = self.position_emb.unsqueeze(1).repeat(1,x.shape[0],1) - # BCHW -> BC(HW) -> (HW)BC - feat_emb = self.feat_emb(lq_feat.flatten(2).permute(2,0,1)) - query_emb = feat_emb - # Transformer encoder - for layer in self.ft_layers: - query_emb = layer(query_emb, query_pos=pos_emb) - - # output logits - logits = self.idx_pred_layer(query_emb) # (hw)bn - logits = logits.permute(1,0,2) # (hw)bn -> b(hw)n - - if code_only: # for training stage II - # logits doesn't need softmax before cross_entropy loss - return logits, lq_feat - - # ################# Quantization ################### - # if self.training: - # quant_feat = torch.einsum('btn,nc->btc', [soft_one_hot, self.quantize.embedding.weight]) - # # b(hw)c -> bc(hw) -> bchw - # quant_feat = quant_feat.permute(0,2,1).view(lq_feat.shape) - # ------------ - soft_one_hot = F.softmax(logits, dim=2) - _, top_idx = torch.topk(soft_one_hot, 1, dim=2) - quant_feat = self.quantize.get_codebook_feat(top_idx, shape=[x.shape[0],16,16,256]) - # preserve gradients - # quant_feat = lq_feat + (quant_feat - lq_feat).detach() - - if detach_16: - quant_feat = quant_feat.detach() # for training stage III - if adain: - quant_feat = adaptive_instance_normalization(quant_feat, lq_feat) - - # ################## Generator #################### - x = quant_feat - fuse_list = [self.fuse_generator_block[f_size] for f_size in self.connect_list] - - for i, block in enumerate(self.generator.blocks): - x = block(x) - if i in fuse_list: # fuse after i-th block - f_size = str(x.shape[-1]) - if w>0: - x = self.fuse_convs_dict[f_size](enc_feat_dict[f_size].detach(), x, w) - out = x - # logits doesn't need softmax before cross_entropy loss - return out, logits, lq_feat \ No newline at end of file diff --git a/CodeFormer/CodeFormer/basicsr/archs/rrdbnet_arch.py b/CodeFormer/CodeFormer/basicsr/archs/rrdbnet_arch.py deleted file mode 100644 index 49a2d6c204557cba53ada7550deb587541855cfb..0000000000000000000000000000000000000000 --- a/CodeFormer/CodeFormer/basicsr/archs/rrdbnet_arch.py +++ /dev/null @@ -1,119 +0,0 @@ -import torch -from torch import nn as nn -from torch.nn import functional as F - -from basicsr.utils.registry import ARCH_REGISTRY -from .arch_util import default_init_weights, make_layer, pixel_unshuffle - - -class ResidualDenseBlock(nn.Module): - """Residual Dense Block. - - Used in RRDB block in ESRGAN. - - Args: - num_feat (int): Channel number of intermediate features. - num_grow_ch (int): Channels for each growth. - """ - - def __init__(self, num_feat=64, num_grow_ch=32): - super(ResidualDenseBlock, self).__init__() - self.conv1 = nn.Conv2d(num_feat, num_grow_ch, 3, 1, 1) - self.conv2 = nn.Conv2d(num_feat + num_grow_ch, num_grow_ch, 3, 1, 1) - self.conv3 = nn.Conv2d(num_feat + 2 * num_grow_ch, num_grow_ch, 3, 1, 1) - self.conv4 = nn.Conv2d(num_feat + 3 * num_grow_ch, num_grow_ch, 3, 1, 1) - self.conv5 = nn.Conv2d(num_feat + 4 * num_grow_ch, num_feat, 3, 1, 1) - - self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True) - - # initialization - default_init_weights([self.conv1, self.conv2, self.conv3, self.conv4, self.conv5], 0.1) - - def forward(self, x): - x1 = self.lrelu(self.conv1(x)) - x2 = self.lrelu(self.conv2(torch.cat((x, x1), 1))) - x3 = self.lrelu(self.conv3(torch.cat((x, x1, x2), 1))) - x4 = self.lrelu(self.conv4(torch.cat((x, x1, x2, x3), 1))) - x5 = self.conv5(torch.cat((x, x1, x2, x3, x4), 1)) - # Emperically, we use 0.2 to scale the residual for better performance - return x5 * 0.2 + x - - -class RRDB(nn.Module): - """Residual in Residual Dense Block. - - Used in RRDB-Net in ESRGAN. - - Args: - num_feat (int): Channel number of intermediate features. - num_grow_ch (int): Channels for each growth. - """ - - def __init__(self, num_feat, num_grow_ch=32): - super(RRDB, self).__init__() - self.rdb1 = ResidualDenseBlock(num_feat, num_grow_ch) - self.rdb2 = ResidualDenseBlock(num_feat, num_grow_ch) - self.rdb3 = ResidualDenseBlock(num_feat, num_grow_ch) - - def forward(self, x): - out = self.rdb1(x) - out = self.rdb2(out) - out = self.rdb3(out) - # Emperically, we use 0.2 to scale the residual for better performance - return out * 0.2 + x - - -@ARCH_REGISTRY.register() -class RRDBNet(nn.Module): - """Networks consisting of Residual in Residual Dense Block, which is used - in ESRGAN. - - ESRGAN: Enhanced Super-Resolution Generative Adversarial Networks. - - We extend ESRGAN for scale x2 and scale x1. - Note: This is one option for scale 1, scale 2 in RRDBNet. - We first employ the pixel-unshuffle (an inverse operation of pixelshuffle to reduce the spatial size - and enlarge the channel size before feeding inputs into the main ESRGAN architecture. - - Args: - num_in_ch (int): Channel number of inputs. - num_out_ch (int): Channel number of outputs. - num_feat (int): Channel number of intermediate features. - Default: 64 - num_block (int): Block number in the trunk network. Defaults: 23 - num_grow_ch (int): Channels for each growth. Default: 32. - """ - - def __init__(self, num_in_ch, num_out_ch, scale=4, num_feat=64, num_block=23, num_grow_ch=32): - super(RRDBNet, self).__init__() - self.scale = scale - if scale == 2: - num_in_ch = num_in_ch * 4 - elif scale == 1: - num_in_ch = num_in_ch * 16 - self.conv_first = nn.Conv2d(num_in_ch, num_feat, 3, 1, 1) - self.body = make_layer(RRDB, num_block, num_feat=num_feat, num_grow_ch=num_grow_ch) - self.conv_body = nn.Conv2d(num_feat, num_feat, 3, 1, 1) - # upsample - self.conv_up1 = nn.Conv2d(num_feat, num_feat, 3, 1, 1) - self.conv_up2 = nn.Conv2d(num_feat, num_feat, 3, 1, 1) - self.conv_hr = nn.Conv2d(num_feat, num_feat, 3, 1, 1) - self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1) - - self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True) - - def forward(self, x): - if self.scale == 2: - feat = pixel_unshuffle(x, scale=2) - elif self.scale == 1: - feat = pixel_unshuffle(x, scale=4) - else: - feat = x - feat = self.conv_first(feat) - body_feat = self.conv_body(self.body(feat)) - feat = feat + body_feat - # upsample - feat = self.lrelu(self.conv_up1(F.interpolate(feat, scale_factor=2, mode='nearest'))) - feat = self.lrelu(self.conv_up2(F.interpolate(feat, scale_factor=2, mode='nearest'))) - out = self.conv_last(self.lrelu(self.conv_hr(feat))) - return out \ No newline at end of file diff --git a/CodeFormer/CodeFormer/basicsr/archs/vgg_arch.py b/CodeFormer/CodeFormer/basicsr/archs/vgg_arch.py deleted file mode 100644 index 23bb0103c8b14ef2588028f7177753db9af62cae..0000000000000000000000000000000000000000 --- a/CodeFormer/CodeFormer/basicsr/archs/vgg_arch.py +++ /dev/null @@ -1,161 +0,0 @@ -import os -import torch -from collections import OrderedDict -from torch import nn as nn -from torchvision.models import vgg as vgg - -from basicsr.utils.registry import ARCH_REGISTRY - -VGG_PRETRAIN_PATH = 'experiments/pretrained_models/vgg19-dcbb9e9d.pth' -NAMES = { - 'vgg11': [ - 'conv1_1', 'relu1_1', 'pool1', 'conv2_1', 'relu2_1', 'pool2', 'conv3_1', 'relu3_1', 'conv3_2', 'relu3_2', - 'pool3', 'conv4_1', 'relu4_1', 'conv4_2', 'relu4_2', 'pool4', 'conv5_1', 'relu5_1', 'conv5_2', 'relu5_2', - 'pool5' - ], - 'vgg13': [ - 'conv1_1', 'relu1_1', 'conv1_2', 'relu1_2', 'pool1', 'conv2_1', 'relu2_1', 'conv2_2', 'relu2_2', 'pool2', - 'conv3_1', 'relu3_1', 'conv3_2', 'relu3_2', 'pool3', 'conv4_1', 'relu4_1', 'conv4_2', 'relu4_2', 'pool4', - 'conv5_1', 'relu5_1', 'conv5_2', 'relu5_2', 'pool5' - ], - 'vgg16': [ - 'conv1_1', 'relu1_1', 'conv1_2', 'relu1_2', 'pool1', 'conv2_1', 'relu2_1', 'conv2_2', 'relu2_2', 'pool2', - 'conv3_1', 'relu3_1', 'conv3_2', 'relu3_2', 'conv3_3', 'relu3_3', 'pool3', 'conv4_1', 'relu4_1', 'conv4_2', - 'relu4_2', 'conv4_3', 'relu4_3', 'pool4', 'conv5_1', 'relu5_1', 'conv5_2', 'relu5_2', 'conv5_3', 'relu5_3', - 'pool5' - ], - 'vgg19': [ - 'conv1_1', 'relu1_1', 'conv1_2', 'relu1_2', 'pool1', 'conv2_1', 'relu2_1', 'conv2_2', 'relu2_2', 'pool2', - 'conv3_1', 'relu3_1', 'conv3_2', 'relu3_2', 'conv3_3', 'relu3_3', 'conv3_4', 'relu3_4', 'pool3', 'conv4_1', - 'relu4_1', 'conv4_2', 'relu4_2', 'conv4_3', 'relu4_3', 'conv4_4', 'relu4_4', 'pool4', 'conv5_1', 'relu5_1', - 'conv5_2', 'relu5_2', 'conv5_3', 'relu5_3', 'conv5_4', 'relu5_4', 'pool5' - ] -} - - -def insert_bn(names): - """Insert bn layer after each conv. - - Args: - names (list): The list of layer names. - - Returns: - list: The list of layer names with bn layers. - """ - names_bn = [] - for name in names: - names_bn.append(name) - if 'conv' in name: - position = name.replace('conv', '') - names_bn.append('bn' + position) - return names_bn - - -@ARCH_REGISTRY.register() -class VGGFeatureExtractor(nn.Module): - """VGG network for feature extraction. - - In this implementation, we allow users to choose whether use normalization - in the input feature and the type of vgg network. Note that the pretrained - path must fit the vgg type. - - Args: - layer_name_list (list[str]): Forward function returns the corresponding - features according to the layer_name_list. - Example: {'relu1_1', 'relu2_1', 'relu3_1'}. - vgg_type (str): Set the type of vgg network. Default: 'vgg19'. - use_input_norm (bool): If True, normalize the input image. Importantly, - the input feature must in the range [0, 1]. Default: True. - range_norm (bool): If True, norm images with range [-1, 1] to [0, 1]. - Default: False. - requires_grad (bool): If true, the parameters of VGG network will be - optimized. Default: False. - remove_pooling (bool): If true, the max pooling operations in VGG net - will be removed. Default: False. - pooling_stride (int): The stride of max pooling operation. Default: 2. - """ - - def __init__(self, - layer_name_list, - vgg_type='vgg19', - use_input_norm=True, - range_norm=False, - requires_grad=False, - remove_pooling=False, - pooling_stride=2): - super(VGGFeatureExtractor, self).__init__() - - self.layer_name_list = layer_name_list - self.use_input_norm = use_input_norm - self.range_norm = range_norm - - self.names = NAMES[vgg_type.replace('_bn', '')] - if 'bn' in vgg_type: - self.names = insert_bn(self.names) - - # only borrow layers that will be used to avoid unused params - max_idx = 0 - for v in layer_name_list: - idx = self.names.index(v) - if idx > max_idx: - max_idx = idx - - if os.path.exists(VGG_PRETRAIN_PATH): - vgg_net = getattr(vgg, vgg_type)(pretrained=False) - state_dict = torch.load(VGG_PRETRAIN_PATH, map_location=lambda storage, loc: storage) - vgg_net.load_state_dict(state_dict) - else: - vgg_net = getattr(vgg, vgg_type)(pretrained=True) - - features = vgg_net.features[:max_idx + 1] - - modified_net = OrderedDict() - for k, v in zip(self.names, features): - if 'pool' in k: - # if remove_pooling is true, pooling operation will be removed - if remove_pooling: - continue - else: - # in some cases, we may want to change the default stride - modified_net[k] = nn.MaxPool2d(kernel_size=2, stride=pooling_stride) - else: - modified_net[k] = v - - self.vgg_net = nn.Sequential(modified_net) - - if not requires_grad: - self.vgg_net.eval() - for param in self.parameters(): - param.requires_grad = False - else: - self.vgg_net.train() - for param in self.parameters(): - param.requires_grad = True - - if self.use_input_norm: - # the mean is for image with range [0, 1] - self.register_buffer('mean', torch.Tensor([0.485, 0.456, 0.406]).view(1, 3, 1, 1)) - # the std is for image with range [0, 1] - self.register_buffer('std', torch.Tensor([0.229, 0.224, 0.225]).view(1, 3, 1, 1)) - - def forward(self, x): - """Forward function. - - Args: - x (Tensor): Input tensor with shape (n, c, h, w). - - Returns: - Tensor: Forward results. - """ - if self.range_norm: - x = (x + 1) / 2 - if self.use_input_norm: - x = (x - self.mean) / self.std - output = {} - - for key, layer in self.vgg_net._modules.items(): - x = layer(x) - if key in self.layer_name_list: - output[key] = x.clone() - - return output diff --git a/CodeFormer/CodeFormer/basicsr/archs/vqgan_arch.py b/CodeFormer/CodeFormer/basicsr/archs/vqgan_arch.py deleted file mode 100644 index f6dfcf4c9983b431f0a978701e5ddd9598faf381..0000000000000000000000000000000000000000 --- a/CodeFormer/CodeFormer/basicsr/archs/vqgan_arch.py +++ /dev/null @@ -1,435 +0,0 @@ -''' -VQGAN code, adapted from the original created by the Unleashing Transformers authors: -https://github.com/samb-t/unleashing-transformers/blob/master/models/vqgan.py - -''' -import numpy as np -import torch -import torch.nn as nn -import torch.nn.functional as F -import copy -from basicsr.utils import get_root_logger -from basicsr.utils.registry import ARCH_REGISTRY - -def normalize(in_channels): - return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True) - - -@torch.jit.script -def swish(x): - return x*torch.sigmoid(x) - - -# Define VQVAE classes -class VectorQuantizer(nn.Module): - def __init__(self, codebook_size, emb_dim, beta): - super(VectorQuantizer, self).__init__() - self.codebook_size = codebook_size # number of embeddings - self.emb_dim = emb_dim # dimension of embedding - self.beta = beta # commitment cost used in loss term, beta * ||z_e(x)-sg[e]||^2 - self.embedding = nn.Embedding(self.codebook_size, self.emb_dim) - self.embedding.weight.data.uniform_(-1.0 / self.codebook_size, 1.0 / self.codebook_size) - - def forward(self, z): - # reshape z -> (batch, height, width, channel) and flatten - z = z.permute(0, 2, 3, 1).contiguous() - z_flattened = z.view(-1, self.emb_dim) - - # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z - d = (z_flattened ** 2).sum(dim=1, keepdim=True) + (self.embedding.weight**2).sum(1) - \ - 2 * torch.matmul(z_flattened, self.embedding.weight.t()) - - mean_distance = torch.mean(d) - # find closest encodings - # min_encoding_indices = torch.argmin(d, dim=1).unsqueeze(1) - min_encoding_scores, min_encoding_indices = torch.topk(d, 1, dim=1, largest=False) - # [0-1], higher score, higher confidence - min_encoding_scores = torch.exp(-min_encoding_scores/10) - - min_encodings = torch.zeros(min_encoding_indices.shape[0], self.codebook_size).to(z) - min_encodings.scatter_(1, min_encoding_indices, 1) - - # get quantized latent vectors - z_q = torch.matmul(min_encodings, self.embedding.weight).view(z.shape) - # compute loss for embedding - loss = torch.mean((z_q.detach()-z)**2) + self.beta * torch.mean((z_q - z.detach()) ** 2) - # preserve gradients - z_q = z + (z_q - z).detach() - - # perplexity - e_mean = torch.mean(min_encodings, dim=0) - perplexity = torch.exp(-torch.sum(e_mean * torch.log(e_mean + 1e-10))) - # reshape back to match original input shape - z_q = z_q.permute(0, 3, 1, 2).contiguous() - - return z_q, loss, { - "perplexity": perplexity, - "min_encodings": min_encodings, - "min_encoding_indices": min_encoding_indices, - "min_encoding_scores": min_encoding_scores, - "mean_distance": mean_distance - } - - def get_codebook_feat(self, indices, shape): - # input indices: batch*token_num -> (batch*token_num)*1 - # shape: batch, height, width, channel - indices = indices.view(-1,1) - min_encodings = torch.zeros(indices.shape[0], self.codebook_size).to(indices) - min_encodings.scatter_(1, indices, 1) - # get quantized latent vectors - z_q = torch.matmul(min_encodings.float(), self.embedding.weight) - - if shape is not None: # reshape back to match original input shape - z_q = z_q.view(shape).permute(0, 3, 1, 2).contiguous() - - return z_q - - -class GumbelQuantizer(nn.Module): - def __init__(self, codebook_size, emb_dim, num_hiddens, straight_through=False, kl_weight=5e-4, temp_init=1.0): - super().__init__() - self.codebook_size = codebook_size # number of embeddings - self.emb_dim = emb_dim # dimension of embedding - self.straight_through = straight_through - self.temperature = temp_init - self.kl_weight = kl_weight - self.proj = nn.Conv2d(num_hiddens, codebook_size, 1) # projects last encoder layer to quantized logits - self.embed = nn.Embedding(codebook_size, emb_dim) - - def forward(self, z): - hard = self.straight_through if self.training else True - - logits = self.proj(z) - - soft_one_hot = F.gumbel_softmax(logits, tau=self.temperature, dim=1, hard=hard) - - z_q = torch.einsum("b n h w, n d -> b d h w", soft_one_hot, self.embed.weight) - - # + kl divergence to the prior loss - qy = F.softmax(logits, dim=1) - diff = self.kl_weight * torch.sum(qy * torch.log(qy * self.codebook_size + 1e-10), dim=1).mean() - min_encoding_indices = soft_one_hot.argmax(dim=1) - - return z_q, diff, { - "min_encoding_indices": min_encoding_indices - } - - -class Downsample(nn.Module): - def __init__(self, in_channels): - super().__init__() - self.conv = torch.nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=2, padding=0) - - def forward(self, x): - pad = (0, 1, 0, 1) - x = torch.nn.functional.pad(x, pad, mode="constant", value=0) - x = self.conv(x) - return x - - -class Upsample(nn.Module): - def __init__(self, in_channels): - super().__init__() - self.conv = nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1) - - def forward(self, x): - x = F.interpolate(x, scale_factor=2.0, mode="nearest") - x = self.conv(x) - - return x - - -class ResBlock(nn.Module): - def __init__(self, in_channels, out_channels=None): - super(ResBlock, self).__init__() - self.in_channels = in_channels - self.out_channels = in_channels if out_channels is None else out_channels - self.norm1 = normalize(in_channels) - self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1) - self.norm2 = normalize(out_channels) - self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1) - if self.in_channels != self.out_channels: - self.conv_out = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0) - - def forward(self, x_in): - x = x_in - x = self.norm1(x) - x = swish(x) - x = self.conv1(x) - x = self.norm2(x) - x = swish(x) - x = self.conv2(x) - if self.in_channels != self.out_channels: - x_in = self.conv_out(x_in) - - return x + x_in - - -class AttnBlock(nn.Module): - def __init__(self, in_channels): - super().__init__() - self.in_channels = in_channels - - self.norm = normalize(in_channels) - self.q = torch.nn.Conv2d( - in_channels, - in_channels, - kernel_size=1, - stride=1, - padding=0 - ) - self.k = torch.nn.Conv2d( - in_channels, - in_channels, - kernel_size=1, - stride=1, - padding=0 - ) - self.v = torch.nn.Conv2d( - in_channels, - in_channels, - kernel_size=1, - stride=1, - padding=0 - ) - self.proj_out = torch.nn.Conv2d( - in_channels, - in_channels, - kernel_size=1, - stride=1, - padding=0 - ) - - def forward(self, x): - h_ = x - h_ = self.norm(h_) - q = self.q(h_) - k = self.k(h_) - v = self.v(h_) - - # compute attention - b, c, h, w = q.shape - q = q.reshape(b, c, h*w) - q = q.permute(0, 2, 1) - k = k.reshape(b, c, h*w) - w_ = torch.bmm(q, k) - w_ = w_ * (int(c)**(-0.5)) - w_ = F.softmax(w_, dim=2) - - # attend to values - v = v.reshape(b, c, h*w) - w_ = w_.permute(0, 2, 1) - h_ = torch.bmm(v, w_) - h_ = h_.reshape(b, c, h, w) - - h_ = self.proj_out(h_) - - return x+h_ - - -class Encoder(nn.Module): - def __init__(self, in_channels, nf, emb_dim, ch_mult, num_res_blocks, resolution, attn_resolutions): - super().__init__() - self.nf = nf - self.num_resolutions = len(ch_mult) - self.num_res_blocks = num_res_blocks - self.resolution = resolution - self.attn_resolutions = attn_resolutions - - curr_res = self.resolution - in_ch_mult = (1,)+tuple(ch_mult) - - blocks = [] - # initial convultion - blocks.append(nn.Conv2d(in_channels, nf, kernel_size=3, stride=1, padding=1)) - - # residual and downsampling blocks, with attention on smaller res (16x16) - for i in range(self.num_resolutions): - block_in_ch = nf * in_ch_mult[i] - block_out_ch = nf * ch_mult[i] - for _ in range(self.num_res_blocks): - blocks.append(ResBlock(block_in_ch, block_out_ch)) - block_in_ch = block_out_ch - if curr_res in attn_resolutions: - blocks.append(AttnBlock(block_in_ch)) - - if i != self.num_resolutions - 1: - blocks.append(Downsample(block_in_ch)) - curr_res = curr_res // 2 - - # non-local attention block - blocks.append(ResBlock(block_in_ch, block_in_ch)) - blocks.append(AttnBlock(block_in_ch)) - blocks.append(ResBlock(block_in_ch, block_in_ch)) - - # normalise and convert to latent size - blocks.append(normalize(block_in_ch)) - blocks.append(nn.Conv2d(block_in_ch, emb_dim, kernel_size=3, stride=1, padding=1)) - self.blocks = nn.ModuleList(blocks) - - def forward(self, x): - for block in self.blocks: - x = block(x) - - return x - - -class Generator(nn.Module): - def __init__(self, nf, emb_dim, ch_mult, res_blocks, img_size, attn_resolutions): - super().__init__() - self.nf = nf - self.ch_mult = ch_mult - self.num_resolutions = len(self.ch_mult) - self.num_res_blocks = res_blocks - self.resolution = img_size - self.attn_resolutions = attn_resolutions - self.in_channels = emb_dim - self.out_channels = 3 - block_in_ch = self.nf * self.ch_mult[-1] - curr_res = self.resolution // 2 ** (self.num_resolutions-1) - - blocks = [] - # initial conv - blocks.append(nn.Conv2d(self.in_channels, block_in_ch, kernel_size=3, stride=1, padding=1)) - - # non-local attention block - blocks.append(ResBlock(block_in_ch, block_in_ch)) - blocks.append(AttnBlock(block_in_ch)) - blocks.append(ResBlock(block_in_ch, block_in_ch)) - - for i in reversed(range(self.num_resolutions)): - block_out_ch = self.nf * self.ch_mult[i] - - for _ in range(self.num_res_blocks): - blocks.append(ResBlock(block_in_ch, block_out_ch)) - block_in_ch = block_out_ch - - if curr_res in self.attn_resolutions: - blocks.append(AttnBlock(block_in_ch)) - - if i != 0: - blocks.append(Upsample(block_in_ch)) - curr_res = curr_res * 2 - - blocks.append(normalize(block_in_ch)) - blocks.append(nn.Conv2d(block_in_ch, self.out_channels, kernel_size=3, stride=1, padding=1)) - - self.blocks = nn.ModuleList(blocks) - - - def forward(self, x): - for block in self.blocks: - x = block(x) - - return x - - -@ARCH_REGISTRY.register() -class VQAutoEncoder(nn.Module): - def __init__(self, img_size, nf, ch_mult, quantizer="nearest", res_blocks=2, attn_resolutions=[16], codebook_size=1024, emb_dim=256, - beta=0.25, gumbel_straight_through=False, gumbel_kl_weight=1e-8, model_path=None): - super().__init__() - logger = get_root_logger() - self.in_channels = 3 - self.nf = nf - self.n_blocks = res_blocks - self.codebook_size = codebook_size - self.embed_dim = emb_dim - self.ch_mult = ch_mult - self.resolution = img_size - self.attn_resolutions = attn_resolutions - self.quantizer_type = quantizer - self.encoder = Encoder( - self.in_channels, - self.nf, - self.embed_dim, - self.ch_mult, - self.n_blocks, - self.resolution, - self.attn_resolutions - ) - if self.quantizer_type == "nearest": - self.beta = beta #0.25 - self.quantize = VectorQuantizer(self.codebook_size, self.embed_dim, self.beta) - elif self.quantizer_type == "gumbel": - self.gumbel_num_hiddens = emb_dim - self.straight_through = gumbel_straight_through - self.kl_weight = gumbel_kl_weight - self.quantize = GumbelQuantizer( - self.codebook_size, - self.embed_dim, - self.gumbel_num_hiddens, - self.straight_through, - self.kl_weight - ) - self.generator = Generator( - self.nf, - self.embed_dim, - self.ch_mult, - self.n_blocks, - self.resolution, - self.attn_resolutions - ) - - if model_path is not None: - chkpt = torch.load(model_path, map_location='cpu') - if 'params_ema' in chkpt: - self.load_state_dict(torch.load(model_path, map_location='cpu')['params_ema']) - logger.info(f'vqgan is loaded from: {model_path} [params_ema]') - elif 'params' in chkpt: - self.load_state_dict(torch.load(model_path, map_location='cpu')['params']) - logger.info(f'vqgan is loaded from: {model_path} [params]') - else: - raise ValueError(f'Wrong params!') - - - def forward(self, x): - x = self.encoder(x) - quant, codebook_loss, quant_stats = self.quantize(x) - x = self.generator(quant) - return x, codebook_loss, quant_stats - - - -# patch based discriminator -@ARCH_REGISTRY.register() -class VQGANDiscriminator(nn.Module): - def __init__(self, nc=3, ndf=64, n_layers=4, model_path=None): - super().__init__() - - layers = [nn.Conv2d(nc, ndf, kernel_size=4, stride=2, padding=1), nn.LeakyReLU(0.2, True)] - ndf_mult = 1 - ndf_mult_prev = 1 - for n in range(1, n_layers): # gradually increase the number of filters - ndf_mult_prev = ndf_mult - ndf_mult = min(2 ** n, 8) - layers += [ - nn.Conv2d(ndf * ndf_mult_prev, ndf * ndf_mult, kernel_size=4, stride=2, padding=1, bias=False), - nn.BatchNorm2d(ndf * ndf_mult), - nn.LeakyReLU(0.2, True) - ] - - ndf_mult_prev = ndf_mult - ndf_mult = min(2 ** n_layers, 8) - - layers += [ - nn.Conv2d(ndf * ndf_mult_prev, ndf * ndf_mult, kernel_size=4, stride=1, padding=1, bias=False), - nn.BatchNorm2d(ndf * ndf_mult), - nn.LeakyReLU(0.2, True) - ] - - layers += [ - nn.Conv2d(ndf * ndf_mult, 1, kernel_size=4, stride=1, padding=1)] # output 1 channel prediction map - self.main = nn.Sequential(*layers) - - if model_path is not None: - chkpt = torch.load(model_path, map_location='cpu') - if 'params_d' in chkpt: - self.load_state_dict(torch.load(model_path, map_location='cpu')['params_d']) - elif 'params' in chkpt: - self.load_state_dict(torch.load(model_path, map_location='cpu')['params']) - else: - raise ValueError(f'Wrong params!') - - def forward(self, x): - return self.main(x) \ No newline at end of file diff --git a/CodeFormer/CodeFormer/basicsr/data/__init__.py b/CodeFormer/CodeFormer/basicsr/data/__init__.py deleted file mode 100644 index c6adb4bb6a926af7a46aaec4794eee95fda02a33..0000000000000000000000000000000000000000 --- a/CodeFormer/CodeFormer/basicsr/data/__init__.py +++ /dev/null @@ -1,100 +0,0 @@ -import importlib -import numpy as np -import random -import torch -import torch.utils.data -from copy import deepcopy -from functools import partial -from os import path as osp - -from basicsr.data.prefetch_dataloader import PrefetchDataLoader -from basicsr.utils import get_root_logger, scandir -from basicsr.utils.dist_util import get_dist_info -from basicsr.utils.registry import DATASET_REGISTRY - -__all__ = ['build_dataset', 'build_dataloader'] - -# automatically scan and import dataset modules for registry -# scan all the files under the data folder with '_dataset' in file names -data_folder = osp.dirname(osp.abspath(__file__)) -dataset_filenames = [osp.splitext(osp.basename(v))[0] for v in scandir(data_folder) if v.endswith('_dataset.py')] -# import all the dataset modules -_dataset_modules = [importlib.import_module(f'basicsr.data.{file_name}') for file_name in dataset_filenames] - - -def build_dataset(dataset_opt): - """Build dataset from options. - - Args: - dataset_opt (dict): Configuration for dataset. It must constain: - name (str): Dataset name. - type (str): Dataset type. - """ - dataset_opt = deepcopy(dataset_opt) - dataset = DATASET_REGISTRY.get(dataset_opt['type'])(dataset_opt) - logger = get_root_logger() - logger.info(f'Dataset [{dataset.__class__.__name__}] - {dataset_opt["name"]} ' 'is built.') - return dataset - - -def build_dataloader(dataset, dataset_opt, num_gpu=1, dist=False, sampler=None, seed=None): - """Build dataloader. - - Args: - dataset (torch.utils.data.Dataset): Dataset. - dataset_opt (dict): Dataset options. It contains the following keys: - phase (str): 'train' or 'val'. - num_worker_per_gpu (int): Number of workers for each GPU. - batch_size_per_gpu (int): Training batch size for each GPU. - num_gpu (int): Number of GPUs. Used only in the train phase. - Default: 1. - dist (bool): Whether in distributed training. Used only in the train - phase. Default: False. - sampler (torch.utils.data.sampler): Data sampler. Default: None. - seed (int | None): Seed. Default: None - """ - phase = dataset_opt['phase'] - rank, _ = get_dist_info() - if phase == 'train': - if dist: # distributed training - batch_size = dataset_opt['batch_size_per_gpu'] - num_workers = dataset_opt['num_worker_per_gpu'] - else: # non-distributed training - multiplier = 1 if num_gpu == 0 else num_gpu - batch_size = dataset_opt['batch_size_per_gpu'] * multiplier - num_workers = dataset_opt['num_worker_per_gpu'] * multiplier - dataloader_args = dict( - dataset=dataset, - batch_size=batch_size, - shuffle=False, - num_workers=num_workers, - sampler=sampler, - drop_last=True) - if sampler is None: - dataloader_args['shuffle'] = True - dataloader_args['worker_init_fn'] = partial( - worker_init_fn, num_workers=num_workers, rank=rank, seed=seed) if seed is not None else None - elif phase in ['val', 'test']: # validation - dataloader_args = dict(dataset=dataset, batch_size=1, shuffle=False, num_workers=0) - else: - raise ValueError(f'Wrong dataset phase: {phase}. ' "Supported ones are 'train', 'val' and 'test'.") - - dataloader_args['pin_memory'] = dataset_opt.get('pin_memory', False) - - prefetch_mode = dataset_opt.get('prefetch_mode') - if prefetch_mode == 'cpu': # CPUPrefetcher - num_prefetch_queue = dataset_opt.get('num_prefetch_queue', 1) - logger = get_root_logger() - logger.info(f'Use {prefetch_mode} prefetch dataloader: ' f'num_prefetch_queue = {num_prefetch_queue}') - return PrefetchDataLoader(num_prefetch_queue=num_prefetch_queue, **dataloader_args) - else: - # prefetch_mode=None: Normal dataloader - # prefetch_mode='cuda': dataloader for CUDAPrefetcher - return torch.utils.data.DataLoader(**dataloader_args) - - -def worker_init_fn(worker_id, num_workers, rank, seed): - # Set the worker seed to num_workers * rank + worker_id + seed - worker_seed = num_workers * rank + worker_id + seed - np.random.seed(worker_seed) - random.seed(worker_seed) diff --git a/CodeFormer/CodeFormer/basicsr/data/__pycache__/__init__.cpython-310.pyc b/CodeFormer/CodeFormer/basicsr/data/__pycache__/__init__.cpython-310.pyc deleted file mode 100644 index d47aaee382d0392ea9e70260b33a35c331223ded..0000000000000000000000000000000000000000 Binary files a/CodeFormer/CodeFormer/basicsr/data/__pycache__/__init__.cpython-310.pyc and /dev/null differ diff --git a/CodeFormer/CodeFormer/basicsr/data/__pycache__/data_sampler.cpython-310.pyc b/CodeFormer/CodeFormer/basicsr/data/__pycache__/data_sampler.cpython-310.pyc deleted file mode 100644 index 918a584d5229c36b5d663dd78fa8458721f163ba..0000000000000000000000000000000000000000 Binary files a/CodeFormer/CodeFormer/basicsr/data/__pycache__/data_sampler.cpython-310.pyc and /dev/null differ diff --git a/CodeFormer/CodeFormer/basicsr/data/__pycache__/prefetch_dataloader.cpython-310.pyc b/CodeFormer/CodeFormer/basicsr/data/__pycache__/prefetch_dataloader.cpython-310.pyc deleted file mode 100644 index 05ee4e2242cdcf7a41fd68294fa5bf4ee9fc6167..0000000000000000000000000000000000000000 Binary files a/CodeFormer/CodeFormer/basicsr/data/__pycache__/prefetch_dataloader.cpython-310.pyc and /dev/null differ diff --git a/CodeFormer/CodeFormer/basicsr/data/data_sampler.py b/CodeFormer/CodeFormer/basicsr/data/data_sampler.py deleted file mode 100644 index 575452d9f844a928f7f42296c81635cfbadec7c2..0000000000000000000000000000000000000000 --- a/CodeFormer/CodeFormer/basicsr/data/data_sampler.py +++ /dev/null @@ -1,48 +0,0 @@ -import math -import torch -from torch.utils.data.sampler import Sampler - - -class EnlargedSampler(Sampler): - """Sampler that restricts data loading to a subset of the dataset. - - Modified from torch.utils.data.distributed.DistributedSampler - Support enlarging the dataset for iteration-based training, for saving - time when restart the dataloader after each epoch - - Args: - dataset (torch.utils.data.Dataset): Dataset used for sampling. - num_replicas (int | None): Number of processes participating in - the training. It is usually the world_size. - rank (int | None): Rank of the current process within num_replicas. - ratio (int): Enlarging ratio. Default: 1. - """ - - def __init__(self, dataset, num_replicas, rank, ratio=1): - self.dataset = dataset - self.num_replicas = num_replicas - self.rank = rank - self.epoch = 0 - self.num_samples = math.ceil(len(self.dataset) * ratio / self.num_replicas) - self.total_size = self.num_samples * self.num_replicas - - def __iter__(self): - # deterministically shuffle based on epoch - g = torch.Generator() - g.manual_seed(self.epoch) - indices = torch.randperm(self.total_size, generator=g).tolist() - - dataset_size = len(self.dataset) - indices = [v % dataset_size for v in indices] - - # subsample - indices = indices[self.rank:self.total_size:self.num_replicas] - assert len(indices) == self.num_samples - - return iter(indices) - - def __len__(self): - return self.num_samples - - def set_epoch(self, epoch): - self.epoch = epoch diff --git a/CodeFormer/CodeFormer/basicsr/data/data_util.py b/CodeFormer/CodeFormer/basicsr/data/data_util.py deleted file mode 100644 index 63b1bce8e089485182c962e830a163d6d0059da8..0000000000000000000000000000000000000000 --- a/CodeFormer/CodeFormer/basicsr/data/data_util.py +++ /dev/null @@ -1,305 +0,0 @@ -import cv2 -import numpy as np -import torch -from os import path as osp -from torch.nn import functional as F - -from basicsr.data.transforms import mod_crop -from basicsr.utils import img2tensor, scandir - - -def read_img_seq(path, require_mod_crop=False, scale=1): - """Read a sequence of images from a given folder path. - - Args: - path (list[str] | str): List of image paths or image folder path. - require_mod_crop (bool): Require mod crop for each image. - Default: False. - scale (int): Scale factor for mod_crop. Default: 1. - - Returns: - Tensor: size (t, c, h, w), RGB, [0, 1]. - """ - if isinstance(path, list): - img_paths = path - else: - img_paths = sorted(list(scandir(path, full_path=True))) - imgs = [cv2.imread(v).astype(np.float32) / 255. for v in img_paths] - if require_mod_crop: - imgs = [mod_crop(img, scale) for img in imgs] - imgs = img2tensor(imgs, bgr2rgb=True, float32=True) - imgs = torch.stack(imgs, dim=0) - return imgs - - -def generate_frame_indices(crt_idx, max_frame_num, num_frames, padding='reflection'): - """Generate an index list for reading `num_frames` frames from a sequence - of images. - - Args: - crt_idx (int): Current center index. - max_frame_num (int): Max number of the sequence of images (from 1). - num_frames (int): Reading num_frames frames. - padding (str): Padding mode, one of - 'replicate' | 'reflection' | 'reflection_circle' | 'circle' - Examples: current_idx = 0, num_frames = 5 - The generated frame indices under different padding mode: - replicate: [0, 0, 0, 1, 2] - reflection: [2, 1, 0, 1, 2] - reflection_circle: [4, 3, 0, 1, 2] - circle: [3, 4, 0, 1, 2] - - Returns: - list[int]: A list of indices. - """ - assert num_frames % 2 == 1, 'num_frames should be an odd number.' - assert padding in ('replicate', 'reflection', 'reflection_circle', 'circle'), f'Wrong padding mode: {padding}.' - - max_frame_num = max_frame_num - 1 # start from 0 - num_pad = num_frames // 2 - - indices = [] - for i in range(crt_idx - num_pad, crt_idx + num_pad + 1): - if i < 0: - if padding == 'replicate': - pad_idx = 0 - elif padding == 'reflection': - pad_idx = -i - elif padding == 'reflection_circle': - pad_idx = crt_idx + num_pad - i - else: - pad_idx = num_frames + i - elif i > max_frame_num: - if padding == 'replicate': - pad_idx = max_frame_num - elif padding == 'reflection': - pad_idx = max_frame_num * 2 - i - elif padding == 'reflection_circle': - pad_idx = (crt_idx - num_pad) - (i - max_frame_num) - else: - pad_idx = i - num_frames - else: - pad_idx = i - indices.append(pad_idx) - return indices - - -def paired_paths_from_lmdb(folders, keys): - """Generate paired paths from lmdb files. - - Contents of lmdb. Taking the `lq.lmdb` for example, the file structure is: - - lq.lmdb - ├── data.mdb - ├── lock.mdb - ├── meta_info.txt - - The data.mdb and lock.mdb are standard lmdb files and you can refer to - https://lmdb.readthedocs.io/en/release/ for more details. - - The meta_info.txt is a specified txt file to record the meta information - of our datasets. It will be automatically created when preparing - datasets by our provided dataset tools. - Each line in the txt file records - 1)image name (with extension), - 2)image shape, - 3)compression level, separated by a white space. - Example: `baboon.png (120,125,3) 1` - - We use the image name without extension as the lmdb key. - Note that we use the same key for the corresponding lq and gt images. - - Args: - folders (list[str]): A list of folder path. The order of list should - be [input_folder, gt_folder]. - keys (list[str]): A list of keys identifying folders. The order should - be in consistent with folders, e.g., ['lq', 'gt']. - Note that this key is different from lmdb keys. - - Returns: - list[str]: Returned path list. - """ - assert len(folders) == 2, ('The len of folders should be 2 with [input_folder, gt_folder]. ' - f'But got {len(folders)}') - assert len(keys) == 2, ('The len of keys should be 2 with [input_key, gt_key]. ' f'But got {len(keys)}') - input_folder, gt_folder = folders - input_key, gt_key = keys - - if not (input_folder.endswith('.lmdb') and gt_folder.endswith('.lmdb')): - raise ValueError(f'{input_key} folder and {gt_key} folder should both in lmdb ' - f'formats. But received {input_key}: {input_folder}; ' - f'{gt_key}: {gt_folder}') - # ensure that the two meta_info files are the same - with open(osp.join(input_folder, 'meta_info.txt')) as fin: - input_lmdb_keys = [line.split('.')[0] for line in fin] - with open(osp.join(gt_folder, 'meta_info.txt')) as fin: - gt_lmdb_keys = [line.split('.')[0] for line in fin] - if set(input_lmdb_keys) != set(gt_lmdb_keys): - raise ValueError(f'Keys in {input_key}_folder and {gt_key}_folder are different.') - else: - paths = [] - for lmdb_key in sorted(input_lmdb_keys): - paths.append(dict([(f'{input_key}_path', lmdb_key), (f'{gt_key}_path', lmdb_key)])) - return paths - - -def paired_paths_from_meta_info_file(folders, keys, meta_info_file, filename_tmpl): - """Generate paired paths from an meta information file. - - Each line in the meta information file contains the image names and - image shape (usually for gt), separated by a white space. - - Example of an meta information file: - ``` - 0001_s001.png (480,480,3) - 0001_s002.png (480,480,3) - ``` - - Args: - folders (list[str]): A list of folder path. The order of list should - be [input_folder, gt_folder]. - keys (list[str]): A list of keys identifying folders. The order should - be in consistent with folders, e.g., ['lq', 'gt']. - meta_info_file (str): Path to the meta information file. - filename_tmpl (str): Template for each filename. Note that the - template excludes the file extension. Usually the filename_tmpl is - for files in the input folder. - - Returns: - list[str]: Returned path list. - """ - assert len(folders) == 2, ('The len of folders should be 2 with [input_folder, gt_folder]. ' - f'But got {len(folders)}') - assert len(keys) == 2, ('The len of keys should be 2 with [input_key, gt_key]. ' f'But got {len(keys)}') - input_folder, gt_folder = folders - input_key, gt_key = keys - - with open(meta_info_file, 'r') as fin: - gt_names = [line.split(' ')[0] for line in fin] - - paths = [] - for gt_name in gt_names: - basename, ext = osp.splitext(osp.basename(gt_name)) - input_name = f'{filename_tmpl.format(basename)}{ext}' - input_path = osp.join(input_folder, input_name) - gt_path = osp.join(gt_folder, gt_name) - paths.append(dict([(f'{input_key}_path', input_path), (f'{gt_key}_path', gt_path)])) - return paths - - -def paired_paths_from_folder(folders, keys, filename_tmpl): - """Generate paired paths from folders. - - Args: - folders (list[str]): A list of folder path. The order of list should - be [input_folder, gt_folder]. - keys (list[str]): A list of keys identifying folders. The order should - be in consistent with folders, e.g., ['lq', 'gt']. - filename_tmpl (str): Template for each filename. Note that the - template excludes the file extension. Usually the filename_tmpl is - for files in the input folder. - - Returns: - list[str]: Returned path list. - """ - assert len(folders) == 2, ('The len of folders should be 2 with [input_folder, gt_folder]. ' - f'But got {len(folders)}') - assert len(keys) == 2, ('The len of keys should be 2 with [input_key, gt_key]. ' f'But got {len(keys)}') - input_folder, gt_folder = folders - input_key, gt_key = keys - - input_paths = list(scandir(input_folder)) - gt_paths = list(scandir(gt_folder)) - assert len(input_paths) == len(gt_paths), (f'{input_key} and {gt_key} datasets have different number of images: ' - f'{len(input_paths)}, {len(gt_paths)}.') - paths = [] - for gt_path in gt_paths: - basename, ext = osp.splitext(osp.basename(gt_path)) - input_name = f'{filename_tmpl.format(basename)}{ext}' - input_path = osp.join(input_folder, input_name) - assert input_name in input_paths, (f'{input_name} is not in ' f'{input_key}_paths.') - gt_path = osp.join(gt_folder, gt_path) - paths.append(dict([(f'{input_key}_path', input_path), (f'{gt_key}_path', gt_path)])) - return paths - - -def paths_from_folder(folder): - """Generate paths from folder. - - Args: - folder (str): Folder path. - - Returns: - list[str]: Returned path list. - """ - - paths = list(scandir(folder)) - paths = [osp.join(folder, path) for path in paths] - return paths - - -def paths_from_lmdb(folder): - """Generate paths from lmdb. - - Args: - folder (str): Folder path. - - Returns: - list[str]: Returned path list. - """ - if not folder.endswith('.lmdb'): - raise ValueError(f'Folder {folder}folder should in lmdb format.') - with open(osp.join(folder, 'meta_info.txt')) as fin: - paths = [line.split('.')[0] for line in fin] - return paths - - -def generate_gaussian_kernel(kernel_size=13, sigma=1.6): - """Generate Gaussian kernel used in `duf_downsample`. - - Args: - kernel_size (int): Kernel size. Default: 13. - sigma (float): Sigma of the Gaussian kernel. Default: 1.6. - - Returns: - np.array: The Gaussian kernel. - """ - from scipy.ndimage import filters as filters - kernel = np.zeros((kernel_size, kernel_size)) - # set element at the middle to one, a dirac delta - kernel[kernel_size // 2, kernel_size // 2] = 1 - # gaussian-smooth the dirac, resulting in a gaussian filter - return filters.gaussian_filter(kernel, sigma) - - -def duf_downsample(x, kernel_size=13, scale=4): - """Downsamping with Gaussian kernel used in the DUF official code. - - Args: - x (Tensor): Frames to be downsampled, with shape (b, t, c, h, w). - kernel_size (int): Kernel size. Default: 13. - scale (int): Downsampling factor. Supported scale: (2, 3, 4). - Default: 4. - - Returns: - Tensor: DUF downsampled frames. - """ - assert scale in (2, 3, 4), f'Only support scale (2, 3, 4), but got {scale}.' - - squeeze_flag = False - if x.ndim == 4: - squeeze_flag = True - x = x.unsqueeze(0) - b, t, c, h, w = x.size() - x = x.view(-1, 1, h, w) - pad_w, pad_h = kernel_size // 2 + scale * 2, kernel_size // 2 + scale * 2 - x = F.pad(x, (pad_w, pad_w, pad_h, pad_h), 'reflect') - - gaussian_filter = generate_gaussian_kernel(kernel_size, 0.4 * scale) - gaussian_filter = torch.from_numpy(gaussian_filter).type_as(x).unsqueeze(0).unsqueeze(0) - x = F.conv2d(x, gaussian_filter, stride=scale) - x = x[:, :, 2:-2, 2:-2] - x = x.view(b, t, c, x.size(2), x.size(3)) - if squeeze_flag: - x = x.squeeze(0) - return x diff --git a/CodeFormer/CodeFormer/basicsr/data/prefetch_dataloader.py b/CodeFormer/CodeFormer/basicsr/data/prefetch_dataloader.py deleted file mode 100644 index 5088425050d4cc98114a9b93eb50ea60273f35a0..0000000000000000000000000000000000000000 --- a/CodeFormer/CodeFormer/basicsr/data/prefetch_dataloader.py +++ /dev/null @@ -1,125 +0,0 @@ -import queue as Queue -import threading -import torch -from torch.utils.data import DataLoader - - -class PrefetchGenerator(threading.Thread): - """A general prefetch generator. - - Ref: - https://stackoverflow.com/questions/7323664/python-generator-pre-fetch - - Args: - generator: Python generator. - num_prefetch_queue (int): Number of prefetch queue. - """ - - def __init__(self, generator, num_prefetch_queue): - threading.Thread.__init__(self) - self.queue = Queue.Queue(num_prefetch_queue) - self.generator = generator - self.daemon = True - self.start() - - def run(self): - for item in self.generator: - self.queue.put(item) - self.queue.put(None) - - def __next__(self): - next_item = self.queue.get() - if next_item is None: - raise StopIteration - return next_item - - def __iter__(self): - return self - - -class PrefetchDataLoader(DataLoader): - """Prefetch version of dataloader. - - Ref: - https://github.com/IgorSusmelj/pytorch-styleguide/issues/5# - - TODO: - Need to test on single gpu and ddp (multi-gpu). There is a known issue in - ddp. - - Args: - num_prefetch_queue (int): Number of prefetch queue. - kwargs (dict): Other arguments for dataloader. - """ - - def __init__(self, num_prefetch_queue, **kwargs): - self.num_prefetch_queue = num_prefetch_queue - super(PrefetchDataLoader, self).__init__(**kwargs) - - def __iter__(self): - return PrefetchGenerator(super().__iter__(), self.num_prefetch_queue) - - -class CPUPrefetcher(): - """CPU prefetcher. - - Args: - loader: Dataloader. - """ - - def __init__(self, loader): - self.ori_loader = loader - self.loader = iter(loader) - - def next(self): - try: - return next(self.loader) - except StopIteration: - return None - - def reset(self): - self.loader = iter(self.ori_loader) - - -class CUDAPrefetcher(): - """CUDA prefetcher. - - Ref: - https://github.com/NVIDIA/apex/issues/304# - - It may consums more GPU memory. - - Args: - loader: Dataloader. - opt (dict): Options. - """ - - def __init__(self, loader, opt): - self.ori_loader = loader - self.loader = iter(loader) - self.opt = opt - self.stream = torch.cuda.Stream() - self.device = torch.device('cuda' if opt['num_gpu'] != 0 else 'cpu') - self.preload() - - def preload(self): - try: - self.batch = next(self.loader) # self.batch is a dict - except StopIteration: - self.batch = None - return None - # put tensors to gpu - with torch.cuda.stream(self.stream): - for k, v in self.batch.items(): - if torch.is_tensor(v): - self.batch[k] = self.batch[k].to(device=self.device, non_blocking=True) - - def next(self): - torch.cuda.current_stream().wait_stream(self.stream) - batch = self.batch - self.preload() - return batch - - def reset(self): - self.loader = iter(self.ori_loader) - self.preload() diff --git a/CodeFormer/CodeFormer/basicsr/data/transforms.py b/CodeFormer/CodeFormer/basicsr/data/transforms.py deleted file mode 100644 index aead9dc73ed063e1c5865040eaa2652b26aa3ad3..0000000000000000000000000000000000000000 --- a/CodeFormer/CodeFormer/basicsr/data/transforms.py +++ /dev/null @@ -1,165 +0,0 @@ -import cv2 -import random - - -def mod_crop(img, scale): - """Mod crop images, used during testing. - - Args: - img (ndarray): Input image. - scale (int): Scale factor. - - Returns: - ndarray: Result image. - """ - img = img.copy() - if img.ndim in (2, 3): - h, w = img.shape[0], img.shape[1] - h_remainder, w_remainder = h % scale, w % scale - img = img[:h - h_remainder, :w - w_remainder, ...] - else: - raise ValueError(f'Wrong img ndim: {img.ndim}.') - return img - - -def paired_random_crop(img_gts, img_lqs, gt_patch_size, scale, gt_path): - """Paired random crop. - - It crops lists of lq and gt images with corresponding locations. - - Args: - img_gts (list[ndarray] | ndarray): GT images. Note that all images - should have the same shape. If the input is an ndarray, it will - be transformed to a list containing itself. - img_lqs (list[ndarray] | ndarray): LQ images. Note that all images - should have the same shape. If the input is an ndarray, it will - be transformed to a list containing itself. - gt_patch_size (int): GT patch size. - scale (int): Scale factor. - gt_path (str): Path to ground-truth. - - Returns: - list[ndarray] | ndarray: GT images and LQ images. If returned results - only have one element, just return ndarray. - """ - - if not isinstance(img_gts, list): - img_gts = [img_gts] - if not isinstance(img_lqs, list): - img_lqs = [img_lqs] - - h_lq, w_lq, _ = img_lqs[0].shape - h_gt, w_gt, _ = img_gts[0].shape - lq_patch_size = gt_patch_size // scale - - if h_gt != h_lq * scale or w_gt != w_lq * scale: - raise ValueError(f'Scale mismatches. GT ({h_gt}, {w_gt}) is not {scale}x ', - f'multiplication of LQ ({h_lq}, {w_lq}).') - if h_lq < lq_patch_size or w_lq < lq_patch_size: - raise ValueError(f'LQ ({h_lq}, {w_lq}) is smaller than patch size ' - f'({lq_patch_size}, {lq_patch_size}). ' - f'Please remove {gt_path}.') - - # randomly choose top and left coordinates for lq patch - top = random.randint(0, h_lq - lq_patch_size) - left = random.randint(0, w_lq - lq_patch_size) - - # crop lq patch - img_lqs = [v[top:top + lq_patch_size, left:left + lq_patch_size, ...] for v in img_lqs] - - # crop corresponding gt patch - top_gt, left_gt = int(top * scale), int(left * scale) - img_gts = [v[top_gt:top_gt + gt_patch_size, left_gt:left_gt + gt_patch_size, ...] for v in img_gts] - if len(img_gts) == 1: - img_gts = img_gts[0] - if len(img_lqs) == 1: - img_lqs = img_lqs[0] - return img_gts, img_lqs - - -def augment(imgs, hflip=True, rotation=True, flows=None, return_status=False): - """Augment: horizontal flips OR rotate (0, 90, 180, 270 degrees). - - We use vertical flip and transpose for rotation implementation. - All the images in the list use the same augmentation. - - Args: - imgs (list[ndarray] | ndarray): Images to be augmented. If the input - is an ndarray, it will be transformed to a list. - hflip (bool): Horizontal flip. Default: True. - rotation (bool): Ratotation. Default: True. - flows (list[ndarray]: Flows to be augmented. If the input is an - ndarray, it will be transformed to a list. - Dimension is (h, w, 2). Default: None. - return_status (bool): Return the status of flip and rotation. - Default: False. - - Returns: - list[ndarray] | ndarray: Augmented images and flows. If returned - results only have one element, just return ndarray. - - """ - hflip = hflip and random.random() < 0.5 - vflip = rotation and random.random() < 0.5 - rot90 = rotation and random.random() < 0.5 - - def _augment(img): - if hflip: # horizontal - cv2.flip(img, 1, img) - if vflip: # vertical - cv2.flip(img, 0, img) - if rot90: - img = img.transpose(1, 0, 2) - return img - - def _augment_flow(flow): - if hflip: # horizontal - cv2.flip(flow, 1, flow) - flow[:, :, 0] *= -1 - if vflip: # vertical - cv2.flip(flow, 0, flow) - flow[:, :, 1] *= -1 - if rot90: - flow = flow.transpose(1, 0, 2) - flow = flow[:, :, [1, 0]] - return flow - - if not isinstance(imgs, list): - imgs = [imgs] - imgs = [_augment(img) for img in imgs] - if len(imgs) == 1: - imgs = imgs[0] - - if flows is not None: - if not isinstance(flows, list): - flows = [flows] - flows = [_augment_flow(flow) for flow in flows] - if len(flows) == 1: - flows = flows[0] - return imgs, flows - else: - if return_status: - return imgs, (hflip, vflip, rot90) - else: - return imgs - - -def img_rotate(img, angle, center=None, scale=1.0): - """Rotate image. - - Args: - img (ndarray): Image to be rotated. - angle (float): Rotation angle in degrees. Positive values mean - counter-clockwise rotation. - center (tuple[int]): Rotation center. If the center is None, - initialize it as the center of the image. Default: None. - scale (float): Isotropic scale factor. Default: 1.0. - """ - (h, w) = img.shape[:2] - - if center is None: - center = (w // 2, h // 2) - - matrix = cv2.getRotationMatrix2D(center, angle, scale) - rotated_img = cv2.warpAffine(img, matrix, (w, h)) - return rotated_img diff --git a/CodeFormer/CodeFormer/basicsr/losses/__init__.py b/CodeFormer/CodeFormer/basicsr/losses/__init__.py deleted file mode 100644 index 2b184e74c861e6fca0c548692a9a949a6100b0aa..0000000000000000000000000000000000000000 --- a/CodeFormer/CodeFormer/basicsr/losses/__init__.py +++ /dev/null @@ -1,26 +0,0 @@ -from copy import deepcopy - -from basicsr.utils import get_root_logger -from basicsr.utils.registry import LOSS_REGISTRY -from .losses import (CharbonnierLoss, GANLoss, L1Loss, MSELoss, PerceptualLoss, WeightedTVLoss, g_path_regularize, - gradient_penalty_loss, r1_penalty) - -__all__ = [ - 'L1Loss', 'MSELoss', 'CharbonnierLoss', 'WeightedTVLoss', 'PerceptualLoss', 'GANLoss', 'gradient_penalty_loss', - 'r1_penalty', 'g_path_regularize' -] - - -def build_loss(opt): - """Build loss from options. - - Args: - opt (dict): Configuration. It must constain: - type (str): Model type. - """ - opt = deepcopy(opt) - loss_type = opt.pop('type') - loss = LOSS_REGISTRY.get(loss_type)(**opt) - logger = get_root_logger() - logger.info(f'Loss [{loss.__class__.__name__}] is created.') - return loss diff --git a/CodeFormer/CodeFormer/basicsr/losses/__pycache__/__init__.cpython-310.pyc b/CodeFormer/CodeFormer/basicsr/losses/__pycache__/__init__.cpython-310.pyc deleted file mode 100644 index ec814a407cf9bbd91791feeff2d076f812ebd0c5..0000000000000000000000000000000000000000 Binary files a/CodeFormer/CodeFormer/basicsr/losses/__pycache__/__init__.cpython-310.pyc and /dev/null differ diff --git a/CodeFormer/CodeFormer/basicsr/losses/__pycache__/loss_util.cpython-310.pyc b/CodeFormer/CodeFormer/basicsr/losses/__pycache__/loss_util.cpython-310.pyc deleted file mode 100644 index 7afa4b2690813167a6b6b9377e77e2ed576ed409..0000000000000000000000000000000000000000 Binary files a/CodeFormer/CodeFormer/basicsr/losses/__pycache__/loss_util.cpython-310.pyc and /dev/null differ diff --git a/CodeFormer/CodeFormer/basicsr/losses/__pycache__/losses.cpython-310.pyc b/CodeFormer/CodeFormer/basicsr/losses/__pycache__/losses.cpython-310.pyc deleted file mode 100644 index cc54e557209c5b55b0bff2ef8892a7661576fc42..0000000000000000000000000000000000000000 Binary files a/CodeFormer/CodeFormer/basicsr/losses/__pycache__/losses.cpython-310.pyc and /dev/null differ diff --git a/CodeFormer/CodeFormer/basicsr/losses/loss_util.py b/CodeFormer/CodeFormer/basicsr/losses/loss_util.py deleted file mode 100644 index 744eeb46d1f3b5a7b4553ca23237ddd9c899a698..0000000000000000000000000000000000000000 --- a/CodeFormer/CodeFormer/basicsr/losses/loss_util.py +++ /dev/null @@ -1,95 +0,0 @@ -import functools -from torch.nn import functional as F - - -def reduce_loss(loss, reduction): - """Reduce loss as specified. - - Args: - loss (Tensor): Elementwise loss tensor. - reduction (str): Options are 'none', 'mean' and 'sum'. - - Returns: - Tensor: Reduced loss tensor. - """ - reduction_enum = F._Reduction.get_enum(reduction) - # none: 0, elementwise_mean:1, sum: 2 - if reduction_enum == 0: - return loss - elif reduction_enum == 1: - return loss.mean() - else: - return loss.sum() - - -def weight_reduce_loss(loss, weight=None, reduction='mean'): - """Apply element-wise weight and reduce loss. - - Args: - loss (Tensor): Element-wise loss. - weight (Tensor): Element-wise weights. Default: None. - reduction (str): Same as built-in losses of PyTorch. Options are - 'none', 'mean' and 'sum'. Default: 'mean'. - - Returns: - Tensor: Loss values. - """ - # if weight is specified, apply element-wise weight - if weight is not None: - assert weight.dim() == loss.dim() - assert weight.size(1) == 1 or weight.size(1) == loss.size(1) - loss = loss * weight - - # if weight is not specified or reduction is sum, just reduce the loss - if weight is None or reduction == 'sum': - loss = reduce_loss(loss, reduction) - # if reduction is mean, then compute mean over weight region - elif reduction == 'mean': - if weight.size(1) > 1: - weight = weight.sum() - else: - weight = weight.sum() * loss.size(1) - loss = loss.sum() / weight - - return loss - - -def weighted_loss(loss_func): - """Create a weighted version of a given loss function. - - To use this decorator, the loss function must have the signature like - `loss_func(pred, target, **kwargs)`. The function only needs to compute - element-wise loss without any reduction. This decorator will add weight - and reduction arguments to the function. The decorated function will have - the signature like `loss_func(pred, target, weight=None, reduction='mean', - **kwargs)`. - - :Example: - - >>> import torch - >>> @weighted_loss - >>> def l1_loss(pred, target): - >>> return (pred - target).abs() - - >>> pred = torch.Tensor([0, 2, 3]) - >>> target = torch.Tensor([1, 1, 1]) - >>> weight = torch.Tensor([1, 0, 1]) - - >>> l1_loss(pred, target) - tensor(1.3333) - >>> l1_loss(pred, target, weight) - tensor(1.5000) - >>> l1_loss(pred, target, reduction='none') - tensor([1., 1., 2.]) - >>> l1_loss(pred, target, weight, reduction='sum') - tensor(3.) - """ - - @functools.wraps(loss_func) - def wrapper(pred, target, weight=None, reduction='mean', **kwargs): - # get element-wise loss - loss = loss_func(pred, target, **kwargs) - loss = weight_reduce_loss(loss, weight, reduction) - return loss - - return wrapper diff --git a/CodeFormer/CodeFormer/basicsr/losses/losses.py b/CodeFormer/CodeFormer/basicsr/losses/losses.py deleted file mode 100644 index 1bcf272cfb756d99451a3005567ea4d4c9059067..0000000000000000000000000000000000000000 --- a/CodeFormer/CodeFormer/basicsr/losses/losses.py +++ /dev/null @@ -1,455 +0,0 @@ -import math -import lpips -import torch -from torch import autograd as autograd -from torch import nn as nn -from torch.nn import functional as F - -from basicsr.archs.vgg_arch import VGGFeatureExtractor -from basicsr.utils.registry import LOSS_REGISTRY -from .loss_util import weighted_loss - -_reduction_modes = ['none', 'mean', 'sum'] - - -@weighted_loss -def l1_loss(pred, target): - return F.l1_loss(pred, target, reduction='none') - - -@weighted_loss -def mse_loss(pred, target): - return F.mse_loss(pred, target, reduction='none') - - -@weighted_loss -def charbonnier_loss(pred, target, eps=1e-12): - return torch.sqrt((pred - target)**2 + eps) - - -@LOSS_REGISTRY.register() -class L1Loss(nn.Module): - """L1 (mean absolute error, MAE) loss. - - Args: - loss_weight (float): Loss weight for L1 loss. Default: 1.0. - reduction (str): Specifies the reduction to apply to the output. - Supported choices are 'none' | 'mean' | 'sum'. Default: 'mean'. - """ - - def __init__(self, loss_weight=1.0, reduction='mean'): - super(L1Loss, self).__init__() - if reduction not in ['none', 'mean', 'sum']: - raise ValueError(f'Unsupported reduction mode: {reduction}. ' f'Supported ones are: {_reduction_modes}') - - self.loss_weight = loss_weight - self.reduction = reduction - - def forward(self, pred, target, weight=None, **kwargs): - """ - Args: - pred (Tensor): of shape (N, C, H, W). Predicted tensor. - target (Tensor): of shape (N, C, H, W). Ground truth tensor. - weight (Tensor, optional): of shape (N, C, H, W). Element-wise - weights. Default: None. - """ - return self.loss_weight * l1_loss(pred, target, weight, reduction=self.reduction) - - -@LOSS_REGISTRY.register() -class MSELoss(nn.Module): - """MSE (L2) loss. - - Args: - loss_weight (float): Loss weight for MSE loss. Default: 1.0. - reduction (str): Specifies the reduction to apply to the output. - Supported choices are 'none' | 'mean' | 'sum'. Default: 'mean'. - """ - - def __init__(self, loss_weight=1.0, reduction='mean'): - super(MSELoss, self).__init__() - if reduction not in ['none', 'mean', 'sum']: - raise ValueError(f'Unsupported reduction mode: {reduction}. ' f'Supported ones are: {_reduction_modes}') - - self.loss_weight = loss_weight - self.reduction = reduction - - def forward(self, pred, target, weight=None, **kwargs): - """ - Args: - pred (Tensor): of shape (N, C, H, W). Predicted tensor. - target (Tensor): of shape (N, C, H, W). Ground truth tensor. - weight (Tensor, optional): of shape (N, C, H, W). Element-wise - weights. Default: None. - """ - return self.loss_weight * mse_loss(pred, target, weight, reduction=self.reduction) - - -@LOSS_REGISTRY.register() -class CharbonnierLoss(nn.Module): - """Charbonnier loss (one variant of Robust L1Loss, a differentiable - variant of L1Loss). - - Described in "Deep Laplacian Pyramid Networks for Fast and Accurate - Super-Resolution". - - Args: - loss_weight (float): Loss weight for L1 loss. Default: 1.0. - reduction (str): Specifies the reduction to apply to the output. - Supported choices are 'none' | 'mean' | 'sum'. Default: 'mean'. - eps (float): A value used to control the curvature near zero. - Default: 1e-12. - """ - - def __init__(self, loss_weight=1.0, reduction='mean', eps=1e-12): - super(CharbonnierLoss, self).__init__() - if reduction not in ['none', 'mean', 'sum']: - raise ValueError(f'Unsupported reduction mode: {reduction}. ' f'Supported ones are: {_reduction_modes}') - - self.loss_weight = loss_weight - self.reduction = reduction - self.eps = eps - - def forward(self, pred, target, weight=None, **kwargs): - """ - Args: - pred (Tensor): of shape (N, C, H, W). Predicted tensor. - target (Tensor): of shape (N, C, H, W). Ground truth tensor. - weight (Tensor, optional): of shape (N, C, H, W). Element-wise - weights. Default: None. - """ - return self.loss_weight * charbonnier_loss(pred, target, weight, eps=self.eps, reduction=self.reduction) - - -@LOSS_REGISTRY.register() -class WeightedTVLoss(L1Loss): - """Weighted TV loss. - - Args: - loss_weight (float): Loss weight. Default: 1.0. - """ - - def __init__(self, loss_weight=1.0): - super(WeightedTVLoss, self).__init__(loss_weight=loss_weight) - - def forward(self, pred, weight=None): - y_diff = super(WeightedTVLoss, self).forward(pred[:, :, :-1, :], pred[:, :, 1:, :], weight=weight[:, :, :-1, :]) - x_diff = super(WeightedTVLoss, self).forward(pred[:, :, :, :-1], pred[:, :, :, 1:], weight=weight[:, :, :, :-1]) - - loss = x_diff + y_diff - - return loss - - -@LOSS_REGISTRY.register() -class PerceptualLoss(nn.Module): - """Perceptual loss with commonly used style loss. - - Args: - layer_weights (dict): The weight for each layer of vgg feature. - Here is an example: {'conv5_4': 1.}, which means the conv5_4 - feature layer (before relu5_4) will be extracted with weight - 1.0 in calculting losses. - vgg_type (str): The type of vgg network used as feature extractor. - Default: 'vgg19'. - use_input_norm (bool): If True, normalize the input image in vgg. - Default: True. - range_norm (bool): If True, norm images with range [-1, 1] to [0, 1]. - Default: False. - perceptual_weight (float): If `perceptual_weight > 0`, the perceptual - loss will be calculated and the loss will multiplied by the - weight. Default: 1.0. - style_weight (float): If `style_weight > 0`, the style loss will be - calculated and the loss will multiplied by the weight. - Default: 0. - criterion (str): Criterion used for perceptual loss. Default: 'l1'. - """ - - def __init__(self, - layer_weights, - vgg_type='vgg19', - use_input_norm=True, - range_norm=False, - perceptual_weight=1.0, - style_weight=0., - criterion='l1'): - super(PerceptualLoss, self).__init__() - self.perceptual_weight = perceptual_weight - self.style_weight = style_weight - self.layer_weights = layer_weights - self.vgg = VGGFeatureExtractor( - layer_name_list=list(layer_weights.keys()), - vgg_type=vgg_type, - use_input_norm=use_input_norm, - range_norm=range_norm) - - self.criterion_type = criterion - if self.criterion_type == 'l1': - self.criterion = torch.nn.L1Loss() - elif self.criterion_type == 'l2': - self.criterion = torch.nn.L2loss() - elif self.criterion_type == 'mse': - self.criterion = torch.nn.MSELoss(reduction='mean') - elif self.criterion_type == 'fro': - self.criterion = None - else: - raise NotImplementedError(f'{criterion} criterion has not been supported.') - - def forward(self, x, gt): - """Forward function. - - Args: - x (Tensor): Input tensor with shape (n, c, h, w). - gt (Tensor): Ground-truth tensor with shape (n, c, h, w). - - Returns: - Tensor: Forward results. - """ - # extract vgg features - x_features = self.vgg(x) - gt_features = self.vgg(gt.detach()) - - # calculate perceptual loss - if self.perceptual_weight > 0: - percep_loss = 0 - for k in x_features.keys(): - if self.criterion_type == 'fro': - percep_loss += torch.norm(x_features[k] - gt_features[k], p='fro') * self.layer_weights[k] - else: - percep_loss += self.criterion(x_features[k], gt_features[k]) * self.layer_weights[k] - percep_loss *= self.perceptual_weight - else: - percep_loss = None - - # calculate style loss - if self.style_weight > 0: - style_loss = 0 - for k in x_features.keys(): - if self.criterion_type == 'fro': - style_loss += torch.norm( - self._gram_mat(x_features[k]) - self._gram_mat(gt_features[k]), p='fro') * self.layer_weights[k] - else: - style_loss += self.criterion(self._gram_mat(x_features[k]), self._gram_mat( - gt_features[k])) * self.layer_weights[k] - style_loss *= self.style_weight - else: - style_loss = None - - return percep_loss, style_loss - - def _gram_mat(self, x): - """Calculate Gram matrix. - - Args: - x (torch.Tensor): Tensor with shape of (n, c, h, w). - - Returns: - torch.Tensor: Gram matrix. - """ - n, c, h, w = x.size() - features = x.view(n, c, w * h) - features_t = features.transpose(1, 2) - gram = features.bmm(features_t) / (c * h * w) - return gram - - -@LOSS_REGISTRY.register() -class LPIPSLoss(nn.Module): - def __init__(self, - loss_weight=1.0, - use_input_norm=True, - range_norm=False,): - super(LPIPSLoss, self).__init__() - self.perceptual = lpips.LPIPS(net="vgg", spatial=False).eval() - self.loss_weight = loss_weight - self.use_input_norm = use_input_norm - self.range_norm = range_norm - - if self.use_input_norm: - # the mean is for image with range [0, 1] - self.register_buffer('mean', torch.Tensor([0.485, 0.456, 0.406]).view(1, 3, 1, 1)) - # the std is for image with range [0, 1] - self.register_buffer('std', torch.Tensor([0.229, 0.224, 0.225]).view(1, 3, 1, 1)) - - def forward(self, pred, target): - if self.range_norm: - pred = (pred + 1) / 2 - target = (target + 1) / 2 - if self.use_input_norm: - pred = (pred - self.mean) / self.std - target = (target - self.mean) / self.std - lpips_loss = self.perceptual(target.contiguous(), pred.contiguous()) - return self.loss_weight * lpips_loss.mean() - - -@LOSS_REGISTRY.register() -class GANLoss(nn.Module): - """Define GAN loss. - - Args: - gan_type (str): Support 'vanilla', 'lsgan', 'wgan', 'hinge'. - real_label_val (float): The value for real label. Default: 1.0. - fake_label_val (float): The value for fake label. Default: 0.0. - loss_weight (float): Loss weight. Default: 1.0. - Note that loss_weight is only for generators; and it is always 1.0 - for discriminators. - """ - - def __init__(self, gan_type, real_label_val=1.0, fake_label_val=0.0, loss_weight=1.0): - super(GANLoss, self).__init__() - self.gan_type = gan_type - self.loss_weight = loss_weight - self.real_label_val = real_label_val - self.fake_label_val = fake_label_val - - if self.gan_type == 'vanilla': - self.loss = nn.BCEWithLogitsLoss() - elif self.gan_type == 'lsgan': - self.loss = nn.MSELoss() - elif self.gan_type == 'wgan': - self.loss = self._wgan_loss - elif self.gan_type == 'wgan_softplus': - self.loss = self._wgan_softplus_loss - elif self.gan_type == 'hinge': - self.loss = nn.ReLU() - else: - raise NotImplementedError(f'GAN type {self.gan_type} is not implemented.') - - def _wgan_loss(self, input, target): - """wgan loss. - - Args: - input (Tensor): Input tensor. - target (bool): Target label. - - Returns: - Tensor: wgan loss. - """ - return -input.mean() if target else input.mean() - - def _wgan_softplus_loss(self, input, target): - """wgan loss with soft plus. softplus is a smooth approximation to the - ReLU function. - - In StyleGAN2, it is called: - Logistic loss for discriminator; - Non-saturating loss for generator. - - Args: - input (Tensor): Input tensor. - target (bool): Target label. - - Returns: - Tensor: wgan loss. - """ - return F.softplus(-input).mean() if target else F.softplus(input).mean() - - def get_target_label(self, input, target_is_real): - """Get target label. - - Args: - input (Tensor): Input tensor. - target_is_real (bool): Whether the target is real or fake. - - Returns: - (bool | Tensor): Target tensor. Return bool for wgan, otherwise, - return Tensor. - """ - - if self.gan_type in ['wgan', 'wgan_softplus']: - return target_is_real - target_val = (self.real_label_val if target_is_real else self.fake_label_val) - return input.new_ones(input.size()) * target_val - - def forward(self, input, target_is_real, is_disc=False): - """ - Args: - input (Tensor): The input for the loss module, i.e., the network - prediction. - target_is_real (bool): Whether the targe is real or fake. - is_disc (bool): Whether the loss for discriminators or not. - Default: False. - - Returns: - Tensor: GAN loss value. - """ - if self.gan_type == 'hinge': - if is_disc: # for discriminators in hinge-gan - input = -input if target_is_real else input - loss = self.loss(1 + input).mean() - else: # for generators in hinge-gan - loss = -input.mean() - else: # other gan types - target_label = self.get_target_label(input, target_is_real) - loss = self.loss(input, target_label) - - # loss_weight is always 1.0 for discriminators - return loss if is_disc else loss * self.loss_weight - - -def r1_penalty(real_pred, real_img): - """R1 regularization for discriminator. The core idea is to - penalize the gradient on real data alone: when the - generator distribution produces the true data distribution - and the discriminator is equal to 0 on the data manifold, the - gradient penalty ensures that the discriminator cannot create - a non-zero gradient orthogonal to the data manifold without - suffering a loss in the GAN game. - - Ref: - Eq. 9 in Which training methods for GANs do actually converge. - """ - grad_real = autograd.grad(outputs=real_pred.sum(), inputs=real_img, create_graph=True)[0] - grad_penalty = grad_real.pow(2).view(grad_real.shape[0], -1).sum(1).mean() - return grad_penalty - - -def g_path_regularize(fake_img, latents, mean_path_length, decay=0.01): - noise = torch.randn_like(fake_img) / math.sqrt(fake_img.shape[2] * fake_img.shape[3]) - grad = autograd.grad(outputs=(fake_img * noise).sum(), inputs=latents, create_graph=True)[0] - path_lengths = torch.sqrt(grad.pow(2).sum(2).mean(1)) - - path_mean = mean_path_length + decay * (path_lengths.mean() - mean_path_length) - - path_penalty = (path_lengths - path_mean).pow(2).mean() - - return path_penalty, path_lengths.detach().mean(), path_mean.detach() - - -def gradient_penalty_loss(discriminator, real_data, fake_data, weight=None): - """Calculate gradient penalty for wgan-gp. - - Args: - discriminator (nn.Module): Network for the discriminator. - real_data (Tensor): Real input data. - fake_data (Tensor): Fake input data. - weight (Tensor): Weight tensor. Default: None. - - Returns: - Tensor: A tensor for gradient penalty. - """ - - batch_size = real_data.size(0) - alpha = real_data.new_tensor(torch.rand(batch_size, 1, 1, 1)) - - # interpolate between real_data and fake_data - interpolates = alpha * real_data + (1. - alpha) * fake_data - interpolates = autograd.Variable(interpolates, requires_grad=True) - - disc_interpolates = discriminator(interpolates) - gradients = autograd.grad( - outputs=disc_interpolates, - inputs=interpolates, - grad_outputs=torch.ones_like(disc_interpolates), - create_graph=True, - retain_graph=True, - only_inputs=True)[0] - - if weight is not None: - gradients = gradients * weight - - gradients_penalty = ((gradients.norm(2, dim=1) - 1)**2).mean() - if weight is not None: - gradients_penalty /= torch.mean(weight) - - return gradients_penalty diff --git a/CodeFormer/CodeFormer/basicsr/metrics/__init__.py b/CodeFormer/CodeFormer/basicsr/metrics/__init__.py deleted file mode 100644 index 19d55cc8321f124c918d78465b053aef67f13a33..0000000000000000000000000000000000000000 --- a/CodeFormer/CodeFormer/basicsr/metrics/__init__.py +++ /dev/null @@ -1,19 +0,0 @@ -from copy import deepcopy - -from basicsr.utils.registry import METRIC_REGISTRY -from .psnr_ssim import calculate_psnr, calculate_ssim - -__all__ = ['calculate_psnr', 'calculate_ssim'] - - -def calculate_metric(data, opt): - """Calculate metric from data and options. - - Args: - opt (dict): Configuration. It must constain: - type (str): Model type. - """ - opt = deepcopy(opt) - metric_type = opt.pop('type') - metric = METRIC_REGISTRY.get(metric_type)(**data, **opt) - return metric diff --git a/CodeFormer/CodeFormer/basicsr/metrics/__pycache__/__init__.cpython-310.pyc b/CodeFormer/CodeFormer/basicsr/metrics/__pycache__/__init__.cpython-310.pyc deleted file mode 100644 index 62f806a550bb9687bb8cb2e585e0a508a0855a2c..0000000000000000000000000000000000000000 Binary files a/CodeFormer/CodeFormer/basicsr/metrics/__pycache__/__init__.cpython-310.pyc and /dev/null differ diff --git a/CodeFormer/CodeFormer/basicsr/metrics/__pycache__/metric_util.cpython-310.pyc b/CodeFormer/CodeFormer/basicsr/metrics/__pycache__/metric_util.cpython-310.pyc deleted file mode 100644 index b956b9b1a9ebb898118368292d40639533e259f1..0000000000000000000000000000000000000000 Binary files a/CodeFormer/CodeFormer/basicsr/metrics/__pycache__/metric_util.cpython-310.pyc and /dev/null differ diff --git a/CodeFormer/CodeFormer/basicsr/metrics/__pycache__/psnr_ssim.cpython-310.pyc b/CodeFormer/CodeFormer/basicsr/metrics/__pycache__/psnr_ssim.cpython-310.pyc deleted file mode 100644 index 57c96d36b759caadbb9219286b5eb35aad512032..0000000000000000000000000000000000000000 Binary files a/CodeFormer/CodeFormer/basicsr/metrics/__pycache__/psnr_ssim.cpython-310.pyc and /dev/null differ diff --git a/CodeFormer/CodeFormer/basicsr/metrics/metric_util.py b/CodeFormer/CodeFormer/basicsr/metrics/metric_util.py deleted file mode 100644 index 4d18f0f7816431bed6af9d58319c6435bdf5c971..0000000000000000000000000000000000000000 --- a/CodeFormer/CodeFormer/basicsr/metrics/metric_util.py +++ /dev/null @@ -1,45 +0,0 @@ -import numpy as np - -from basicsr.utils.matlab_functions import bgr2ycbcr - - -def reorder_image(img, input_order='HWC'): - """Reorder images to 'HWC' order. - - If the input_order is (h, w), return (h, w, 1); - If the input_order is (c, h, w), return (h, w, c); - If the input_order is (h, w, c), return as it is. - - Args: - img (ndarray): Input image. - input_order (str): Whether the input order is 'HWC' or 'CHW'. - If the input image shape is (h, w), input_order will not have - effects. Default: 'HWC'. - - Returns: - ndarray: reordered image. - """ - - if input_order not in ['HWC', 'CHW']: - raise ValueError(f'Wrong input_order {input_order}. Supported input_orders are ' "'HWC' and 'CHW'") - if len(img.shape) == 2: - img = img[..., None] - if input_order == 'CHW': - img = img.transpose(1, 2, 0) - return img - - -def to_y_channel(img): - """Change to Y channel of YCbCr. - - Args: - img (ndarray): Images with range [0, 255]. - - Returns: - (ndarray): Images with range [0, 255] (float type) without round. - """ - img = img.astype(np.float32) / 255. - if img.ndim == 3 and img.shape[2] == 3: - img = bgr2ycbcr(img, y_only=True) - img = img[..., None] - return img * 255. diff --git a/CodeFormer/CodeFormer/basicsr/metrics/psnr_ssim.py b/CodeFormer/CodeFormer/basicsr/metrics/psnr_ssim.py deleted file mode 100644 index bbd950699c2495880236883861d9e199f900eae8..0000000000000000000000000000000000000000 --- a/CodeFormer/CodeFormer/basicsr/metrics/psnr_ssim.py +++ /dev/null @@ -1,128 +0,0 @@ -import cv2 -import numpy as np - -from basicsr.metrics.metric_util import reorder_image, to_y_channel -from basicsr.utils.registry import METRIC_REGISTRY - - -@METRIC_REGISTRY.register() -def calculate_psnr(img1, img2, crop_border, input_order='HWC', test_y_channel=False): - """Calculate PSNR (Peak Signal-to-Noise Ratio). - - Ref: https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio - - Args: - img1 (ndarray): Images with range [0, 255]. - img2 (ndarray): Images with range [0, 255]. - crop_border (int): Cropped pixels in each edge of an image. These - pixels are not involved in the PSNR calculation. - input_order (str): Whether the input order is 'HWC' or 'CHW'. - Default: 'HWC'. - test_y_channel (bool): Test on Y channel of YCbCr. Default: False. - - Returns: - float: psnr result. - """ - - assert img1.shape == img2.shape, (f'Image shapes are differnet: {img1.shape}, {img2.shape}.') - if input_order not in ['HWC', 'CHW']: - raise ValueError(f'Wrong input_order {input_order}. Supported input_orders are ' '"HWC" and "CHW"') - img1 = reorder_image(img1, input_order=input_order) - img2 = reorder_image(img2, input_order=input_order) - img1 = img1.astype(np.float64) - img2 = img2.astype(np.float64) - - if crop_border != 0: - img1 = img1[crop_border:-crop_border, crop_border:-crop_border, ...] - img2 = img2[crop_border:-crop_border, crop_border:-crop_border, ...] - - if test_y_channel: - img1 = to_y_channel(img1) - img2 = to_y_channel(img2) - - mse = np.mean((img1 - img2)**2) - if mse == 0: - return float('inf') - return 20. * np.log10(255. / np.sqrt(mse)) - - -def _ssim(img1, img2): - """Calculate SSIM (structural similarity) for one channel images. - - It is called by func:`calculate_ssim`. - - Args: - img1 (ndarray): Images with range [0, 255] with order 'HWC'. - img2 (ndarray): Images with range [0, 255] with order 'HWC'. - - Returns: - float: ssim result. - """ - - C1 = (0.01 * 255)**2 - C2 = (0.03 * 255)**2 - - img1 = img1.astype(np.float64) - img2 = img2.astype(np.float64) - kernel = cv2.getGaussianKernel(11, 1.5) - window = np.outer(kernel, kernel.transpose()) - - mu1 = cv2.filter2D(img1, -1, window)[5:-5, 5:-5] - mu2 = cv2.filter2D(img2, -1, window)[5:-5, 5:-5] - mu1_sq = mu1**2 - mu2_sq = mu2**2 - mu1_mu2 = mu1 * mu2 - sigma1_sq = cv2.filter2D(img1**2, -1, window)[5:-5, 5:-5] - mu1_sq - sigma2_sq = cv2.filter2D(img2**2, -1, window)[5:-5, 5:-5] - mu2_sq - sigma12 = cv2.filter2D(img1 * img2, -1, window)[5:-5, 5:-5] - mu1_mu2 - - ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / ((mu1_sq + mu2_sq + C1) * (sigma1_sq + sigma2_sq + C2)) - return ssim_map.mean() - - -@METRIC_REGISTRY.register() -def calculate_ssim(img1, img2, crop_border, input_order='HWC', test_y_channel=False): - """Calculate SSIM (structural similarity). - - Ref: - Image quality assessment: From error visibility to structural similarity - - The results are the same as that of the official released MATLAB code in - https://ece.uwaterloo.ca/~z70wang/research/ssim/. - - For three-channel images, SSIM is calculated for each channel and then - averaged. - - Args: - img1 (ndarray): Images with range [0, 255]. - img2 (ndarray): Images with range [0, 255]. - crop_border (int): Cropped pixels in each edge of an image. These - pixels are not involved in the SSIM calculation. - input_order (str): Whether the input order is 'HWC' or 'CHW'. - Default: 'HWC'. - test_y_channel (bool): Test on Y channel of YCbCr. Default: False. - - Returns: - float: ssim result. - """ - - assert img1.shape == img2.shape, (f'Image shapes are differnet: {img1.shape}, {img2.shape}.') - if input_order not in ['HWC', 'CHW']: - raise ValueError(f'Wrong input_order {input_order}. Supported input_orders are ' '"HWC" and "CHW"') - img1 = reorder_image(img1, input_order=input_order) - img2 = reorder_image(img2, input_order=input_order) - img1 = img1.astype(np.float64) - img2 = img2.astype(np.float64) - - if crop_border != 0: - img1 = img1[crop_border:-crop_border, crop_border:-crop_border, ...] - img2 = img2[crop_border:-crop_border, crop_border:-crop_border, ...] - - if test_y_channel: - img1 = to_y_channel(img1) - img2 = to_y_channel(img2) - - ssims = [] - for i in range(img1.shape[2]): - ssims.append(_ssim(img1[..., i], img2[..., i])) - return np.array(ssims).mean() diff --git a/CodeFormer/CodeFormer/basicsr/models/__init__.py b/CodeFormer/CodeFormer/basicsr/models/__init__.py deleted file mode 100644 index 00bde45f003698a5b15d3517ae47b59ef1d86e0c..0000000000000000000000000000000000000000 --- a/CodeFormer/CodeFormer/basicsr/models/__init__.py +++ /dev/null @@ -1,30 +0,0 @@ -import importlib -from copy import deepcopy -from os import path as osp - -from basicsr.utils import get_root_logger, scandir -from basicsr.utils.registry import MODEL_REGISTRY - -__all__ = ['build_model'] - -# automatically scan and import model modules for registry -# scan all the files under the 'models' folder and collect files ending with -# '_model.py' -model_folder = osp.dirname(osp.abspath(__file__)) -model_filenames = [osp.splitext(osp.basename(v))[0] for v in scandir(model_folder) if v.endswith('_model.py')] -# import all the model modules -_model_modules = [importlib.import_module(f'basicsr.models.{file_name}') for file_name in model_filenames] - - -def build_model(opt): - """Build model from options. - - Args: - opt (dict): Configuration. It must constain: - model_type (str): Model type. - """ - opt = deepcopy(opt) - model = MODEL_REGISTRY.get(opt['model_type'])(opt) - logger = get_root_logger() - logger.info(f'Model [{model.__class__.__name__}] is created.') - return model diff --git a/CodeFormer/CodeFormer/basicsr/models/__pycache__/__init__.cpython-310.pyc b/CodeFormer/CodeFormer/basicsr/models/__pycache__/__init__.cpython-310.pyc deleted file mode 100644 index f7d185ffb47fae584cdd45b4735d4a87bb7f64a0..0000000000000000000000000000000000000000 Binary files a/CodeFormer/CodeFormer/basicsr/models/__pycache__/__init__.cpython-310.pyc and /dev/null differ diff --git a/CodeFormer/CodeFormer/basicsr/ops/__init__.py b/CodeFormer/CodeFormer/basicsr/ops/__init__.py deleted file mode 100644 index e69de29bb2d1d6434b8b29ae775ad8c2e48c5391..0000000000000000000000000000000000000000 diff --git a/CodeFormer/CodeFormer/basicsr/ops/__pycache__/__init__.cpython-310.pyc b/CodeFormer/CodeFormer/basicsr/ops/__pycache__/__init__.cpython-310.pyc deleted file mode 100644 index 8ebf90e2b58ca004dc040bf5342eae422c3eed49..0000000000000000000000000000000000000000 Binary files a/CodeFormer/CodeFormer/basicsr/ops/__pycache__/__init__.cpython-310.pyc and /dev/null differ diff --git a/CodeFormer/CodeFormer/basicsr/ops/dcn/__init__.py b/CodeFormer/CodeFormer/basicsr/ops/dcn/__init__.py deleted file mode 100644 index 32e3592f896d61b4127e09d0476381b9d55e32ff..0000000000000000000000000000000000000000 --- a/CodeFormer/CodeFormer/basicsr/ops/dcn/__init__.py +++ /dev/null @@ -1,7 +0,0 @@ -from .deform_conv import (DeformConv, DeformConvPack, ModulatedDeformConv, ModulatedDeformConvPack, deform_conv, - modulated_deform_conv) - -__all__ = [ - 'DeformConv', 'DeformConvPack', 'ModulatedDeformConv', 'ModulatedDeformConvPack', 'deform_conv', - 'modulated_deform_conv' -] diff --git a/CodeFormer/CodeFormer/basicsr/ops/dcn/__pycache__/__init__.cpython-310.pyc b/CodeFormer/CodeFormer/basicsr/ops/dcn/__pycache__/__init__.cpython-310.pyc deleted file mode 100644 index ef7b1d65cfba046ed73a1f0c53299765342e5603..0000000000000000000000000000000000000000 Binary files a/CodeFormer/CodeFormer/basicsr/ops/dcn/__pycache__/__init__.cpython-310.pyc and /dev/null differ diff --git a/CodeFormer/CodeFormer/basicsr/ops/dcn/__pycache__/deform_conv.cpython-310.pyc b/CodeFormer/CodeFormer/basicsr/ops/dcn/__pycache__/deform_conv.cpython-310.pyc deleted file mode 100644 index a8bb2413dc8dda48e50269a91c75da69889c2dd7..0000000000000000000000000000000000000000 Binary files a/CodeFormer/CodeFormer/basicsr/ops/dcn/__pycache__/deform_conv.cpython-310.pyc and /dev/null differ diff --git a/CodeFormer/CodeFormer/basicsr/ops/dcn/deform_conv.py b/CodeFormer/CodeFormer/basicsr/ops/dcn/deform_conv.py deleted file mode 100644 index 734154f9ed9447d585eae7df6886acb136f8a3cf..0000000000000000000000000000000000000000 --- a/CodeFormer/CodeFormer/basicsr/ops/dcn/deform_conv.py +++ /dev/null @@ -1,377 +0,0 @@ -import math -import torch -from torch import nn as nn -from torch.autograd import Function -from torch.autograd.function import once_differentiable -from torch.nn import functional as F -from torch.nn.modules.utils import _pair, _single - -try: - from . import deform_conv_ext -except ImportError: - import os - BASICSR_JIT = os.getenv('BASICSR_JIT') - if BASICSR_JIT == 'True': - from torch.utils.cpp_extension import load - module_path = os.path.dirname(__file__) - deform_conv_ext = load( - 'deform_conv', - sources=[ - os.path.join(module_path, 'src', 'deform_conv_ext.cpp'), - os.path.join(module_path, 'src', 'deform_conv_cuda.cpp'), - os.path.join(module_path, 'src', 'deform_conv_cuda_kernel.cu'), - ], - ) - - -class DeformConvFunction(Function): - - @staticmethod - def forward(ctx, - input, - offset, - weight, - stride=1, - padding=0, - dilation=1, - groups=1, - deformable_groups=1, - im2col_step=64): - if input is not None and input.dim() != 4: - raise ValueError(f'Expected 4D tensor as input, got {input.dim()}' 'D tensor instead.') - ctx.stride = _pair(stride) - ctx.padding = _pair(padding) - ctx.dilation = _pair(dilation) - ctx.groups = groups - ctx.deformable_groups = deformable_groups - ctx.im2col_step = im2col_step - - ctx.save_for_backward(input, offset, weight) - - output = input.new_empty(DeformConvFunction._output_size(input, weight, ctx.padding, ctx.dilation, ctx.stride)) - - ctx.bufs_ = [input.new_empty(0), input.new_empty(0)] # columns, ones - - if not input.is_cuda: - raise NotImplementedError - else: - cur_im2col_step = min(ctx.im2col_step, input.shape[0]) - assert (input.shape[0] % cur_im2col_step) == 0, 'im2col step must divide batchsize' - deform_conv_ext.deform_conv_forward(input, weight, - offset, output, ctx.bufs_[0], ctx.bufs_[1], weight.size(3), - weight.size(2), ctx.stride[1], ctx.stride[0], ctx.padding[1], - ctx.padding[0], ctx.dilation[1], ctx.dilation[0], ctx.groups, - ctx.deformable_groups, cur_im2col_step) - return output - - @staticmethod - @once_differentiable - def backward(ctx, grad_output): - input, offset, weight = ctx.saved_tensors - - grad_input = grad_offset = grad_weight = None - - if not grad_output.is_cuda: - raise NotImplementedError - else: - cur_im2col_step = min(ctx.im2col_step, input.shape[0]) - assert (input.shape[0] % cur_im2col_step) == 0, 'im2col step must divide batchsize' - - if ctx.needs_input_grad[0] or ctx.needs_input_grad[1]: - grad_input = torch.zeros_like(input) - grad_offset = torch.zeros_like(offset) - deform_conv_ext.deform_conv_backward_input(input, offset, grad_output, grad_input, - grad_offset, weight, ctx.bufs_[0], weight.size(3), - weight.size(2), ctx.stride[1], ctx.stride[0], ctx.padding[1], - ctx.padding[0], ctx.dilation[1], ctx.dilation[0], ctx.groups, - ctx.deformable_groups, cur_im2col_step) - - if ctx.needs_input_grad[2]: - grad_weight = torch.zeros_like(weight) - deform_conv_ext.deform_conv_backward_parameters(input, offset, grad_output, grad_weight, - ctx.bufs_[0], ctx.bufs_[1], weight.size(3), - weight.size(2), ctx.stride[1], ctx.stride[0], - ctx.padding[1], ctx.padding[0], ctx.dilation[1], - ctx.dilation[0], ctx.groups, ctx.deformable_groups, 1, - cur_im2col_step) - - return (grad_input, grad_offset, grad_weight, None, None, None, None, None) - - @staticmethod - def _output_size(input, weight, padding, dilation, stride): - channels = weight.size(0) - output_size = (input.size(0), channels) - for d in range(input.dim() - 2): - in_size = input.size(d + 2) - pad = padding[d] - kernel = dilation[d] * (weight.size(d + 2) - 1) + 1 - stride_ = stride[d] - output_size += ((in_size + (2 * pad) - kernel) // stride_ + 1, ) - if not all(map(lambda s: s > 0, output_size)): - raise ValueError('convolution input is too small (output would be ' f'{"x".join(map(str, output_size))})') - return output_size - - -class ModulatedDeformConvFunction(Function): - - @staticmethod - def forward(ctx, - input, - offset, - mask, - weight, - bias=None, - stride=1, - padding=0, - dilation=1, - groups=1, - deformable_groups=1): - ctx.stride = stride - ctx.padding = padding - ctx.dilation = dilation - ctx.groups = groups - ctx.deformable_groups = deformable_groups - ctx.with_bias = bias is not None - if not ctx.with_bias: - bias = input.new_empty(1) # fake tensor - if not input.is_cuda: - raise NotImplementedError - if weight.requires_grad or mask.requires_grad or offset.requires_grad \ - or input.requires_grad: - ctx.save_for_backward(input, offset, mask, weight, bias) - output = input.new_empty(ModulatedDeformConvFunction._infer_shape(ctx, input, weight)) - ctx._bufs = [input.new_empty(0), input.new_empty(0)] - deform_conv_ext.modulated_deform_conv_forward(input, weight, bias, ctx._bufs[0], offset, mask, output, - ctx._bufs[1], weight.shape[2], weight.shape[3], ctx.stride, - ctx.stride, ctx.padding, ctx.padding, ctx.dilation, ctx.dilation, - ctx.groups, ctx.deformable_groups, ctx.with_bias) - return output - - @staticmethod - @once_differentiable - def backward(ctx, grad_output): - if not grad_output.is_cuda: - raise NotImplementedError - input, offset, mask, weight, bias = ctx.saved_tensors - grad_input = torch.zeros_like(input) - grad_offset = torch.zeros_like(offset) - grad_mask = torch.zeros_like(mask) - grad_weight = torch.zeros_like(weight) - grad_bias = torch.zeros_like(bias) - deform_conv_ext.modulated_deform_conv_backward(input, weight, bias, ctx._bufs[0], offset, mask, ctx._bufs[1], - grad_input, grad_weight, grad_bias, grad_offset, grad_mask, - grad_output, weight.shape[2], weight.shape[3], ctx.stride, - ctx.stride, ctx.padding, ctx.padding, ctx.dilation, ctx.dilation, - ctx.groups, ctx.deformable_groups, ctx.with_bias) - if not ctx.with_bias: - grad_bias = None - - return (grad_input, grad_offset, grad_mask, grad_weight, grad_bias, None, None, None, None, None) - - @staticmethod - def _infer_shape(ctx, input, weight): - n = input.size(0) - channels_out = weight.size(0) - height, width = input.shape[2:4] - kernel_h, kernel_w = weight.shape[2:4] - height_out = (height + 2 * ctx.padding - (ctx.dilation * (kernel_h - 1) + 1)) // ctx.stride + 1 - width_out = (width + 2 * ctx.padding - (ctx.dilation * (kernel_w - 1) + 1)) // ctx.stride + 1 - return n, channels_out, height_out, width_out - - -deform_conv = DeformConvFunction.apply -modulated_deform_conv = ModulatedDeformConvFunction.apply - - -class DeformConv(nn.Module): - - def __init__(self, - in_channels, - out_channels, - kernel_size, - stride=1, - padding=0, - dilation=1, - groups=1, - deformable_groups=1, - bias=False): - super(DeformConv, self).__init__() - - assert not bias - assert in_channels % groups == 0, \ - f'in_channels {in_channels} is not divisible by groups {groups}' - assert out_channels % groups == 0, \ - f'out_channels {out_channels} is not divisible ' \ - f'by groups {groups}' - - self.in_channels = in_channels - self.out_channels = out_channels - self.kernel_size = _pair(kernel_size) - self.stride = _pair(stride) - self.padding = _pair(padding) - self.dilation = _pair(dilation) - self.groups = groups - self.deformable_groups = deformable_groups - # enable compatibility with nn.Conv2d - self.transposed = False - self.output_padding = _single(0) - - self.weight = nn.Parameter(torch.Tensor(out_channels, in_channels // self.groups, *self.kernel_size)) - - self.reset_parameters() - - def reset_parameters(self): - n = self.in_channels - for k in self.kernel_size: - n *= k - stdv = 1. / math.sqrt(n) - self.weight.data.uniform_(-stdv, stdv) - - def forward(self, x, offset): - # To fix an assert error in deform_conv_cuda.cpp:128 - # input image is smaller than kernel - input_pad = (x.size(2) < self.kernel_size[0] or x.size(3) < self.kernel_size[1]) - if input_pad: - pad_h = max(self.kernel_size[0] - x.size(2), 0) - pad_w = max(self.kernel_size[1] - x.size(3), 0) - x = F.pad(x, (0, pad_w, 0, pad_h), 'constant', 0).contiguous() - offset = F.pad(offset, (0, pad_w, 0, pad_h), 'constant', 0).contiguous() - out = deform_conv(x, offset, self.weight, self.stride, self.padding, self.dilation, self.groups, - self.deformable_groups) - if input_pad: - out = out[:, :, :out.size(2) - pad_h, :out.size(3) - pad_w].contiguous() - return out - - -class DeformConvPack(DeformConv): - """A Deformable Conv Encapsulation that acts as normal Conv layers. - - Args: - in_channels (int): Same as nn.Conv2d. - out_channels (int): Same as nn.Conv2d. - kernel_size (int or tuple[int]): Same as nn.Conv2d. - stride (int or tuple[int]): Same as nn.Conv2d. - padding (int or tuple[int]): Same as nn.Conv2d. - dilation (int or tuple[int]): Same as nn.Conv2d. - groups (int): Same as nn.Conv2d. - bias (bool or str): If specified as `auto`, it will be decided by the - norm_cfg. Bias will be set as True if norm_cfg is None, otherwise - False. - """ - - _version = 2 - - def __init__(self, *args, **kwargs): - super(DeformConvPack, self).__init__(*args, **kwargs) - - self.conv_offset = nn.Conv2d( - self.in_channels, - self.deformable_groups * 2 * self.kernel_size[0] * self.kernel_size[1], - kernel_size=self.kernel_size, - stride=_pair(self.stride), - padding=_pair(self.padding), - dilation=_pair(self.dilation), - bias=True) - self.init_offset() - - def init_offset(self): - self.conv_offset.weight.data.zero_() - self.conv_offset.bias.data.zero_() - - def forward(self, x): - offset = self.conv_offset(x) - return deform_conv(x, offset, self.weight, self.stride, self.padding, self.dilation, self.groups, - self.deformable_groups) - - -class ModulatedDeformConv(nn.Module): - - def __init__(self, - in_channels, - out_channels, - kernel_size, - stride=1, - padding=0, - dilation=1, - groups=1, - deformable_groups=1, - bias=True): - super(ModulatedDeformConv, self).__init__() - self.in_channels = in_channels - self.out_channels = out_channels - self.kernel_size = _pair(kernel_size) - self.stride = stride - self.padding = padding - self.dilation = dilation - self.groups = groups - self.deformable_groups = deformable_groups - self.with_bias = bias - # enable compatibility with nn.Conv2d - self.transposed = False - self.output_padding = _single(0) - - self.weight = nn.Parameter(torch.Tensor(out_channels, in_channels // groups, *self.kernel_size)) - if bias: - self.bias = nn.Parameter(torch.Tensor(out_channels)) - else: - self.register_parameter('bias', None) - self.init_weights() - - def init_weights(self): - n = self.in_channels - for k in self.kernel_size: - n *= k - stdv = 1. / math.sqrt(n) - self.weight.data.uniform_(-stdv, stdv) - if self.bias is not None: - self.bias.data.zero_() - - def forward(self, x, offset, mask): - return modulated_deform_conv(x, offset, mask, self.weight, self.bias, self.stride, self.padding, self.dilation, - self.groups, self.deformable_groups) - - -class ModulatedDeformConvPack(ModulatedDeformConv): - """A ModulatedDeformable Conv Encapsulation that acts as normal Conv layers. - - Args: - in_channels (int): Same as nn.Conv2d. - out_channels (int): Same as nn.Conv2d. - kernel_size (int or tuple[int]): Same as nn.Conv2d. - stride (int or tuple[int]): Same as nn.Conv2d. - padding (int or tuple[int]): Same as nn.Conv2d. - dilation (int or tuple[int]): Same as nn.Conv2d. - groups (int): Same as nn.Conv2d. - bias (bool or str): If specified as `auto`, it will be decided by the - norm_cfg. Bias will be set as True if norm_cfg is None, otherwise - False. - """ - - _version = 2 - - def __init__(self, *args, **kwargs): - super(ModulatedDeformConvPack, self).__init__(*args, **kwargs) - - self.conv_offset = nn.Conv2d( - self.in_channels, - self.deformable_groups * 3 * self.kernel_size[0] * self.kernel_size[1], - kernel_size=self.kernel_size, - stride=_pair(self.stride), - padding=_pair(self.padding), - dilation=_pair(self.dilation), - bias=True) - self.init_weights() - - def init_weights(self): - super(ModulatedDeformConvPack, self).init_weights() - if hasattr(self, 'conv_offset'): - self.conv_offset.weight.data.zero_() - self.conv_offset.bias.data.zero_() - - def forward(self, x): - out = self.conv_offset(x) - o1, o2, mask = torch.chunk(out, 3, dim=1) - offset = torch.cat((o1, o2), dim=1) - mask = torch.sigmoid(mask) - return modulated_deform_conv(x, offset, mask, self.weight, self.bias, self.stride, self.padding, self.dilation, - self.groups, self.deformable_groups) diff --git a/CodeFormer/CodeFormer/basicsr/ops/dcn/src/deform_conv_cuda.cpp b/CodeFormer/CodeFormer/basicsr/ops/dcn/src/deform_conv_cuda.cpp deleted file mode 100644 index 5d9424908ed2dbd4ac3cdb98d13e09287a4d2f2d..0000000000000000000000000000000000000000 --- a/CodeFormer/CodeFormer/basicsr/ops/dcn/src/deform_conv_cuda.cpp +++ /dev/null @@ -1,685 +0,0 @@ -// modify from -// https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/blob/mmdetection/mmdet/ops/dcn/src/deform_conv_cuda.c - -#include -#include - -#include -#include - -void deformable_im2col(const at::Tensor data_im, const at::Tensor data_offset, - const int channels, const int height, const int width, - const int ksize_h, const int ksize_w, const int pad_h, - const int pad_w, const int stride_h, const int stride_w, - const int dilation_h, const int dilation_w, - const int parallel_imgs, const int deformable_group, - at::Tensor data_col); - -void deformable_col2im(const at::Tensor data_col, const at::Tensor data_offset, - const int channels, const int height, const int width, - const int ksize_h, const int ksize_w, const int pad_h, - const int pad_w, const int stride_h, const int stride_w, - const int dilation_h, const int dilation_w, - const int parallel_imgs, const int deformable_group, - at::Tensor grad_im); - -void deformable_col2im_coord( - const at::Tensor data_col, const at::Tensor data_im, - const at::Tensor data_offset, const int channels, const int height, - const int width, const int ksize_h, const int ksize_w, const int pad_h, - const int pad_w, const int stride_h, const int stride_w, - const int dilation_h, const int dilation_w, const int parallel_imgs, - const int deformable_group, at::Tensor grad_offset); - -void modulated_deformable_im2col_cuda( - const at::Tensor data_im, const at::Tensor data_offset, - const at::Tensor data_mask, const int batch_size, const int channels, - const int height_im, const int width_im, const int height_col, - const int width_col, const int kernel_h, const int kenerl_w, - const int pad_h, const int pad_w, const int stride_h, const int stride_w, - const int dilation_h, const int dilation_w, const int deformable_group, - at::Tensor data_col); - -void modulated_deformable_col2im_cuda( - const at::Tensor data_col, const at::Tensor data_offset, - const at::Tensor data_mask, const int batch_size, const int channels, - const int height_im, const int width_im, const int height_col, - const int width_col, const int kernel_h, const int kenerl_w, - const int pad_h, const int pad_w, const int stride_h, const int stride_w, - const int dilation_h, const int dilation_w, const int deformable_group, - at::Tensor grad_im); - -void modulated_deformable_col2im_coord_cuda( - const at::Tensor data_col, const at::Tensor data_im, - const at::Tensor data_offset, const at::Tensor data_mask, - const int batch_size, const int channels, const int height_im, - const int width_im, const int height_col, const int width_col, - const int kernel_h, const int kenerl_w, const int pad_h, const int pad_w, - const int stride_h, const int stride_w, const int dilation_h, - const int dilation_w, const int deformable_group, at::Tensor grad_offset, - at::Tensor grad_mask); - -void shape_check(at::Tensor input, at::Tensor offset, at::Tensor *gradOutput, - at::Tensor weight, int kH, int kW, int dH, int dW, int padH, - int padW, int dilationH, int dilationW, int group, - int deformable_group) { - TORCH_CHECK(weight.ndimension() == 4, - "4D weight tensor (nOutputPlane,nInputPlane,kH,kW) expected, " - "but got: %s", - weight.ndimension()); - - TORCH_CHECK(weight.is_contiguous(), "weight tensor has to be contiguous"); - - TORCH_CHECK(kW > 0 && kH > 0, - "kernel size should be greater than zero, but got kH: %d kW: %d", kH, - kW); - - TORCH_CHECK((weight.size(2) == kH && weight.size(3) == kW), - "kernel size should be consistent with weight, ", - "but got kH: %d kW: %d weight.size(2): %d, weight.size(3): %d", kH, - kW, weight.size(2), weight.size(3)); - - TORCH_CHECK(dW > 0 && dH > 0, - "stride should be greater than zero, but got dH: %d dW: %d", dH, dW); - - TORCH_CHECK( - dilationW > 0 && dilationH > 0, - "dilation should be greater than 0, but got dilationH: %d dilationW: %d", - dilationH, dilationW); - - int ndim = input.ndimension(); - int dimf = 0; - int dimh = 1; - int dimw = 2; - - if (ndim == 4) { - dimf++; - dimh++; - dimw++; - } - - TORCH_CHECK(ndim == 3 || ndim == 4, "3D or 4D input tensor expected but got: %s", - ndim); - - long nInputPlane = weight.size(1) * group; - long inputHeight = input.size(dimh); - long inputWidth = input.size(dimw); - long nOutputPlane = weight.size(0); - long outputHeight = - (inputHeight + 2 * padH - (dilationH * (kH - 1) + 1)) / dH + 1; - long outputWidth = - (inputWidth + 2 * padW - (dilationW * (kW - 1) + 1)) / dW + 1; - - TORCH_CHECK(nInputPlane % deformable_group == 0, - "input channels must divide deformable group size"); - - if (outputWidth < 1 || outputHeight < 1) - AT_ERROR( - "Given input size: (%ld x %ld x %ld). " - "Calculated output size: (%ld x %ld x %ld). Output size is too small", - nInputPlane, inputHeight, inputWidth, nOutputPlane, outputHeight, - outputWidth); - - TORCH_CHECK(input.size(1) == nInputPlane, - "invalid number of input planes, expected: %d, but got: %d", - nInputPlane, input.size(1)); - - TORCH_CHECK((inputHeight >= kH && inputWidth >= kW), - "input image is smaller than kernel"); - - TORCH_CHECK((offset.size(2) == outputHeight && offset.size(3) == outputWidth), - "invalid spatial size of offset, expected height: %d width: %d, but " - "got height: %d width: %d", - outputHeight, outputWidth, offset.size(2), offset.size(3)); - - TORCH_CHECK((offset.size(1) == deformable_group * 2 * kH * kW), - "invalid number of channels of offset"); - - if (gradOutput != NULL) { - TORCH_CHECK(gradOutput->size(dimf) == nOutputPlane, - "invalid number of gradOutput planes, expected: %d, but got: %d", - nOutputPlane, gradOutput->size(dimf)); - - TORCH_CHECK((gradOutput->size(dimh) == outputHeight && - gradOutput->size(dimw) == outputWidth), - "invalid size of gradOutput, expected height: %d width: %d , but " - "got height: %d width: %d", - outputHeight, outputWidth, gradOutput->size(dimh), - gradOutput->size(dimw)); - } -} - -int deform_conv_forward_cuda(at::Tensor input, at::Tensor weight, - at::Tensor offset, at::Tensor output, - at::Tensor columns, at::Tensor ones, int kW, - int kH, int dW, int dH, int padW, int padH, - int dilationW, int dilationH, int group, - int deformable_group, int im2col_step) { - // todo: resize columns to include im2col: done - // todo: add im2col_step as input - // todo: add new output buffer and transpose it to output (or directly - // transpose output) todo: possibly change data indexing because of - // parallel_imgs - - shape_check(input, offset, NULL, weight, kH, kW, dH, dW, padH, padW, - dilationH, dilationW, group, deformable_group); - at::DeviceGuard guard(input.device()); - - input = input.contiguous(); - offset = offset.contiguous(); - weight = weight.contiguous(); - - int batch = 1; - if (input.ndimension() == 3) { - // Force batch - batch = 0; - input.unsqueeze_(0); - offset.unsqueeze_(0); - } - - // todo: assert batchsize dividable by im2col_step - - long batchSize = input.size(0); - long nInputPlane = input.size(1); - long inputHeight = input.size(2); - long inputWidth = input.size(3); - - long nOutputPlane = weight.size(0); - - long outputWidth = - (inputWidth + 2 * padW - (dilationW * (kW - 1) + 1)) / dW + 1; - long outputHeight = - (inputHeight + 2 * padH - (dilationH * (kH - 1) + 1)) / dH + 1; - - TORCH_CHECK((offset.size(0) == batchSize), "invalid batch size of offset"); - - output = output.view({batchSize / im2col_step, im2col_step, nOutputPlane, - outputHeight, outputWidth}); - columns = at::zeros( - {nInputPlane * kW * kH, im2col_step * outputHeight * outputWidth}, - input.options()); - - if (ones.ndimension() != 2 || - ones.size(0) * ones.size(1) < outputHeight * outputWidth) { - ones = at::ones({outputHeight, outputWidth}, input.options()); - } - - input = input.view({batchSize / im2col_step, im2col_step, nInputPlane, - inputHeight, inputWidth}); - offset = - offset.view({batchSize / im2col_step, im2col_step, - deformable_group * 2 * kH * kW, outputHeight, outputWidth}); - - at::Tensor output_buffer = - at::zeros({batchSize / im2col_step, nOutputPlane, - im2col_step * outputHeight, outputWidth}, - output.options()); - - output_buffer = output_buffer.view( - {output_buffer.size(0), group, output_buffer.size(1) / group, - output_buffer.size(2), output_buffer.size(3)}); - - for (int elt = 0; elt < batchSize / im2col_step; elt++) { - deformable_im2col(input[elt], offset[elt], nInputPlane, inputHeight, - inputWidth, kH, kW, padH, padW, dH, dW, dilationH, - dilationW, im2col_step, deformable_group, columns); - - columns = columns.view({group, columns.size(0) / group, columns.size(1)}); - weight = weight.view({group, weight.size(0) / group, weight.size(1), - weight.size(2), weight.size(3)}); - - for (int g = 0; g < group; g++) { - output_buffer[elt][g] = output_buffer[elt][g] - .flatten(1) - .addmm_(weight[g].flatten(1), columns[g]) - .view_as(output_buffer[elt][g]); - } - } - - output_buffer = output_buffer.view( - {output_buffer.size(0), output_buffer.size(1) * output_buffer.size(2), - output_buffer.size(3), output_buffer.size(4)}); - - output_buffer = output_buffer.view({batchSize / im2col_step, nOutputPlane, - im2col_step, outputHeight, outputWidth}); - output_buffer.transpose_(1, 2); - output.copy_(output_buffer); - output = output.view({batchSize, nOutputPlane, outputHeight, outputWidth}); - - input = input.view({batchSize, nInputPlane, inputHeight, inputWidth}); - offset = offset.view( - {batchSize, deformable_group * 2 * kH * kW, outputHeight, outputWidth}); - - if (batch == 0) { - output = output.view({nOutputPlane, outputHeight, outputWidth}); - input = input.view({nInputPlane, inputHeight, inputWidth}); - offset = offset.view({offset.size(1), offset.size(2), offset.size(3)}); - } - - return 1; -} - -int deform_conv_backward_input_cuda(at::Tensor input, at::Tensor offset, - at::Tensor gradOutput, at::Tensor gradInput, - at::Tensor gradOffset, at::Tensor weight, - at::Tensor columns, int kW, int kH, int dW, - int dH, int padW, int padH, int dilationW, - int dilationH, int group, - int deformable_group, int im2col_step) { - shape_check(input, offset, &gradOutput, weight, kH, kW, dH, dW, padH, padW, - dilationH, dilationW, group, deformable_group); - at::DeviceGuard guard(input.device()); - - input = input.contiguous(); - offset = offset.contiguous(); - gradOutput = gradOutput.contiguous(); - weight = weight.contiguous(); - - int batch = 1; - - if (input.ndimension() == 3) { - // Force batch - batch = 0; - input = input.view({1, input.size(0), input.size(1), input.size(2)}); - offset = offset.view({1, offset.size(0), offset.size(1), offset.size(2)}); - gradOutput = gradOutput.view( - {1, gradOutput.size(0), gradOutput.size(1), gradOutput.size(2)}); - } - - long batchSize = input.size(0); - long nInputPlane = input.size(1); - long inputHeight = input.size(2); - long inputWidth = input.size(3); - - long nOutputPlane = weight.size(0); - - long outputWidth = - (inputWidth + 2 * padW - (dilationW * (kW - 1) + 1)) / dW + 1; - long outputHeight = - (inputHeight + 2 * padH - (dilationH * (kH - 1) + 1)) / dH + 1; - - TORCH_CHECK((offset.size(0) == batchSize), 3, "invalid batch size of offset"); - gradInput = gradInput.view({batchSize, nInputPlane, inputHeight, inputWidth}); - columns = at::zeros( - {nInputPlane * kW * kH, im2col_step * outputHeight * outputWidth}, - input.options()); - - // change order of grad output - gradOutput = gradOutput.view({batchSize / im2col_step, im2col_step, - nOutputPlane, outputHeight, outputWidth}); - gradOutput.transpose_(1, 2); - - gradInput = gradInput.view({batchSize / im2col_step, im2col_step, nInputPlane, - inputHeight, inputWidth}); - input = input.view({batchSize / im2col_step, im2col_step, nInputPlane, - inputHeight, inputWidth}); - gradOffset = gradOffset.view({batchSize / im2col_step, im2col_step, - deformable_group * 2 * kH * kW, outputHeight, - outputWidth}); - offset = - offset.view({batchSize / im2col_step, im2col_step, - deformable_group * 2 * kH * kW, outputHeight, outputWidth}); - - for (int elt = 0; elt < batchSize / im2col_step; elt++) { - // divide into groups - columns = columns.view({group, columns.size(0) / group, columns.size(1)}); - weight = weight.view({group, weight.size(0) / group, weight.size(1), - weight.size(2), weight.size(3)}); - gradOutput = gradOutput.view( - {gradOutput.size(0), group, gradOutput.size(1) / group, - gradOutput.size(2), gradOutput.size(3), gradOutput.size(4)}); - - for (int g = 0; g < group; g++) { - columns[g] = columns[g].addmm_(weight[g].flatten(1).transpose(0, 1), - gradOutput[elt][g].flatten(1), 0.0f, 1.0f); - } - - columns = - columns.view({columns.size(0) * columns.size(1), columns.size(2)}); - gradOutput = gradOutput.view( - {gradOutput.size(0), gradOutput.size(1) * gradOutput.size(2), - gradOutput.size(3), gradOutput.size(4), gradOutput.size(5)}); - - deformable_col2im_coord(columns, input[elt], offset[elt], nInputPlane, - inputHeight, inputWidth, kH, kW, padH, padW, dH, dW, - dilationH, dilationW, im2col_step, deformable_group, - gradOffset[elt]); - - deformable_col2im(columns, offset[elt], nInputPlane, inputHeight, - inputWidth, kH, kW, padH, padW, dH, dW, dilationH, - dilationW, im2col_step, deformable_group, gradInput[elt]); - } - - gradOutput.transpose_(1, 2); - gradOutput = - gradOutput.view({batchSize, nOutputPlane, outputHeight, outputWidth}); - - gradInput = gradInput.view({batchSize, nInputPlane, inputHeight, inputWidth}); - input = input.view({batchSize, nInputPlane, inputHeight, inputWidth}); - gradOffset = gradOffset.view( - {batchSize, deformable_group * 2 * kH * kW, outputHeight, outputWidth}); - offset = offset.view( - {batchSize, deformable_group * 2 * kH * kW, outputHeight, outputWidth}); - - if (batch == 0) { - gradOutput = gradOutput.view({nOutputPlane, outputHeight, outputWidth}); - input = input.view({nInputPlane, inputHeight, inputWidth}); - gradInput = gradInput.view({nInputPlane, inputHeight, inputWidth}); - offset = offset.view({offset.size(1), offset.size(2), offset.size(3)}); - gradOffset = - gradOffset.view({offset.size(1), offset.size(2), offset.size(3)}); - } - - return 1; -} - -int deform_conv_backward_parameters_cuda( - at::Tensor input, at::Tensor offset, at::Tensor gradOutput, - at::Tensor gradWeight, // at::Tensor gradBias, - at::Tensor columns, at::Tensor ones, int kW, int kH, int dW, int dH, - int padW, int padH, int dilationW, int dilationH, int group, - int deformable_group, float scale, int im2col_step) { - // todo: transpose and reshape outGrad - // todo: reshape columns - // todo: add im2col_step as input - - shape_check(input, offset, &gradOutput, gradWeight, kH, kW, dH, dW, padH, - padW, dilationH, dilationW, group, deformable_group); - at::DeviceGuard guard(input.device()); - - input = input.contiguous(); - offset = offset.contiguous(); - gradOutput = gradOutput.contiguous(); - - int batch = 1; - - if (input.ndimension() == 3) { - // Force batch - batch = 0; - input = input.view( - at::IntList({1, input.size(0), input.size(1), input.size(2)})); - gradOutput = gradOutput.view( - {1, gradOutput.size(0), gradOutput.size(1), gradOutput.size(2)}); - } - - long batchSize = input.size(0); - long nInputPlane = input.size(1); - long inputHeight = input.size(2); - long inputWidth = input.size(3); - - long nOutputPlane = gradWeight.size(0); - - long outputWidth = - (inputWidth + 2 * padW - (dilationW * (kW - 1) + 1)) / dW + 1; - long outputHeight = - (inputHeight + 2 * padH - (dilationH * (kH - 1) + 1)) / dH + 1; - - TORCH_CHECK((offset.size(0) == batchSize), "invalid batch size of offset"); - - columns = at::zeros( - {nInputPlane * kW * kH, im2col_step * outputHeight * outputWidth}, - input.options()); - - gradOutput = gradOutput.view({batchSize / im2col_step, im2col_step, - nOutputPlane, outputHeight, outputWidth}); - gradOutput.transpose_(1, 2); - - at::Tensor gradOutputBuffer = at::zeros_like(gradOutput); - gradOutputBuffer = - gradOutputBuffer.view({batchSize / im2col_step, nOutputPlane, im2col_step, - outputHeight, outputWidth}); - gradOutputBuffer.copy_(gradOutput); - gradOutputBuffer = - gradOutputBuffer.view({batchSize / im2col_step, nOutputPlane, - im2col_step * outputHeight, outputWidth}); - - gradOutput.transpose_(1, 2); - gradOutput = - gradOutput.view({batchSize, nOutputPlane, outputHeight, outputWidth}); - - input = input.view({batchSize / im2col_step, im2col_step, nInputPlane, - inputHeight, inputWidth}); - offset = - offset.view({batchSize / im2col_step, im2col_step, - deformable_group * 2 * kH * kW, outputHeight, outputWidth}); - - for (int elt = 0; elt < batchSize / im2col_step; elt++) { - deformable_im2col(input[elt], offset[elt], nInputPlane, inputHeight, - inputWidth, kH, kW, padH, padW, dH, dW, dilationH, - dilationW, im2col_step, deformable_group, columns); - - // divide into group - gradOutputBuffer = gradOutputBuffer.view( - {gradOutputBuffer.size(0), group, gradOutputBuffer.size(1) / group, - gradOutputBuffer.size(2), gradOutputBuffer.size(3)}); - columns = columns.view({group, columns.size(0) / group, columns.size(1)}); - gradWeight = - gradWeight.view({group, gradWeight.size(0) / group, gradWeight.size(1), - gradWeight.size(2), gradWeight.size(3)}); - - for (int g = 0; g < group; g++) { - gradWeight[g] = gradWeight[g] - .flatten(1) - .addmm_(gradOutputBuffer[elt][g].flatten(1), - columns[g].transpose(1, 0), 1.0, scale) - .view_as(gradWeight[g]); - } - gradOutputBuffer = gradOutputBuffer.view( - {gradOutputBuffer.size(0), - gradOutputBuffer.size(1) * gradOutputBuffer.size(2), - gradOutputBuffer.size(3), gradOutputBuffer.size(4)}); - columns = - columns.view({columns.size(0) * columns.size(1), columns.size(2)}); - gradWeight = gradWeight.view({gradWeight.size(0) * gradWeight.size(1), - gradWeight.size(2), gradWeight.size(3), - gradWeight.size(4)}); - } - - input = input.view({batchSize, nInputPlane, inputHeight, inputWidth}); - offset = offset.view( - {batchSize, deformable_group * 2 * kH * kW, outputHeight, outputWidth}); - - if (batch == 0) { - gradOutput = gradOutput.view({nOutputPlane, outputHeight, outputWidth}); - input = input.view({nInputPlane, inputHeight, inputWidth}); - } - - return 1; -} - -void modulated_deform_conv_cuda_forward( - at::Tensor input, at::Tensor weight, at::Tensor bias, at::Tensor ones, - at::Tensor offset, at::Tensor mask, at::Tensor output, at::Tensor columns, - int kernel_h, int kernel_w, const int stride_h, const int stride_w, - const int pad_h, const int pad_w, const int dilation_h, - const int dilation_w, const int group, const int deformable_group, - const bool with_bias) { - TORCH_CHECK(input.is_contiguous(), "input tensor has to be contiguous"); - TORCH_CHECK(weight.is_contiguous(), "weight tensor has to be contiguous"); - at::DeviceGuard guard(input.device()); - - const int batch = input.size(0); - const int channels = input.size(1); - const int height = input.size(2); - const int width = input.size(3); - - const int channels_out = weight.size(0); - const int channels_kernel = weight.size(1); - const int kernel_h_ = weight.size(2); - const int kernel_w_ = weight.size(3); - - if (kernel_h_ != kernel_h || kernel_w_ != kernel_w) - AT_ERROR("Input shape and kernel shape wont match: (%d x %d vs %d x %d).", - kernel_h_, kernel_w, kernel_h_, kernel_w_); - if (channels != channels_kernel * group) - AT_ERROR("Input shape and kernel channels wont match: (%d vs %d).", - channels, channels_kernel * group); - - const int height_out = - (height + 2 * pad_h - (dilation_h * (kernel_h - 1) + 1)) / stride_h + 1; - const int width_out = - (width + 2 * pad_w - (dilation_w * (kernel_w - 1) + 1)) / stride_w + 1; - - if (ones.ndimension() != 2 || - ones.size(0) * ones.size(1) < height_out * width_out) { - // Resize plane and fill with ones... - ones = at::ones({height_out, width_out}, input.options()); - } - - // resize output - output = output.view({batch, channels_out, height_out, width_out}).zero_(); - // resize temporary columns - columns = - at::zeros({channels * kernel_h * kernel_w, 1 * height_out * width_out}, - input.options()); - - output = output.view({output.size(0), group, output.size(1) / group, - output.size(2), output.size(3)}); - - for (int b = 0; b < batch; b++) { - modulated_deformable_im2col_cuda( - input[b], offset[b], mask[b], 1, channels, height, width, height_out, - width_out, kernel_h, kernel_w, pad_h, pad_w, stride_h, stride_w, - dilation_h, dilation_w, deformable_group, columns); - - // divide into group - weight = weight.view({group, weight.size(0) / group, weight.size(1), - weight.size(2), weight.size(3)}); - columns = columns.view({group, columns.size(0) / group, columns.size(1)}); - - for (int g = 0; g < group; g++) { - output[b][g] = output[b][g] - .flatten(1) - .addmm_(weight[g].flatten(1), columns[g]) - .view_as(output[b][g]); - } - - weight = weight.view({weight.size(0) * weight.size(1), weight.size(2), - weight.size(3), weight.size(4)}); - columns = - columns.view({columns.size(0) * columns.size(1), columns.size(2)}); - } - - output = output.view({output.size(0), output.size(1) * output.size(2), - output.size(3), output.size(4)}); - - if (with_bias) { - output += bias.view({1, bias.size(0), 1, 1}); - } -} - -void modulated_deform_conv_cuda_backward( - at::Tensor input, at::Tensor weight, at::Tensor bias, at::Tensor ones, - at::Tensor offset, at::Tensor mask, at::Tensor columns, - at::Tensor grad_input, at::Tensor grad_weight, at::Tensor grad_bias, - at::Tensor grad_offset, at::Tensor grad_mask, at::Tensor grad_output, - int kernel_h, int kernel_w, int stride_h, int stride_w, int pad_h, - int pad_w, int dilation_h, int dilation_w, int group, int deformable_group, - const bool with_bias) { - TORCH_CHECK(input.is_contiguous(), "input tensor has to be contiguous"); - TORCH_CHECK(weight.is_contiguous(), "weight tensor has to be contiguous"); - at::DeviceGuard guard(input.device()); - - const int batch = input.size(0); - const int channels = input.size(1); - const int height = input.size(2); - const int width = input.size(3); - - const int channels_kernel = weight.size(1); - const int kernel_h_ = weight.size(2); - const int kernel_w_ = weight.size(3); - if (kernel_h_ != kernel_h || kernel_w_ != kernel_w) - AT_ERROR("Input shape and kernel shape wont match: (%d x %d vs %d x %d).", - kernel_h_, kernel_w, kernel_h_, kernel_w_); - if (channels != channels_kernel * group) - AT_ERROR("Input shape and kernel channels wont match: (%d vs %d).", - channels, channels_kernel * group); - - const int height_out = - (height + 2 * pad_h - (dilation_h * (kernel_h - 1) + 1)) / stride_h + 1; - const int width_out = - (width + 2 * pad_w - (dilation_w * (kernel_w - 1) + 1)) / stride_w + 1; - - if (ones.ndimension() != 2 || - ones.size(0) * ones.size(1) < height_out * width_out) { - // Resize plane and fill with ones... - ones = at::ones({height_out, width_out}, input.options()); - } - - grad_input = grad_input.view({batch, channels, height, width}); - columns = at::zeros({channels * kernel_h * kernel_w, height_out * width_out}, - input.options()); - - grad_output = - grad_output.view({grad_output.size(0), group, grad_output.size(1) / group, - grad_output.size(2), grad_output.size(3)}); - - for (int b = 0; b < batch; b++) { - // divide int group - columns = columns.view({group, columns.size(0) / group, columns.size(1)}); - weight = weight.view({group, weight.size(0) / group, weight.size(1), - weight.size(2), weight.size(3)}); - - for (int g = 0; g < group; g++) { - columns[g].addmm_(weight[g].flatten(1).transpose(0, 1), - grad_output[b][g].flatten(1), 0.0f, 1.0f); - } - - columns = - columns.view({columns.size(0) * columns.size(1), columns.size(2)}); - weight = weight.view({weight.size(0) * weight.size(1), weight.size(2), - weight.size(3), weight.size(4)}); - - // gradient w.r.t. input coordinate data - modulated_deformable_col2im_coord_cuda( - columns, input[b], offset[b], mask[b], 1, channels, height, width, - height_out, width_out, kernel_h, kernel_w, pad_h, pad_w, stride_h, - stride_w, dilation_h, dilation_w, deformable_group, grad_offset[b], - grad_mask[b]); - // gradient w.r.t. input data - modulated_deformable_col2im_cuda( - columns, offset[b], mask[b], 1, channels, height, width, height_out, - width_out, kernel_h, kernel_w, pad_h, pad_w, stride_h, stride_w, - dilation_h, dilation_w, deformable_group, grad_input[b]); - - // gradient w.r.t. weight, dWeight should accumulate across the batch and - // group - modulated_deformable_im2col_cuda( - input[b], offset[b], mask[b], 1, channels, height, width, height_out, - width_out, kernel_h, kernel_w, pad_h, pad_w, stride_h, stride_w, - dilation_h, dilation_w, deformable_group, columns); - - columns = columns.view({group, columns.size(0) / group, columns.size(1)}); - grad_weight = grad_weight.view({group, grad_weight.size(0) / group, - grad_weight.size(1), grad_weight.size(2), - grad_weight.size(3)}); - if (with_bias) - grad_bias = grad_bias.view({group, grad_bias.size(0) / group}); - - for (int g = 0; g < group; g++) { - grad_weight[g] = - grad_weight[g] - .flatten(1) - .addmm_(grad_output[b][g].flatten(1), columns[g].transpose(0, 1)) - .view_as(grad_weight[g]); - if (with_bias) { - grad_bias[g] = - grad_bias[g] - .view({-1, 1}) - .addmm_(grad_output[b][g].flatten(1), ones.view({-1, 1})) - .view(-1); - } - } - - columns = - columns.view({columns.size(0) * columns.size(1), columns.size(2)}); - grad_weight = grad_weight.view({grad_weight.size(0) * grad_weight.size(1), - grad_weight.size(2), grad_weight.size(3), - grad_weight.size(4)}); - if (with_bias) - grad_bias = grad_bias.view({grad_bias.size(0) * grad_bias.size(1)}); - } - grad_output = grad_output.view({grad_output.size(0) * grad_output.size(1), - grad_output.size(2), grad_output.size(3), - grad_output.size(4)}); -} diff --git a/CodeFormer/CodeFormer/basicsr/ops/dcn/src/deform_conv_cuda_kernel.cu b/CodeFormer/CodeFormer/basicsr/ops/dcn/src/deform_conv_cuda_kernel.cu deleted file mode 100644 index 98752dccf8c58817ca1a952554dd3f33188a2d34..0000000000000000000000000000000000000000 --- a/CodeFormer/CodeFormer/basicsr/ops/dcn/src/deform_conv_cuda_kernel.cu +++ /dev/null @@ -1,867 +0,0 @@ -/*! - ******************* BEGIN Caffe Copyright Notice and Disclaimer **************** - * - * COPYRIGHT - * - * All contributions by the University of California: - * Copyright (c) 2014-2017 The Regents of the University of California (Regents) - * All rights reserved. - * - * All other contributions: - * Copyright (c) 2014-2017, the respective contributors - * All rights reserved. - * - * Caffe uses a shared copyright model: each contributor holds copyright over - * their contributions to Caffe. The project versioning records all such - * contribution and copyright details. If a contributor wants to further mark - * their specific copyright on a particular contribution, they should indicate - * their copyright solely in the commit message of the change when it is - * committed. - * - * LICENSE - * - * Redistribution and use in source and binary forms, with or without - * modification, are permitted provided that the following conditions are met: - * - * 1. Redistributions of source code must retain the above copyright notice, this - * list of conditions and the following disclaimer. - * 2. Redistributions in binary form must reproduce the above copyright notice, - * this list of conditions and the following disclaimer in the documentation - * and/or other materials provided with the distribution. - * - * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND - * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED - * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE - * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR - * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES - * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; - * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND - * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT - * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS - * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. - * - * CONTRIBUTION AGREEMENT - * - * By contributing to the BVLC/caffe repository through pull-request, comment, - * or otherwise, the contributor releases their content to the - * license and copyright terms herein. - * - ***************** END Caffe Copyright Notice and Disclaimer ******************** - * - * Copyright (c) 2018 Microsoft - * Licensed under The MIT License [see LICENSE for details] - * \file modulated_deformable_im2col.cuh - * \brief Function definitions of converting an image to - * column matrix based on kernel, padding, dilation, and offset. - * These functions are mainly used in deformable convolution operators. - * \ref: https://arxiv.org/abs/1703.06211 - * \author Yuwen Xiong, Haozhi Qi, Jifeng Dai, Xizhou Zhu, Han Hu, Dazhi Cheng - */ - -// modified from https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/blob/mmdetection/mmdet/ops/dcn/src/deform_conv_cuda_kernel.cu - -#include -#include -#include -#include -#include -#include - -using namespace at; - -#define CUDA_KERNEL_LOOP(i, n) \ - for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < (n); \ - i += blockDim.x * gridDim.x) - -const int CUDA_NUM_THREADS = 1024; -const int kMaxGridNum = 65535; - -inline int GET_BLOCKS(const int N) -{ - return std::min(kMaxGridNum, (N + CUDA_NUM_THREADS - 1) / CUDA_NUM_THREADS); -} - -template -__device__ scalar_t deformable_im2col_bilinear(const scalar_t *bottom_data, const int data_width, - const int height, const int width, scalar_t h, scalar_t w) -{ - - int h_low = floor(h); - int w_low = floor(w); - int h_high = h_low + 1; - int w_high = w_low + 1; - - scalar_t lh = h - h_low; - scalar_t lw = w - w_low; - scalar_t hh = 1 - lh, hw = 1 - lw; - - scalar_t v1 = 0; - if (h_low >= 0 && w_low >= 0) - v1 = bottom_data[h_low * data_width + w_low]; - scalar_t v2 = 0; - if (h_low >= 0 && w_high <= width - 1) - v2 = bottom_data[h_low * data_width + w_high]; - scalar_t v3 = 0; - if (h_high <= height - 1 && w_low >= 0) - v3 = bottom_data[h_high * data_width + w_low]; - scalar_t v4 = 0; - if (h_high <= height - 1 && w_high <= width - 1) - v4 = bottom_data[h_high * data_width + w_high]; - - scalar_t w1 = hh * hw, w2 = hh * lw, w3 = lh * hw, w4 = lh * lw; - - scalar_t val = (w1 * v1 + w2 * v2 + w3 * v3 + w4 * v4); - return val; -} - -template -__device__ scalar_t get_gradient_weight(scalar_t argmax_h, scalar_t argmax_w, - const int h, const int w, const int height, const int width) -{ - - if (argmax_h <= -1 || argmax_h >= height || argmax_w <= -1 || argmax_w >= width) - { - //empty - return 0; - } - - int argmax_h_low = floor(argmax_h); - int argmax_w_low = floor(argmax_w); - int argmax_h_high = argmax_h_low + 1; - int argmax_w_high = argmax_w_low + 1; - - scalar_t weight = 0; - if (h == argmax_h_low && w == argmax_w_low) - weight = (h + 1 - argmax_h) * (w + 1 - argmax_w); - if (h == argmax_h_low && w == argmax_w_high) - weight = (h + 1 - argmax_h) * (argmax_w + 1 - w); - if (h == argmax_h_high && w == argmax_w_low) - weight = (argmax_h + 1 - h) * (w + 1 - argmax_w); - if (h == argmax_h_high && w == argmax_w_high) - weight = (argmax_h + 1 - h) * (argmax_w + 1 - w); - return weight; -} - -template -__device__ scalar_t get_coordinate_weight(scalar_t argmax_h, scalar_t argmax_w, - const int height, const int width, const scalar_t *im_data, - const int data_width, const int bp_dir) -{ - - if (argmax_h <= -1 || argmax_h >= height || argmax_w <= -1 || argmax_w >= width) - { - //empty - return 0; - } - - int argmax_h_low = floor(argmax_h); - int argmax_w_low = floor(argmax_w); - int argmax_h_high = argmax_h_low + 1; - int argmax_w_high = argmax_w_low + 1; - - scalar_t weight = 0; - - if (bp_dir == 0) - { - if (argmax_h_low >= 0 && argmax_w_low >= 0) - weight += -1 * (argmax_w_low + 1 - argmax_w) * im_data[argmax_h_low * data_width + argmax_w_low]; - if (argmax_h_low >= 0 && argmax_w_high <= width - 1) - weight += -1 * (argmax_w - argmax_w_low) * im_data[argmax_h_low * data_width + argmax_w_high]; - if (argmax_h_high <= height - 1 && argmax_w_low >= 0) - weight += (argmax_w_low + 1 - argmax_w) * im_data[argmax_h_high * data_width + argmax_w_low]; - if (argmax_h_high <= height - 1 && argmax_w_high <= width - 1) - weight += (argmax_w - argmax_w_low) * im_data[argmax_h_high * data_width + argmax_w_high]; - } - else if (bp_dir == 1) - { - if (argmax_h_low >= 0 && argmax_w_low >= 0) - weight += -1 * (argmax_h_low + 1 - argmax_h) * im_data[argmax_h_low * data_width + argmax_w_low]; - if (argmax_h_low >= 0 && argmax_w_high <= width - 1) - weight += (argmax_h_low + 1 - argmax_h) * im_data[argmax_h_low * data_width + argmax_w_high]; - if (argmax_h_high <= height - 1 && argmax_w_low >= 0) - weight += -1 * (argmax_h - argmax_h_low) * im_data[argmax_h_high * data_width + argmax_w_low]; - if (argmax_h_high <= height - 1 && argmax_w_high <= width - 1) - weight += (argmax_h - argmax_h_low) * im_data[argmax_h_high * data_width + argmax_w_high]; - } - - return weight; -} - -template -__global__ void deformable_im2col_gpu_kernel(const int n, const scalar_t *data_im, const scalar_t *data_offset, - const int height, const int width, const int kernel_h, const int kernel_w, - const int pad_h, const int pad_w, const int stride_h, const int stride_w, - const int dilation_h, const int dilation_w, const int channel_per_deformable_group, - const int batch_size, const int num_channels, const int deformable_group, - const int height_col, const int width_col, - scalar_t *data_col) -{ - CUDA_KERNEL_LOOP(index, n) - { - // index index of output matrix - const int w_col = index % width_col; - const int h_col = (index / width_col) % height_col; - const int b_col = (index / width_col / height_col) % batch_size; - const int c_im = (index / width_col / height_col) / batch_size; - const int c_col = c_im * kernel_h * kernel_w; - - // compute deformable group index - const int deformable_group_index = c_im / channel_per_deformable_group; - - const int h_in = h_col * stride_h - pad_h; - const int w_in = w_col * stride_w - pad_w; - scalar_t *data_col_ptr = data_col + ((c_col * batch_size + b_col) * height_col + h_col) * width_col + w_col; - //const scalar_t* data_im_ptr = data_im + ((b_col * num_channels + c_im) * height + h_in) * width + w_in; - const scalar_t *data_im_ptr = data_im + (b_col * num_channels + c_im) * height * width; - const scalar_t *data_offset_ptr = data_offset + (b_col * deformable_group + deformable_group_index) * 2 * kernel_h * kernel_w * height_col * width_col; - - for (int i = 0; i < kernel_h; ++i) - { - for (int j = 0; j < kernel_w; ++j) - { - const int data_offset_h_ptr = ((2 * (i * kernel_w + j)) * height_col + h_col) * width_col + w_col; - const int data_offset_w_ptr = ((2 * (i * kernel_w + j) + 1) * height_col + h_col) * width_col + w_col; - const scalar_t offset_h = data_offset_ptr[data_offset_h_ptr]; - const scalar_t offset_w = data_offset_ptr[data_offset_w_ptr]; - scalar_t val = static_cast(0); - const scalar_t h_im = h_in + i * dilation_h + offset_h; - const scalar_t w_im = w_in + j * dilation_w + offset_w; - if (h_im > -1 && w_im > -1 && h_im < height && w_im < width) - { - //const scalar_t map_h = i * dilation_h + offset_h; - //const scalar_t map_w = j * dilation_w + offset_w; - //const int cur_height = height - h_in; - //const int cur_width = width - w_in; - //val = deformable_im2col_bilinear(data_im_ptr, width, cur_height, cur_width, map_h, map_w); - val = deformable_im2col_bilinear(data_im_ptr, width, height, width, h_im, w_im); - } - *data_col_ptr = val; - data_col_ptr += batch_size * height_col * width_col; - } - } - } -} - -void deformable_im2col( - const at::Tensor data_im, const at::Tensor data_offset, const int channels, - const int height, const int width, const int ksize_h, const int ksize_w, - const int pad_h, const int pad_w, const int stride_h, const int stride_w, - const int dilation_h, const int dilation_w, const int parallel_imgs, - const int deformable_group, at::Tensor data_col) -{ - // num_axes should be smaller than block size - // todo: check parallel_imgs is correctly passed in - int height_col = (height + 2 * pad_h - (dilation_h * (ksize_h - 1) + 1)) / stride_h + 1; - int width_col = (width + 2 * pad_w - (dilation_w * (ksize_w - 1) + 1)) / stride_w + 1; - int num_kernels = channels * height_col * width_col * parallel_imgs; - int channel_per_deformable_group = channels / deformable_group; - - AT_DISPATCH_FLOATING_TYPES_AND_HALF( - data_im.scalar_type(), "deformable_im2col_gpu", ([&] { - const scalar_t *data_im_ = data_im.data_ptr(); - const scalar_t *data_offset_ = data_offset.data_ptr(); - scalar_t *data_col_ = data_col.data_ptr(); - - deformable_im2col_gpu_kernel<<>>( - num_kernels, data_im_, data_offset_, height, width, ksize_h, ksize_w, - pad_h, pad_w, stride_h, stride_w, dilation_h, dilation_w, - channel_per_deformable_group, parallel_imgs, channels, deformable_group, - height_col, width_col, data_col_); - })); - - cudaError_t err = cudaGetLastError(); - if (err != cudaSuccess) - { - printf("error in deformable_im2col: %s\n", cudaGetErrorString(err)); - } -} - -template -__global__ void deformable_col2im_gpu_kernel( - const int n, const scalar_t *data_col, const scalar_t *data_offset, - const int channels, const int height, const int width, - const int kernel_h, const int kernel_w, - const int pad_h, const int pad_w, - const int stride_h, const int stride_w, - const int dilation_h, const int dilation_w, - const int channel_per_deformable_group, - const int batch_size, const int deformable_group, - const int height_col, const int width_col, - scalar_t *grad_im) -{ - CUDA_KERNEL_LOOP(index, n) - { - const int j = (index / width_col / height_col / batch_size) % kernel_w; - const int i = (index / width_col / height_col / batch_size / kernel_w) % kernel_h; - const int c = index / width_col / height_col / batch_size / kernel_w / kernel_h; - // compute the start and end of the output - - const int deformable_group_index = c / channel_per_deformable_group; - - int w_out = index % width_col; - int h_out = (index / width_col) % height_col; - int b = (index / width_col / height_col) % batch_size; - int w_in = w_out * stride_w - pad_w; - int h_in = h_out * stride_h - pad_h; - - const scalar_t *data_offset_ptr = data_offset + (b * deformable_group + deformable_group_index) * - 2 * kernel_h * kernel_w * height_col * width_col; - const int data_offset_h_ptr = ((2 * (i * kernel_w + j)) * height_col + h_out) * width_col + w_out; - const int data_offset_w_ptr = ((2 * (i * kernel_w + j) + 1) * height_col + h_out) * width_col + w_out; - const scalar_t offset_h = data_offset_ptr[data_offset_h_ptr]; - const scalar_t offset_w = data_offset_ptr[data_offset_w_ptr]; - const scalar_t cur_inv_h_data = h_in + i * dilation_h + offset_h; - const scalar_t cur_inv_w_data = w_in + j * dilation_w + offset_w; - - const scalar_t cur_top_grad = data_col[index]; - const int cur_h = (int)cur_inv_h_data; - const int cur_w = (int)cur_inv_w_data; - for (int dy = -2; dy <= 2; dy++) - { - for (int dx = -2; dx <= 2; dx++) - { - if (cur_h + dy >= 0 && cur_h + dy < height && - cur_w + dx >= 0 && cur_w + dx < width && - abs(cur_inv_h_data - (cur_h + dy)) < 1 && - abs(cur_inv_w_data - (cur_w + dx)) < 1) - { - int cur_bottom_grad_pos = ((b * channels + c) * height + cur_h + dy) * width + cur_w + dx; - scalar_t weight = get_gradient_weight(cur_inv_h_data, cur_inv_w_data, cur_h + dy, cur_w + dx, height, width); - atomicAdd(grad_im + cur_bottom_grad_pos, weight * cur_top_grad); - } - } - } - } -} - -void deformable_col2im( - const at::Tensor data_col, const at::Tensor data_offset, const int channels, - const int height, const int width, const int ksize_h, - const int ksize_w, const int pad_h, const int pad_w, - const int stride_h, const int stride_w, - const int dilation_h, const int dilation_w, - const int parallel_imgs, const int deformable_group, - at::Tensor grad_im) -{ - - // todo: make sure parallel_imgs is passed in correctly - int height_col = (height + 2 * pad_h - (dilation_h * (ksize_h - 1) + 1)) / stride_h + 1; - int width_col = (width + 2 * pad_w - (dilation_w * (ksize_w - 1) + 1)) / stride_w + 1; - int num_kernels = channels * ksize_h * ksize_w * height_col * width_col * parallel_imgs; - int channel_per_deformable_group = channels / deformable_group; - - AT_DISPATCH_FLOATING_TYPES_AND_HALF( - data_col.scalar_type(), "deformable_col2im_gpu", ([&] { - const scalar_t *data_col_ = data_col.data_ptr(); - const scalar_t *data_offset_ = data_offset.data_ptr(); - scalar_t *grad_im_ = grad_im.data_ptr(); - - deformable_col2im_gpu_kernel<<>>( - num_kernels, data_col_, data_offset_, channels, height, width, ksize_h, - ksize_w, pad_h, pad_w, stride_h, stride_w, - dilation_h, dilation_w, channel_per_deformable_group, - parallel_imgs, deformable_group, height_col, width_col, grad_im_); - })); - - cudaError_t err = cudaGetLastError(); - if (err != cudaSuccess) - { - printf("error in deformable_col2im: %s\n", cudaGetErrorString(err)); - } -} - -template -__global__ void deformable_col2im_coord_gpu_kernel(const int n, const scalar_t *data_col, - const scalar_t *data_im, const scalar_t *data_offset, - const int channels, const int height, const int width, - const int kernel_h, const int kernel_w, - const int pad_h, const int pad_w, - const int stride_h, const int stride_w, - const int dilation_h, const int dilation_w, - const int channel_per_deformable_group, - const int batch_size, const int offset_channels, const int deformable_group, - const int height_col, const int width_col, scalar_t *grad_offset) -{ - CUDA_KERNEL_LOOP(index, n) - { - scalar_t val = 0; - int w = index % width_col; - int h = (index / width_col) % height_col; - int c = (index / width_col / height_col) % offset_channels; - int b = (index / width_col / height_col) / offset_channels; - // compute the start and end of the output - - const int deformable_group_index = c / (2 * kernel_h * kernel_w); - const int col_step = kernel_h * kernel_w; - int cnt = 0; - const scalar_t *data_col_ptr = data_col + deformable_group_index * channel_per_deformable_group * - batch_size * width_col * height_col; - const scalar_t *data_im_ptr = data_im + (b * deformable_group + deformable_group_index) * - channel_per_deformable_group / kernel_h / kernel_w * height * width; - const scalar_t *data_offset_ptr = data_offset + (b * deformable_group + deformable_group_index) * 2 * - kernel_h * kernel_w * height_col * width_col; - - const int offset_c = c - deformable_group_index * 2 * kernel_h * kernel_w; - - for (int col_c = (offset_c / 2); col_c < channel_per_deformable_group; col_c += col_step) - { - const int col_pos = (((col_c * batch_size + b) * height_col) + h) * width_col + w; - const int bp_dir = offset_c % 2; - - int j = (col_pos / width_col / height_col / batch_size) % kernel_w; - int i = (col_pos / width_col / height_col / batch_size / kernel_w) % kernel_h; - int w_out = col_pos % width_col; - int h_out = (col_pos / width_col) % height_col; - int w_in = w_out * stride_w - pad_w; - int h_in = h_out * stride_h - pad_h; - const int data_offset_h_ptr = (((2 * (i * kernel_w + j)) * height_col + h_out) * width_col + w_out); - const int data_offset_w_ptr = (((2 * (i * kernel_w + j) + 1) * height_col + h_out) * width_col + w_out); - const scalar_t offset_h = data_offset_ptr[data_offset_h_ptr]; - const scalar_t offset_w = data_offset_ptr[data_offset_w_ptr]; - scalar_t inv_h = h_in + i * dilation_h + offset_h; - scalar_t inv_w = w_in + j * dilation_w + offset_w; - if (inv_h <= -1 || inv_w <= -1 || inv_h >= height || inv_w >= width) - { - inv_h = inv_w = -2; - } - const scalar_t weight = get_coordinate_weight( - inv_h, inv_w, - height, width, data_im_ptr + cnt * height * width, width, bp_dir); - val += weight * data_col_ptr[col_pos]; - cnt += 1; - } - - grad_offset[index] = val; - } -} - -void deformable_col2im_coord( - const at::Tensor data_col, const at::Tensor data_im, const at::Tensor data_offset, - const int channels, const int height, const int width, const int ksize_h, - const int ksize_w, const int pad_h, const int pad_w, const int stride_h, - const int stride_w, const int dilation_h, const int dilation_w, - const int parallel_imgs, const int deformable_group, at::Tensor grad_offset) -{ - - int height_col = (height + 2 * pad_h - (dilation_h * (ksize_h - 1) + 1)) / stride_h + 1; - int width_col = (width + 2 * pad_w - (dilation_w * (ksize_w - 1) + 1)) / stride_w + 1; - int num_kernels = height_col * width_col * 2 * ksize_h * ksize_w * deformable_group * parallel_imgs; - int channel_per_deformable_group = channels * ksize_h * ksize_w / deformable_group; - - AT_DISPATCH_FLOATING_TYPES_AND_HALF( - data_col.scalar_type(), "deformable_col2im_coord_gpu", ([&] { - const scalar_t *data_col_ = data_col.data_ptr(); - const scalar_t *data_im_ = data_im.data_ptr(); - const scalar_t *data_offset_ = data_offset.data_ptr(); - scalar_t *grad_offset_ = grad_offset.data_ptr(); - - deformable_col2im_coord_gpu_kernel<<>>( - num_kernels, data_col_, data_im_, data_offset_, channels, height, width, - ksize_h, ksize_w, pad_h, pad_w, stride_h, stride_w, - dilation_h, dilation_w, channel_per_deformable_group, - parallel_imgs, 2 * ksize_h * ksize_w * deformable_group, deformable_group, - height_col, width_col, grad_offset_); - })); -} - -template -__device__ scalar_t dmcn_im2col_bilinear(const scalar_t *bottom_data, const int data_width, - const int height, const int width, scalar_t h, scalar_t w) -{ - int h_low = floor(h); - int w_low = floor(w); - int h_high = h_low + 1; - int w_high = w_low + 1; - - scalar_t lh = h - h_low; - scalar_t lw = w - w_low; - scalar_t hh = 1 - lh, hw = 1 - lw; - - scalar_t v1 = 0; - if (h_low >= 0 && w_low >= 0) - v1 = bottom_data[h_low * data_width + w_low]; - scalar_t v2 = 0; - if (h_low >= 0 && w_high <= width - 1) - v2 = bottom_data[h_low * data_width + w_high]; - scalar_t v3 = 0; - if (h_high <= height - 1 && w_low >= 0) - v3 = bottom_data[h_high * data_width + w_low]; - scalar_t v4 = 0; - if (h_high <= height - 1 && w_high <= width - 1) - v4 = bottom_data[h_high * data_width + w_high]; - - scalar_t w1 = hh * hw, w2 = hh * lw, w3 = lh * hw, w4 = lh * lw; - - scalar_t val = (w1 * v1 + w2 * v2 + w3 * v3 + w4 * v4); - return val; -} - -template -__device__ scalar_t dmcn_get_gradient_weight(scalar_t argmax_h, scalar_t argmax_w, - const int h, const int w, const int height, const int width) -{ - if (argmax_h <= -1 || argmax_h >= height || argmax_w <= -1 || argmax_w >= width) - { - //empty - return 0; - } - - int argmax_h_low = floor(argmax_h); - int argmax_w_low = floor(argmax_w); - int argmax_h_high = argmax_h_low + 1; - int argmax_w_high = argmax_w_low + 1; - - scalar_t weight = 0; - if (h == argmax_h_low && w == argmax_w_low) - weight = (h + 1 - argmax_h) * (w + 1 - argmax_w); - if (h == argmax_h_low && w == argmax_w_high) - weight = (h + 1 - argmax_h) * (argmax_w + 1 - w); - if (h == argmax_h_high && w == argmax_w_low) - weight = (argmax_h + 1 - h) * (w + 1 - argmax_w); - if (h == argmax_h_high && w == argmax_w_high) - weight = (argmax_h + 1 - h) * (argmax_w + 1 - w); - return weight; -} - -template -__device__ scalar_t dmcn_get_coordinate_weight(scalar_t argmax_h, scalar_t argmax_w, - const int height, const int width, const scalar_t *im_data, - const int data_width, const int bp_dir) -{ - if (argmax_h <= -1 || argmax_h >= height || argmax_w <= -1 || argmax_w >= width) - { - //empty - return 0; - } - - int argmax_h_low = floor(argmax_h); - int argmax_w_low = floor(argmax_w); - int argmax_h_high = argmax_h_low + 1; - int argmax_w_high = argmax_w_low + 1; - - scalar_t weight = 0; - - if (bp_dir == 0) - { - if (argmax_h_low >= 0 && argmax_w_low >= 0) - weight += -1 * (argmax_w_low + 1 - argmax_w) * im_data[argmax_h_low * data_width + argmax_w_low]; - if (argmax_h_low >= 0 && argmax_w_high <= width - 1) - weight += -1 * (argmax_w - argmax_w_low) * im_data[argmax_h_low * data_width + argmax_w_high]; - if (argmax_h_high <= height - 1 && argmax_w_low >= 0) - weight += (argmax_w_low + 1 - argmax_w) * im_data[argmax_h_high * data_width + argmax_w_low]; - if (argmax_h_high <= height - 1 && argmax_w_high <= width - 1) - weight += (argmax_w - argmax_w_low) * im_data[argmax_h_high * data_width + argmax_w_high]; - } - else if (bp_dir == 1) - { - if (argmax_h_low >= 0 && argmax_w_low >= 0) - weight += -1 * (argmax_h_low + 1 - argmax_h) * im_data[argmax_h_low * data_width + argmax_w_low]; - if (argmax_h_low >= 0 && argmax_w_high <= width - 1) - weight += (argmax_h_low + 1 - argmax_h) * im_data[argmax_h_low * data_width + argmax_w_high]; - if (argmax_h_high <= height - 1 && argmax_w_low >= 0) - weight += -1 * (argmax_h - argmax_h_low) * im_data[argmax_h_high * data_width + argmax_w_low]; - if (argmax_h_high <= height - 1 && argmax_w_high <= width - 1) - weight += (argmax_h - argmax_h_low) * im_data[argmax_h_high * data_width + argmax_w_high]; - } - - return weight; -} - -template -__global__ void modulated_deformable_im2col_gpu_kernel(const int n, - const scalar_t *data_im, const scalar_t *data_offset, const scalar_t *data_mask, - const int height, const int width, const int kernel_h, const int kernel_w, - const int pad_h, const int pad_w, - const int stride_h, const int stride_w, - const int dilation_h, const int dilation_w, - const int channel_per_deformable_group, - const int batch_size, const int num_channels, const int deformable_group, - const int height_col, const int width_col, - scalar_t *data_col) -{ - CUDA_KERNEL_LOOP(index, n) - { - // index index of output matrix - const int w_col = index % width_col; - const int h_col = (index / width_col) % height_col; - const int b_col = (index / width_col / height_col) % batch_size; - const int c_im = (index / width_col / height_col) / batch_size; - const int c_col = c_im * kernel_h * kernel_w; - - // compute deformable group index - const int deformable_group_index = c_im / channel_per_deformable_group; - - const int h_in = h_col * stride_h - pad_h; - const int w_in = w_col * stride_w - pad_w; - - scalar_t *data_col_ptr = data_col + ((c_col * batch_size + b_col) * height_col + h_col) * width_col + w_col; - //const float* data_im_ptr = data_im + ((b_col * num_channels + c_im) * height + h_in) * width + w_in; - const scalar_t *data_im_ptr = data_im + (b_col * num_channels + c_im) * height * width; - const scalar_t *data_offset_ptr = data_offset + (b_col * deformable_group + deformable_group_index) * 2 * kernel_h * kernel_w * height_col * width_col; - - const scalar_t *data_mask_ptr = data_mask + (b_col * deformable_group + deformable_group_index) * kernel_h * kernel_w * height_col * width_col; - - for (int i = 0; i < kernel_h; ++i) - { - for (int j = 0; j < kernel_w; ++j) - { - const int data_offset_h_ptr = ((2 * (i * kernel_w + j)) * height_col + h_col) * width_col + w_col; - const int data_offset_w_ptr = ((2 * (i * kernel_w + j) + 1) * height_col + h_col) * width_col + w_col; - const int data_mask_hw_ptr = ((i * kernel_w + j) * height_col + h_col) * width_col + w_col; - const scalar_t offset_h = data_offset_ptr[data_offset_h_ptr]; - const scalar_t offset_w = data_offset_ptr[data_offset_w_ptr]; - const scalar_t mask = data_mask_ptr[data_mask_hw_ptr]; - scalar_t val = static_cast(0); - const scalar_t h_im = h_in + i * dilation_h + offset_h; - const scalar_t w_im = w_in + j * dilation_w + offset_w; - //if (h_im >= 0 && w_im >= 0 && h_im < height && w_im < width) { - if (h_im > -1 && w_im > -1 && h_im < height && w_im < width) - { - //const float map_h = i * dilation_h + offset_h; - //const float map_w = j * dilation_w + offset_w; - //const int cur_height = height - h_in; - //const int cur_width = width - w_in; - //val = dmcn_im2col_bilinear(data_im_ptr, width, cur_height, cur_width, map_h, map_w); - val = dmcn_im2col_bilinear(data_im_ptr, width, height, width, h_im, w_im); - } - *data_col_ptr = val * mask; - data_col_ptr += batch_size * height_col * width_col; - //data_col_ptr += height_col * width_col; - } - } - } -} - -template -__global__ void modulated_deformable_col2im_gpu_kernel(const int n, - const scalar_t *data_col, const scalar_t *data_offset, const scalar_t *data_mask, - const int channels, const int height, const int width, - const int kernel_h, const int kernel_w, - const int pad_h, const int pad_w, - const int stride_h, const int stride_w, - const int dilation_h, const int dilation_w, - const int channel_per_deformable_group, - const int batch_size, const int deformable_group, - const int height_col, const int width_col, - scalar_t *grad_im) -{ - CUDA_KERNEL_LOOP(index, n) - { - const int j = (index / width_col / height_col / batch_size) % kernel_w; - const int i = (index / width_col / height_col / batch_size / kernel_w) % kernel_h; - const int c = index / width_col / height_col / batch_size / kernel_w / kernel_h; - // compute the start and end of the output - - const int deformable_group_index = c / channel_per_deformable_group; - - int w_out = index % width_col; - int h_out = (index / width_col) % height_col; - int b = (index / width_col / height_col) % batch_size; - int w_in = w_out * stride_w - pad_w; - int h_in = h_out * stride_h - pad_h; - - const scalar_t *data_offset_ptr = data_offset + (b * deformable_group + deformable_group_index) * 2 * kernel_h * kernel_w * height_col * width_col; - const scalar_t *data_mask_ptr = data_mask + (b * deformable_group + deformable_group_index) * kernel_h * kernel_w * height_col * width_col; - const int data_offset_h_ptr = ((2 * (i * kernel_w + j)) * height_col + h_out) * width_col + w_out; - const int data_offset_w_ptr = ((2 * (i * kernel_w + j) + 1) * height_col + h_out) * width_col + w_out; - const int data_mask_hw_ptr = ((i * kernel_w + j) * height_col + h_out) * width_col + w_out; - const scalar_t offset_h = data_offset_ptr[data_offset_h_ptr]; - const scalar_t offset_w = data_offset_ptr[data_offset_w_ptr]; - const scalar_t mask = data_mask_ptr[data_mask_hw_ptr]; - const scalar_t cur_inv_h_data = h_in + i * dilation_h + offset_h; - const scalar_t cur_inv_w_data = w_in + j * dilation_w + offset_w; - - const scalar_t cur_top_grad = data_col[index] * mask; - const int cur_h = (int)cur_inv_h_data; - const int cur_w = (int)cur_inv_w_data; - for (int dy = -2; dy <= 2; dy++) - { - for (int dx = -2; dx <= 2; dx++) - { - if (cur_h + dy >= 0 && cur_h + dy < height && - cur_w + dx >= 0 && cur_w + dx < width && - abs(cur_inv_h_data - (cur_h + dy)) < 1 && - abs(cur_inv_w_data - (cur_w + dx)) < 1) - { - int cur_bottom_grad_pos = ((b * channels + c) * height + cur_h + dy) * width + cur_w + dx; - scalar_t weight = dmcn_get_gradient_weight(cur_inv_h_data, cur_inv_w_data, cur_h + dy, cur_w + dx, height, width); - atomicAdd(grad_im + cur_bottom_grad_pos, weight * cur_top_grad); - } - } - } - } -} - -template -__global__ void modulated_deformable_col2im_coord_gpu_kernel(const int n, - const scalar_t *data_col, const scalar_t *data_im, - const scalar_t *data_offset, const scalar_t *data_mask, - const int channels, const int height, const int width, - const int kernel_h, const int kernel_w, - const int pad_h, const int pad_w, - const int stride_h, const int stride_w, - const int dilation_h, const int dilation_w, - const int channel_per_deformable_group, - const int batch_size, const int offset_channels, const int deformable_group, - const int height_col, const int width_col, - scalar_t *grad_offset, scalar_t *grad_mask) -{ - CUDA_KERNEL_LOOP(index, n) - { - scalar_t val = 0, mval = 0; - int w = index % width_col; - int h = (index / width_col) % height_col; - int c = (index / width_col / height_col) % offset_channels; - int b = (index / width_col / height_col) / offset_channels; - // compute the start and end of the output - - const int deformable_group_index = c / (2 * kernel_h * kernel_w); - const int col_step = kernel_h * kernel_w; - int cnt = 0; - const scalar_t *data_col_ptr = data_col + deformable_group_index * channel_per_deformable_group * batch_size * width_col * height_col; - const scalar_t *data_im_ptr = data_im + (b * deformable_group + deformable_group_index) * channel_per_deformable_group / kernel_h / kernel_w * height * width; - const scalar_t *data_offset_ptr = data_offset + (b * deformable_group + deformable_group_index) * 2 * kernel_h * kernel_w * height_col * width_col; - const scalar_t *data_mask_ptr = data_mask + (b * deformable_group + deformable_group_index) * kernel_h * kernel_w * height_col * width_col; - - const int offset_c = c - deformable_group_index * 2 * kernel_h * kernel_w; - - for (int col_c = (offset_c / 2); col_c < channel_per_deformable_group; col_c += col_step) - { - const int col_pos = (((col_c * batch_size + b) * height_col) + h) * width_col + w; - const int bp_dir = offset_c % 2; - - int j = (col_pos / width_col / height_col / batch_size) % kernel_w; - int i = (col_pos / width_col / height_col / batch_size / kernel_w) % kernel_h; - int w_out = col_pos % width_col; - int h_out = (col_pos / width_col) % height_col; - int w_in = w_out * stride_w - pad_w; - int h_in = h_out * stride_h - pad_h; - const int data_offset_h_ptr = (((2 * (i * kernel_w + j)) * height_col + h_out) * width_col + w_out); - const int data_offset_w_ptr = (((2 * (i * kernel_w + j) + 1) * height_col + h_out) * width_col + w_out); - const int data_mask_hw_ptr = (((i * kernel_w + j) * height_col + h_out) * width_col + w_out); - const scalar_t offset_h = data_offset_ptr[data_offset_h_ptr]; - const scalar_t offset_w = data_offset_ptr[data_offset_w_ptr]; - const scalar_t mask = data_mask_ptr[data_mask_hw_ptr]; - scalar_t inv_h = h_in + i * dilation_h + offset_h; - scalar_t inv_w = w_in + j * dilation_w + offset_w; - if (inv_h <= -1 || inv_w <= -1 || inv_h >= height || inv_w >= width) - { - inv_h = inv_w = -2; - } - else - { - mval += data_col_ptr[col_pos] * dmcn_im2col_bilinear(data_im_ptr + cnt * height * width, width, height, width, inv_h, inv_w); - } - const scalar_t weight = dmcn_get_coordinate_weight( - inv_h, inv_w, - height, width, data_im_ptr + cnt * height * width, width, bp_dir); - val += weight * data_col_ptr[col_pos] * mask; - cnt += 1; - } - // KERNEL_ASSIGN(grad_offset[index], offset_req, val); - grad_offset[index] = val; - if (offset_c % 2 == 0) - // KERNEL_ASSIGN(grad_mask[(((b * deformable_group + deformable_group_index) * kernel_h * kernel_w + offset_c / 2) * height_col + h) * width_col + w], mask_req, mval); - grad_mask[(((b * deformable_group + deformable_group_index) * kernel_h * kernel_w + offset_c / 2) * height_col + h) * width_col + w] = mval; - } -} - -void modulated_deformable_im2col_cuda( - const at::Tensor data_im, const at::Tensor data_offset, const at::Tensor data_mask, - const int batch_size, const int channels, const int height_im, const int width_im, - const int height_col, const int width_col, const int kernel_h, const int kenerl_w, - const int pad_h, const int pad_w, const int stride_h, const int stride_w, - const int dilation_h, const int dilation_w, - const int deformable_group, at::Tensor data_col) -{ - // num_axes should be smaller than block size - const int channel_per_deformable_group = channels / deformable_group; - const int num_kernels = channels * batch_size * height_col * width_col; - - AT_DISPATCH_FLOATING_TYPES_AND_HALF( - data_im.scalar_type(), "modulated_deformable_im2col_gpu", ([&] { - const scalar_t *data_im_ = data_im.data_ptr(); - const scalar_t *data_offset_ = data_offset.data_ptr(); - const scalar_t *data_mask_ = data_mask.data_ptr(); - scalar_t *data_col_ = data_col.data_ptr(); - - modulated_deformable_im2col_gpu_kernel<<>>( - num_kernels, data_im_, data_offset_, data_mask_, height_im, width_im, kernel_h, kenerl_w, - pad_h, pad_w, stride_h, stride_w, dilation_h, dilation_w, channel_per_deformable_group, - batch_size, channels, deformable_group, height_col, width_col, data_col_); - })); - - cudaError_t err = cudaGetLastError(); - if (err != cudaSuccess) - { - printf("error in modulated_deformable_im2col_cuda: %s\n", cudaGetErrorString(err)); - } -} - -void modulated_deformable_col2im_cuda( - const at::Tensor data_col, const at::Tensor data_offset, const at::Tensor data_mask, - const int batch_size, const int channels, const int height_im, const int width_im, - const int height_col, const int width_col, const int kernel_h, const int kernel_w, - const int pad_h, const int pad_w, const int stride_h, const int stride_w, - const int dilation_h, const int dilation_w, - const int deformable_group, at::Tensor grad_im) -{ - - const int channel_per_deformable_group = channels / deformable_group; - const int num_kernels = channels * kernel_h * kernel_w * batch_size * height_col * width_col; - - AT_DISPATCH_FLOATING_TYPES_AND_HALF( - data_col.scalar_type(), "modulated_deformable_col2im_gpu", ([&] { - const scalar_t *data_col_ = data_col.data_ptr(); - const scalar_t *data_offset_ = data_offset.data_ptr(); - const scalar_t *data_mask_ = data_mask.data_ptr(); - scalar_t *grad_im_ = grad_im.data_ptr(); - - modulated_deformable_col2im_gpu_kernel<<>>( - num_kernels, data_col_, data_offset_, data_mask_, channels, height_im, width_im, - kernel_h, kernel_w, pad_h, pad_w, stride_h, stride_w, - dilation_h, dilation_w, channel_per_deformable_group, - batch_size, deformable_group, height_col, width_col, grad_im_); - })); - - cudaError_t err = cudaGetLastError(); - if (err != cudaSuccess) - { - printf("error in modulated_deformable_col2im_cuda: %s\n", cudaGetErrorString(err)); - } -} - -void modulated_deformable_col2im_coord_cuda( - const at::Tensor data_col, const at::Tensor data_im, const at::Tensor data_offset, const at::Tensor data_mask, - const int batch_size, const int channels, const int height_im, const int width_im, - const int height_col, const int width_col, const int kernel_h, const int kernel_w, - const int pad_h, const int pad_w, const int stride_h, const int stride_w, - const int dilation_h, const int dilation_w, - const int deformable_group, - at::Tensor grad_offset, at::Tensor grad_mask) -{ - const int num_kernels = batch_size * height_col * width_col * 2 * kernel_h * kernel_w * deformable_group; - const int channel_per_deformable_group = channels * kernel_h * kernel_w / deformable_group; - - AT_DISPATCH_FLOATING_TYPES_AND_HALF( - data_col.scalar_type(), "modulated_deformable_col2im_coord_gpu", ([&] { - const scalar_t *data_col_ = data_col.data_ptr(); - const scalar_t *data_im_ = data_im.data_ptr(); - const scalar_t *data_offset_ = data_offset.data_ptr(); - const scalar_t *data_mask_ = data_mask.data_ptr(); - scalar_t *grad_offset_ = grad_offset.data_ptr(); - scalar_t *grad_mask_ = grad_mask.data_ptr(); - - modulated_deformable_col2im_coord_gpu_kernel<<>>( - num_kernels, data_col_, data_im_, data_offset_, data_mask_, channels, height_im, width_im, - kernel_h, kernel_w, pad_h, pad_w, stride_h, stride_w, - dilation_h, dilation_w, channel_per_deformable_group, - batch_size, 2 * kernel_h * kernel_w * deformable_group, deformable_group, height_col, width_col, - grad_offset_, grad_mask_); - })); - cudaError_t err = cudaGetLastError(); - if (err != cudaSuccess) - { - printf("error in modulated_deformable_col2im_coord_cuda: %s\n", cudaGetErrorString(err)); - } -} diff --git a/CodeFormer/CodeFormer/basicsr/ops/dcn/src/deform_conv_ext.cpp b/CodeFormer/CodeFormer/basicsr/ops/dcn/src/deform_conv_ext.cpp deleted file mode 100644 index 41c6df6f721bd95a525fd6a03dd9882e863de042..0000000000000000000000000000000000000000 --- a/CodeFormer/CodeFormer/basicsr/ops/dcn/src/deform_conv_ext.cpp +++ /dev/null @@ -1,164 +0,0 @@ -// modify from -// https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/blob/mmdetection/mmdet/ops/dcn/src/deform_conv_cuda.c - -#include -#include - -#include -#include - -#define WITH_CUDA // always use cuda -#ifdef WITH_CUDA -int deform_conv_forward_cuda(at::Tensor input, at::Tensor weight, - at::Tensor offset, at::Tensor output, - at::Tensor columns, at::Tensor ones, int kW, - int kH, int dW, int dH, int padW, int padH, - int dilationW, int dilationH, int group, - int deformable_group, int im2col_step); - -int deform_conv_backward_input_cuda(at::Tensor input, at::Tensor offset, - at::Tensor gradOutput, at::Tensor gradInput, - at::Tensor gradOffset, at::Tensor weight, - at::Tensor columns, int kW, int kH, int dW, - int dH, int padW, int padH, int dilationW, - int dilationH, int group, - int deformable_group, int im2col_step); - -int deform_conv_backward_parameters_cuda( - at::Tensor input, at::Tensor offset, at::Tensor gradOutput, - at::Tensor gradWeight, // at::Tensor gradBias, - at::Tensor columns, at::Tensor ones, int kW, int kH, int dW, int dH, - int padW, int padH, int dilationW, int dilationH, int group, - int deformable_group, float scale, int im2col_step); - -void modulated_deform_conv_cuda_forward( - at::Tensor input, at::Tensor weight, at::Tensor bias, at::Tensor ones, - at::Tensor offset, at::Tensor mask, at::Tensor output, at::Tensor columns, - int kernel_h, int kernel_w, const int stride_h, const int stride_w, - const int pad_h, const int pad_w, const int dilation_h, - const int dilation_w, const int group, const int deformable_group, - const bool with_bias); - -void modulated_deform_conv_cuda_backward( - at::Tensor input, at::Tensor weight, at::Tensor bias, at::Tensor ones, - at::Tensor offset, at::Tensor mask, at::Tensor columns, - at::Tensor grad_input, at::Tensor grad_weight, at::Tensor grad_bias, - at::Tensor grad_offset, at::Tensor grad_mask, at::Tensor grad_output, - int kernel_h, int kernel_w, int stride_h, int stride_w, int pad_h, - int pad_w, int dilation_h, int dilation_w, int group, int deformable_group, - const bool with_bias); -#endif - -int deform_conv_forward(at::Tensor input, at::Tensor weight, - at::Tensor offset, at::Tensor output, - at::Tensor columns, at::Tensor ones, int kW, - int kH, int dW, int dH, int padW, int padH, - int dilationW, int dilationH, int group, - int deformable_group, int im2col_step) { - if (input.device().is_cuda()) { -#ifdef WITH_CUDA - return deform_conv_forward_cuda(input, weight, offset, output, columns, - ones, kW, kH, dW, dH, padW, padH, dilationW, dilationH, group, - deformable_group, im2col_step); -#else - AT_ERROR("deform conv is not compiled with GPU support"); -#endif - } - AT_ERROR("deform conv is not implemented on CPU"); -} - -int deform_conv_backward_input(at::Tensor input, at::Tensor offset, - at::Tensor gradOutput, at::Tensor gradInput, - at::Tensor gradOffset, at::Tensor weight, - at::Tensor columns, int kW, int kH, int dW, - int dH, int padW, int padH, int dilationW, - int dilationH, int group, - int deformable_group, int im2col_step) { - if (input.device().is_cuda()) { -#ifdef WITH_CUDA - return deform_conv_backward_input_cuda(input, offset, gradOutput, - gradInput, gradOffset, weight, columns, kW, kH, dW, dH, padW, padH, - dilationW, dilationH, group, deformable_group, im2col_step); -#else - AT_ERROR("deform conv is not compiled with GPU support"); -#endif - } - AT_ERROR("deform conv is not implemented on CPU"); -} - -int deform_conv_backward_parameters( - at::Tensor input, at::Tensor offset, at::Tensor gradOutput, - at::Tensor gradWeight, // at::Tensor gradBias, - at::Tensor columns, at::Tensor ones, int kW, int kH, int dW, int dH, - int padW, int padH, int dilationW, int dilationH, int group, - int deformable_group, float scale, int im2col_step) { - if (input.device().is_cuda()) { -#ifdef WITH_CUDA - return deform_conv_backward_parameters_cuda(input, offset, gradOutput, - gradWeight, columns, ones, kW, kH, dW, dH, padW, padH, dilationW, - dilationH, group, deformable_group, scale, im2col_step); -#else - AT_ERROR("deform conv is not compiled with GPU support"); -#endif - } - AT_ERROR("deform conv is not implemented on CPU"); -} - -void modulated_deform_conv_forward( - at::Tensor input, at::Tensor weight, at::Tensor bias, at::Tensor ones, - at::Tensor offset, at::Tensor mask, at::Tensor output, at::Tensor columns, - int kernel_h, int kernel_w, const int stride_h, const int stride_w, - const int pad_h, const int pad_w, const int dilation_h, - const int dilation_w, const int group, const int deformable_group, - const bool with_bias) { - if (input.device().is_cuda()) { -#ifdef WITH_CUDA - return modulated_deform_conv_cuda_forward(input, weight, bias, ones, - offset, mask, output, columns, kernel_h, kernel_w, stride_h, - stride_w, pad_h, pad_w, dilation_h, dilation_w, group, - deformable_group, with_bias); -#else - AT_ERROR("modulated deform conv is not compiled with GPU support"); -#endif - } - AT_ERROR("modulated deform conv is not implemented on CPU"); -} - -void modulated_deform_conv_backward( - at::Tensor input, at::Tensor weight, at::Tensor bias, at::Tensor ones, - at::Tensor offset, at::Tensor mask, at::Tensor columns, - at::Tensor grad_input, at::Tensor grad_weight, at::Tensor grad_bias, - at::Tensor grad_offset, at::Tensor grad_mask, at::Tensor grad_output, - int kernel_h, int kernel_w, int stride_h, int stride_w, int pad_h, - int pad_w, int dilation_h, int dilation_w, int group, int deformable_group, - const bool with_bias) { - if (input.device().is_cuda()) { -#ifdef WITH_CUDA - return modulated_deform_conv_cuda_backward(input, weight, bias, ones, - offset, mask, columns, grad_input, grad_weight, grad_bias, grad_offset, - grad_mask, grad_output, kernel_h, kernel_w, stride_h, stride_w, - pad_h, pad_w, dilation_h, dilation_w, group, deformable_group, - with_bias); -#else - AT_ERROR("modulated deform conv is not compiled with GPU support"); -#endif - } - AT_ERROR("modulated deform conv is not implemented on CPU"); -} - - -PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) { - m.def("deform_conv_forward", &deform_conv_forward, - "deform forward"); - m.def("deform_conv_backward_input", &deform_conv_backward_input, - "deform_conv_backward_input"); - m.def("deform_conv_backward_parameters", - &deform_conv_backward_parameters, - "deform_conv_backward_parameters"); - m.def("modulated_deform_conv_forward", - &modulated_deform_conv_forward, - "modulated deform conv forward"); - m.def("modulated_deform_conv_backward", - &modulated_deform_conv_backward, - "modulated deform conv backward"); -} diff --git a/CodeFormer/CodeFormer/basicsr/ops/fused_act/__init__.py b/CodeFormer/CodeFormer/basicsr/ops/fused_act/__init__.py deleted file mode 100644 index 241dc0754fae7d88dbbd9a02e665ca30a73c7422..0000000000000000000000000000000000000000 --- a/CodeFormer/CodeFormer/basicsr/ops/fused_act/__init__.py +++ /dev/null @@ -1,3 +0,0 @@ -from .fused_act import FusedLeakyReLU, fused_leaky_relu - -__all__ = ['FusedLeakyReLU', 'fused_leaky_relu'] diff --git a/CodeFormer/CodeFormer/basicsr/ops/fused_act/fused_act.py b/CodeFormer/CodeFormer/basicsr/ops/fused_act/fused_act.py deleted file mode 100644 index 588f815e596ab0fc83ab0f9d21426c22ec5ed7c3..0000000000000000000000000000000000000000 --- a/CodeFormer/CodeFormer/basicsr/ops/fused_act/fused_act.py +++ /dev/null @@ -1,89 +0,0 @@ -# modify from https://github.com/rosinality/stylegan2-pytorch/blob/master/op/fused_act.py # noqa:E501 - -import torch -from torch import nn -from torch.autograd import Function - -try: - from . import fused_act_ext -except ImportError: - import os - BASICSR_JIT = os.getenv('BASICSR_JIT') - if BASICSR_JIT == 'True': - from torch.utils.cpp_extension import load - module_path = os.path.dirname(__file__) - fused_act_ext = load( - 'fused', - sources=[ - os.path.join(module_path, 'src', 'fused_bias_act.cpp'), - os.path.join(module_path, 'src', 'fused_bias_act_kernel.cu'), - ], - ) - - -class FusedLeakyReLUFunctionBackward(Function): - - @staticmethod - def forward(ctx, grad_output, out, negative_slope, scale): - ctx.save_for_backward(out) - ctx.negative_slope = negative_slope - ctx.scale = scale - - empty = grad_output.new_empty(0) - - grad_input = fused_act_ext.fused_bias_act(grad_output, empty, out, 3, 1, negative_slope, scale) - - dim = [0] - - if grad_input.ndim > 2: - dim += list(range(2, grad_input.ndim)) - - grad_bias = grad_input.sum(dim).detach() - - return grad_input, grad_bias - - @staticmethod - def backward(ctx, gradgrad_input, gradgrad_bias): - out, = ctx.saved_tensors - gradgrad_out = fused_act_ext.fused_bias_act(gradgrad_input, gradgrad_bias, out, 3, 1, ctx.negative_slope, - ctx.scale) - - return gradgrad_out, None, None, None - - -class FusedLeakyReLUFunction(Function): - - @staticmethod - def forward(ctx, input, bias, negative_slope, scale): - empty = input.new_empty(0) - out = fused_act_ext.fused_bias_act(input, bias, empty, 3, 0, negative_slope, scale) - ctx.save_for_backward(out) - ctx.negative_slope = negative_slope - ctx.scale = scale - - return out - - @staticmethod - def backward(ctx, grad_output): - out, = ctx.saved_tensors - - grad_input, grad_bias = FusedLeakyReLUFunctionBackward.apply(grad_output, out, ctx.negative_slope, ctx.scale) - - return grad_input, grad_bias, None, None - - -class FusedLeakyReLU(nn.Module): - - def __init__(self, channel, negative_slope=0.2, scale=2**0.5): - super().__init__() - - self.bias = nn.Parameter(torch.zeros(channel)) - self.negative_slope = negative_slope - self.scale = scale - - def forward(self, input): - return fused_leaky_relu(input, self.bias, self.negative_slope, self.scale) - - -def fused_leaky_relu(input, bias, negative_slope=0.2, scale=2**0.5): - return FusedLeakyReLUFunction.apply(input, bias, negative_slope, scale) diff --git a/CodeFormer/CodeFormer/basicsr/ops/fused_act/src/fused_bias_act.cpp b/CodeFormer/CodeFormer/basicsr/ops/fused_act/src/fused_bias_act.cpp deleted file mode 100644 index 85ed0a79fb9c75f83470ac834090f03608d998ee..0000000000000000000000000000000000000000 --- a/CodeFormer/CodeFormer/basicsr/ops/fused_act/src/fused_bias_act.cpp +++ /dev/null @@ -1,26 +0,0 @@ -// from https://github.com/rosinality/stylegan2-pytorch/blob/master/op/fused_bias_act.cpp -#include - - -torch::Tensor fused_bias_act_op(const torch::Tensor& input, - const torch::Tensor& bias, - const torch::Tensor& refer, - int act, int grad, float alpha, float scale); - -#define CHECK_CUDA(x) TORCH_CHECK(x.type().is_cuda(), #x " must be a CUDA tensor") -#define CHECK_CONTIGUOUS(x) TORCH_CHECK(x.is_contiguous(), #x " must be contiguous") -#define CHECK_INPUT(x) CHECK_CUDA(x); CHECK_CONTIGUOUS(x) - -torch::Tensor fused_bias_act(const torch::Tensor& input, - const torch::Tensor& bias, - const torch::Tensor& refer, - int act, int grad, float alpha, float scale) { - CHECK_CUDA(input); - CHECK_CUDA(bias); - - return fused_bias_act_op(input, bias, refer, act, grad, alpha, scale); -} - -PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) { - m.def("fused_bias_act", &fused_bias_act, "fused bias act (CUDA)"); -} diff --git a/CodeFormer/CodeFormer/basicsr/ops/fused_act/src/fused_bias_act_kernel.cu b/CodeFormer/CodeFormer/basicsr/ops/fused_act/src/fused_bias_act_kernel.cu deleted file mode 100644 index 54c7ff53ce8306db2b3c582ec7fa6696a38b4df0..0000000000000000000000000000000000000000 --- a/CodeFormer/CodeFormer/basicsr/ops/fused_act/src/fused_bias_act_kernel.cu +++ /dev/null @@ -1,100 +0,0 @@ -// from https://github.com/rosinality/stylegan2-pytorch/blob/master/op/fused_bias_act_kernel.cu -// Copyright (c) 2019, NVIDIA Corporation. All rights reserved. -// -// This work is made available under the Nvidia Source Code License-NC. -// To view a copy of this license, visit -// https://nvlabs.github.io/stylegan2/license.html - -#include - -#include -#include -#include -#include - -#include -#include - - -template -static __global__ void fused_bias_act_kernel(scalar_t* out, const scalar_t* p_x, const scalar_t* p_b, const scalar_t* p_ref, - int act, int grad, scalar_t alpha, scalar_t scale, int loop_x, int size_x, int step_b, int size_b, int use_bias, int use_ref) { - int xi = blockIdx.x * loop_x * blockDim.x + threadIdx.x; - - scalar_t zero = 0.0; - - for (int loop_idx = 0; loop_idx < loop_x && xi < size_x; loop_idx++, xi += blockDim.x) { - scalar_t x = p_x[xi]; - - if (use_bias) { - x += p_b[(xi / step_b) % size_b]; - } - - scalar_t ref = use_ref ? p_ref[xi] : zero; - - scalar_t y; - - switch (act * 10 + grad) { - default: - case 10: y = x; break; - case 11: y = x; break; - case 12: y = 0.0; break; - - case 30: y = (x > 0.0) ? x : x * alpha; break; - case 31: y = (ref > 0.0) ? x : x * alpha; break; - case 32: y = 0.0; break; - } - - out[xi] = y * scale; - } -} - - -torch::Tensor fused_bias_act_op(const torch::Tensor& input, const torch::Tensor& bias, const torch::Tensor& refer, - int act, int grad, float alpha, float scale) { - int curDevice = -1; - cudaGetDevice(&curDevice); - cudaStream_t stream = at::cuda::getCurrentCUDAStream(curDevice); - - auto x = input.contiguous(); - auto b = bias.contiguous(); - auto ref = refer.contiguous(); - - int use_bias = b.numel() ? 1 : 0; - int use_ref = ref.numel() ? 1 : 0; - - int size_x = x.numel(); - int size_b = b.numel(); - int step_b = 1; - - for (int i = 1 + 1; i < x.dim(); i++) { - step_b *= x.size(i); - } - - int loop_x = 4; - int block_size = 4 * 32; - int grid_size = (size_x - 1) / (loop_x * block_size) + 1; - - auto y = torch::empty_like(x); - - AT_DISPATCH_FLOATING_TYPES_AND_HALF(x.scalar_type(), "fused_bias_act_kernel", [&] { - fused_bias_act_kernel<<>>( - y.data_ptr(), - x.data_ptr(), - b.data_ptr(), - ref.data_ptr(), - act, - grad, - alpha, - scale, - loop_x, - size_x, - step_b, - size_b, - use_bias, - use_ref - ); - }); - - return y; -} diff --git a/CodeFormer/CodeFormer/basicsr/ops/upfirdn2d/__init__.py b/CodeFormer/CodeFormer/basicsr/ops/upfirdn2d/__init__.py deleted file mode 100644 index 397e85bea063e97fc4c12ad4d3e15669b69290bd..0000000000000000000000000000000000000000 --- a/CodeFormer/CodeFormer/basicsr/ops/upfirdn2d/__init__.py +++ /dev/null @@ -1,3 +0,0 @@ -from .upfirdn2d import upfirdn2d - -__all__ = ['upfirdn2d'] diff --git a/CodeFormer/CodeFormer/basicsr/ops/upfirdn2d/src/upfirdn2d.cpp b/CodeFormer/CodeFormer/basicsr/ops/upfirdn2d/src/upfirdn2d.cpp deleted file mode 100644 index 43d0b6783a5b512b55815a291fcac2bebeea31e0..0000000000000000000000000000000000000000 --- a/CodeFormer/CodeFormer/basicsr/ops/upfirdn2d/src/upfirdn2d.cpp +++ /dev/null @@ -1,24 +0,0 @@ -// from https://github.com/rosinality/stylegan2-pytorch/blob/master/op/upfirdn2d.cpp -#include - - -torch::Tensor upfirdn2d_op(const torch::Tensor& input, const torch::Tensor& kernel, - int up_x, int up_y, int down_x, int down_y, - int pad_x0, int pad_x1, int pad_y0, int pad_y1); - -#define CHECK_CUDA(x) TORCH_CHECK(x.type().is_cuda(), #x " must be a CUDA tensor") -#define CHECK_CONTIGUOUS(x) TORCH_CHECK(x.is_contiguous(), #x " must be contiguous") -#define CHECK_INPUT(x) CHECK_CUDA(x); CHECK_CONTIGUOUS(x) - -torch::Tensor upfirdn2d(const torch::Tensor& input, const torch::Tensor& kernel, - int up_x, int up_y, int down_x, int down_y, - int pad_x0, int pad_x1, int pad_y0, int pad_y1) { - CHECK_CUDA(input); - CHECK_CUDA(kernel); - - return upfirdn2d_op(input, kernel, up_x, up_y, down_x, down_y, pad_x0, pad_x1, pad_y0, pad_y1); -} - -PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) { - m.def("upfirdn2d", &upfirdn2d, "upfirdn2d (CUDA)"); -} diff --git a/CodeFormer/CodeFormer/basicsr/ops/upfirdn2d/src/upfirdn2d_kernel.cu b/CodeFormer/CodeFormer/basicsr/ops/upfirdn2d/src/upfirdn2d_kernel.cu deleted file mode 100644 index 8870063bae4468deab2e721f0978fe9facfb01b1..0000000000000000000000000000000000000000 --- a/CodeFormer/CodeFormer/basicsr/ops/upfirdn2d/src/upfirdn2d_kernel.cu +++ /dev/null @@ -1,370 +0,0 @@ -// from https://github.com/rosinality/stylegan2-pytorch/blob/master/op/upfirdn2d_kernel.cu -// Copyright (c) 2019, NVIDIA Corporation. All rights reserved. -// -// This work is made available under the Nvidia Source Code License-NC. -// To view a copy of this license, visit -// https://nvlabs.github.io/stylegan2/license.html - -#include - -#include -#include -#include -#include - -#include -#include - -static __host__ __device__ __forceinline__ int floor_div(int a, int b) { - int c = a / b; - - if (c * b > a) { - c--; - } - - return c; -} - -struct UpFirDn2DKernelParams { - int up_x; - int up_y; - int down_x; - int down_y; - int pad_x0; - int pad_x1; - int pad_y0; - int pad_y1; - - int major_dim; - int in_h; - int in_w; - int minor_dim; - int kernel_h; - int kernel_w; - int out_h; - int out_w; - int loop_major; - int loop_x; -}; - -template -__global__ void upfirdn2d_kernel_large(scalar_t *out, const scalar_t *input, - const scalar_t *kernel, - const UpFirDn2DKernelParams p) { - int minor_idx = blockIdx.x * blockDim.x + threadIdx.x; - int out_y = minor_idx / p.minor_dim; - minor_idx -= out_y * p.minor_dim; - int out_x_base = blockIdx.y * p.loop_x * blockDim.y + threadIdx.y; - int major_idx_base = blockIdx.z * p.loop_major; - - if (out_x_base >= p.out_w || out_y >= p.out_h || - major_idx_base >= p.major_dim) { - return; - } - - int mid_y = out_y * p.down_y + p.up_y - 1 - p.pad_y0; - int in_y = min(max(floor_div(mid_y, p.up_y), 0), p.in_h); - int h = min(max(floor_div(mid_y + p.kernel_h, p.up_y), 0), p.in_h) - in_y; - int kernel_y = mid_y + p.kernel_h - (in_y + 1) * p.up_y; - - for (int loop_major = 0, major_idx = major_idx_base; - loop_major < p.loop_major && major_idx < p.major_dim; - loop_major++, major_idx++) { - for (int loop_x = 0, out_x = out_x_base; - loop_x < p.loop_x && out_x < p.out_w; loop_x++, out_x += blockDim.y) { - int mid_x = out_x * p.down_x + p.up_x - 1 - p.pad_x0; - int in_x = min(max(floor_div(mid_x, p.up_x), 0), p.in_w); - int w = min(max(floor_div(mid_x + p.kernel_w, p.up_x), 0), p.in_w) - in_x; - int kernel_x = mid_x + p.kernel_w - (in_x + 1) * p.up_x; - - const scalar_t *x_p = - &input[((major_idx * p.in_h + in_y) * p.in_w + in_x) * p.minor_dim + - minor_idx]; - const scalar_t *k_p = &kernel[kernel_y * p.kernel_w + kernel_x]; - int x_px = p.minor_dim; - int k_px = -p.up_x; - int x_py = p.in_w * p.minor_dim; - int k_py = -p.up_y * p.kernel_w; - - scalar_t v = 0.0f; - - for (int y = 0; y < h; y++) { - for (int x = 0; x < w; x++) { - v += static_cast(*x_p) * static_cast(*k_p); - x_p += x_px; - k_p += k_px; - } - - x_p += x_py - w * x_px; - k_p += k_py - w * k_px; - } - - out[((major_idx * p.out_h + out_y) * p.out_w + out_x) * p.minor_dim + - minor_idx] = v; - } - } -} - -template -__global__ void upfirdn2d_kernel(scalar_t *out, const scalar_t *input, - const scalar_t *kernel, - const UpFirDn2DKernelParams p) { - const int tile_in_h = ((tile_out_h - 1) * down_y + kernel_h - 1) / up_y + 1; - const int tile_in_w = ((tile_out_w - 1) * down_x + kernel_w - 1) / up_x + 1; - - __shared__ volatile float sk[kernel_h][kernel_w]; - __shared__ volatile float sx[tile_in_h][tile_in_w]; - - int minor_idx = blockIdx.x; - int tile_out_y = minor_idx / p.minor_dim; - minor_idx -= tile_out_y * p.minor_dim; - tile_out_y *= tile_out_h; - int tile_out_x_base = blockIdx.y * p.loop_x * tile_out_w; - int major_idx_base = blockIdx.z * p.loop_major; - - if (tile_out_x_base >= p.out_w | tile_out_y >= p.out_h | - major_idx_base >= p.major_dim) { - return; - } - - for (int tap_idx = threadIdx.x; tap_idx < kernel_h * kernel_w; - tap_idx += blockDim.x) { - int ky = tap_idx / kernel_w; - int kx = tap_idx - ky * kernel_w; - scalar_t v = 0.0; - - if (kx < p.kernel_w & ky < p.kernel_h) { - v = kernel[(p.kernel_h - 1 - ky) * p.kernel_w + (p.kernel_w - 1 - kx)]; - } - - sk[ky][kx] = v; - } - - for (int loop_major = 0, major_idx = major_idx_base; - loop_major < p.loop_major & major_idx < p.major_dim; - loop_major++, major_idx++) { - for (int loop_x = 0, tile_out_x = tile_out_x_base; - loop_x < p.loop_x & tile_out_x < p.out_w; - loop_x++, tile_out_x += tile_out_w) { - int tile_mid_x = tile_out_x * down_x + up_x - 1 - p.pad_x0; - int tile_mid_y = tile_out_y * down_y + up_y - 1 - p.pad_y0; - int tile_in_x = floor_div(tile_mid_x, up_x); - int tile_in_y = floor_div(tile_mid_y, up_y); - - __syncthreads(); - - for (int in_idx = threadIdx.x; in_idx < tile_in_h * tile_in_w; - in_idx += blockDim.x) { - int rel_in_y = in_idx / tile_in_w; - int rel_in_x = in_idx - rel_in_y * tile_in_w; - int in_x = rel_in_x + tile_in_x; - int in_y = rel_in_y + tile_in_y; - - scalar_t v = 0.0; - - if (in_x >= 0 & in_y >= 0 & in_x < p.in_w & in_y < p.in_h) { - v = input[((major_idx * p.in_h + in_y) * p.in_w + in_x) * - p.minor_dim + - minor_idx]; - } - - sx[rel_in_y][rel_in_x] = v; - } - - __syncthreads(); - for (int out_idx = threadIdx.x; out_idx < tile_out_h * tile_out_w; - out_idx += blockDim.x) { - int rel_out_y = out_idx / tile_out_w; - int rel_out_x = out_idx - rel_out_y * tile_out_w; - int out_x = rel_out_x + tile_out_x; - int out_y = rel_out_y + tile_out_y; - - int mid_x = tile_mid_x + rel_out_x * down_x; - int mid_y = tile_mid_y + rel_out_y * down_y; - int in_x = floor_div(mid_x, up_x); - int in_y = floor_div(mid_y, up_y); - int rel_in_x = in_x - tile_in_x; - int rel_in_y = in_y - tile_in_y; - int kernel_x = (in_x + 1) * up_x - mid_x - 1; - int kernel_y = (in_y + 1) * up_y - mid_y - 1; - - scalar_t v = 0.0; - -#pragma unroll - for (int y = 0; y < kernel_h / up_y; y++) -#pragma unroll - for (int x = 0; x < kernel_w / up_x; x++) - v += sx[rel_in_y + y][rel_in_x + x] * - sk[kernel_y + y * up_y][kernel_x + x * up_x]; - - if (out_x < p.out_w & out_y < p.out_h) { - out[((major_idx * p.out_h + out_y) * p.out_w + out_x) * p.minor_dim + - minor_idx] = v; - } - } - } - } -} - -torch::Tensor upfirdn2d_op(const torch::Tensor &input, - const torch::Tensor &kernel, int up_x, int up_y, - int down_x, int down_y, int pad_x0, int pad_x1, - int pad_y0, int pad_y1) { - int curDevice = -1; - cudaGetDevice(&curDevice); - cudaStream_t stream = at::cuda::getCurrentCUDAStream(curDevice); - - UpFirDn2DKernelParams p; - - auto x = input.contiguous(); - auto k = kernel.contiguous(); - - p.major_dim = x.size(0); - p.in_h = x.size(1); - p.in_w = x.size(2); - p.minor_dim = x.size(3); - p.kernel_h = k.size(0); - p.kernel_w = k.size(1); - p.up_x = up_x; - p.up_y = up_y; - p.down_x = down_x; - p.down_y = down_y; - p.pad_x0 = pad_x0; - p.pad_x1 = pad_x1; - p.pad_y0 = pad_y0; - p.pad_y1 = pad_y1; - - p.out_h = (p.in_h * p.up_y + p.pad_y0 + p.pad_y1 - p.kernel_h + p.down_y) / - p.down_y; - p.out_w = (p.in_w * p.up_x + p.pad_x0 + p.pad_x1 - p.kernel_w + p.down_x) / - p.down_x; - - auto out = - at::empty({p.major_dim, p.out_h, p.out_w, p.minor_dim}, x.options()); - - int mode = -1; - - int tile_out_h = -1; - int tile_out_w = -1; - - if (p.up_x == 1 && p.up_y == 1 && p.down_x == 1 && p.down_y == 1 && - p.kernel_h <= 4 && p.kernel_w <= 4) { - mode = 1; - tile_out_h = 16; - tile_out_w = 64; - } - - if (p.up_x == 1 && p.up_y == 1 && p.down_x == 1 && p.down_y == 1 && - p.kernel_h <= 3 && p.kernel_w <= 3) { - mode = 2; - tile_out_h = 16; - tile_out_w = 64; - } - - if (p.up_x == 2 && p.up_y == 2 && p.down_x == 1 && p.down_y == 1 && - p.kernel_h <= 4 && p.kernel_w <= 4) { - mode = 3; - tile_out_h = 16; - tile_out_w = 64; - } - - if (p.up_x == 2 && p.up_y == 2 && p.down_x == 1 && p.down_y == 1 && - p.kernel_h <= 2 && p.kernel_w <= 2) { - mode = 4; - tile_out_h = 16; - tile_out_w = 64; - } - - if (p.up_x == 1 && p.up_y == 1 && p.down_x == 2 && p.down_y == 2 && - p.kernel_h <= 4 && p.kernel_w <= 4) { - mode = 5; - tile_out_h = 8; - tile_out_w = 32; - } - - if (p.up_x == 1 && p.up_y == 1 && p.down_x == 2 && p.down_y == 2 && - p.kernel_h <= 2 && p.kernel_w <= 2) { - mode = 6; - tile_out_h = 8; - tile_out_w = 32; - } - - dim3 block_size; - dim3 grid_size; - - if (tile_out_h > 0 && tile_out_w > 0) { - p.loop_major = (p.major_dim - 1) / 16384 + 1; - p.loop_x = 1; - block_size = dim3(32 * 8, 1, 1); - grid_size = dim3(((p.out_h - 1) / tile_out_h + 1) * p.minor_dim, - (p.out_w - 1) / (p.loop_x * tile_out_w) + 1, - (p.major_dim - 1) / p.loop_major + 1); - } else { - p.loop_major = (p.major_dim - 1) / 16384 + 1; - p.loop_x = 4; - block_size = dim3(4, 32, 1); - grid_size = dim3((p.out_h * p.minor_dim - 1) / block_size.x + 1, - (p.out_w - 1) / (p.loop_x * block_size.y) + 1, - (p.major_dim - 1) / p.loop_major + 1); - } - - AT_DISPATCH_FLOATING_TYPES_AND_HALF(x.scalar_type(), "upfirdn2d_cuda", [&] { - switch (mode) { - case 1: - upfirdn2d_kernel - <<>>(out.data_ptr(), - x.data_ptr(), - k.data_ptr(), p); - - break; - - case 2: - upfirdn2d_kernel - <<>>(out.data_ptr(), - x.data_ptr(), - k.data_ptr(), p); - - break; - - case 3: - upfirdn2d_kernel - <<>>(out.data_ptr(), - x.data_ptr(), - k.data_ptr(), p); - - break; - - case 4: - upfirdn2d_kernel - <<>>(out.data_ptr(), - x.data_ptr(), - k.data_ptr(), p); - - break; - - case 5: - upfirdn2d_kernel - <<>>(out.data_ptr(), - x.data_ptr(), - k.data_ptr(), p); - - break; - - case 6: - upfirdn2d_kernel - <<>>(out.data_ptr(), - x.data_ptr(), - k.data_ptr(), p); - - break; - - default: - upfirdn2d_kernel_large<<>>( - out.data_ptr(), x.data_ptr(), - k.data_ptr(), p); - } - }); - - return out; -} diff --git a/CodeFormer/CodeFormer/basicsr/ops/upfirdn2d/upfirdn2d.py b/CodeFormer/CodeFormer/basicsr/ops/upfirdn2d/upfirdn2d.py deleted file mode 100644 index 667f96e1ded35d48f163f37e21d1ed8ff191aac3..0000000000000000000000000000000000000000 --- a/CodeFormer/CodeFormer/basicsr/ops/upfirdn2d/upfirdn2d.py +++ /dev/null @@ -1,186 +0,0 @@ -# modify from https://github.com/rosinality/stylegan2-pytorch/blob/master/op/upfirdn2d.py # noqa:E501 - -import torch -from torch.autograd import Function -from torch.nn import functional as F - -try: - from . import upfirdn2d_ext -except ImportError: - import os - BASICSR_JIT = os.getenv('BASICSR_JIT') - if BASICSR_JIT == 'True': - from torch.utils.cpp_extension import load - module_path = os.path.dirname(__file__) - upfirdn2d_ext = load( - 'upfirdn2d', - sources=[ - os.path.join(module_path, 'src', 'upfirdn2d.cpp'), - os.path.join(module_path, 'src', 'upfirdn2d_kernel.cu'), - ], - ) - - -class UpFirDn2dBackward(Function): - - @staticmethod - def forward(ctx, grad_output, kernel, grad_kernel, up, down, pad, g_pad, in_size, out_size): - - up_x, up_y = up - down_x, down_y = down - g_pad_x0, g_pad_x1, g_pad_y0, g_pad_y1 = g_pad - - grad_output = grad_output.reshape(-1, out_size[0], out_size[1], 1) - - grad_input = upfirdn2d_ext.upfirdn2d( - grad_output, - grad_kernel, - down_x, - down_y, - up_x, - up_y, - g_pad_x0, - g_pad_x1, - g_pad_y0, - g_pad_y1, - ) - grad_input = grad_input.view(in_size[0], in_size[1], in_size[2], in_size[3]) - - ctx.save_for_backward(kernel) - - pad_x0, pad_x1, pad_y0, pad_y1 = pad - - ctx.up_x = up_x - ctx.up_y = up_y - ctx.down_x = down_x - ctx.down_y = down_y - ctx.pad_x0 = pad_x0 - ctx.pad_x1 = pad_x1 - ctx.pad_y0 = pad_y0 - ctx.pad_y1 = pad_y1 - ctx.in_size = in_size - ctx.out_size = out_size - - return grad_input - - @staticmethod - def backward(ctx, gradgrad_input): - kernel, = ctx.saved_tensors - - gradgrad_input = gradgrad_input.reshape(-1, ctx.in_size[2], ctx.in_size[3], 1) - - gradgrad_out = upfirdn2d_ext.upfirdn2d( - gradgrad_input, - kernel, - ctx.up_x, - ctx.up_y, - ctx.down_x, - ctx.down_y, - ctx.pad_x0, - ctx.pad_x1, - ctx.pad_y0, - ctx.pad_y1, - ) - # gradgrad_out = gradgrad_out.view(ctx.in_size[0], ctx.out_size[0], - # ctx.out_size[1], ctx.in_size[3]) - gradgrad_out = gradgrad_out.view(ctx.in_size[0], ctx.in_size[1], ctx.out_size[0], ctx.out_size[1]) - - return gradgrad_out, None, None, None, None, None, None, None, None - - -class UpFirDn2d(Function): - - @staticmethod - def forward(ctx, input, kernel, up, down, pad): - up_x, up_y = up - down_x, down_y = down - pad_x0, pad_x1, pad_y0, pad_y1 = pad - - kernel_h, kernel_w = kernel.shape - batch, channel, in_h, in_w = input.shape - ctx.in_size = input.shape - - input = input.reshape(-1, in_h, in_w, 1) - - ctx.save_for_backward(kernel, torch.flip(kernel, [0, 1])) - - out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h) // down_y + 1 - out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w) // down_x + 1 - ctx.out_size = (out_h, out_w) - - ctx.up = (up_x, up_y) - ctx.down = (down_x, down_y) - ctx.pad = (pad_x0, pad_x1, pad_y0, pad_y1) - - g_pad_x0 = kernel_w - pad_x0 - 1 - g_pad_y0 = kernel_h - pad_y0 - 1 - g_pad_x1 = in_w * up_x - out_w * down_x + pad_x0 - up_x + 1 - g_pad_y1 = in_h * up_y - out_h * down_y + pad_y0 - up_y + 1 - - ctx.g_pad = (g_pad_x0, g_pad_x1, g_pad_y0, g_pad_y1) - - out = upfirdn2d_ext.upfirdn2d(input, kernel, up_x, up_y, down_x, down_y, pad_x0, pad_x1, pad_y0, pad_y1) - # out = out.view(major, out_h, out_w, minor) - out = out.view(-1, channel, out_h, out_w) - - return out - - @staticmethod - def backward(ctx, grad_output): - kernel, grad_kernel = ctx.saved_tensors - - grad_input = UpFirDn2dBackward.apply( - grad_output, - kernel, - grad_kernel, - ctx.up, - ctx.down, - ctx.pad, - ctx.g_pad, - ctx.in_size, - ctx.out_size, - ) - - return grad_input, None, None, None, None - - -def upfirdn2d(input, kernel, up=1, down=1, pad=(0, 0)): - if input.device.type == 'cpu': - out = upfirdn2d_native(input, kernel, up, up, down, down, pad[0], pad[1], pad[0], pad[1]) - else: - out = UpFirDn2d.apply(input, kernel, (up, up), (down, down), (pad[0], pad[1], pad[0], pad[1])) - - return out - - -def upfirdn2d_native(input, kernel, up_x, up_y, down_x, down_y, pad_x0, pad_x1, pad_y0, pad_y1): - _, channel, in_h, in_w = input.shape - input = input.reshape(-1, in_h, in_w, 1) - - _, in_h, in_w, minor = input.shape - kernel_h, kernel_w = kernel.shape - - out = input.view(-1, in_h, 1, in_w, 1, minor) - out = F.pad(out, [0, 0, 0, up_x - 1, 0, 0, 0, up_y - 1]) - out = out.view(-1, in_h * up_y, in_w * up_x, minor) - - out = F.pad(out, [0, 0, max(pad_x0, 0), max(pad_x1, 0), max(pad_y0, 0), max(pad_y1, 0)]) - out = out[:, max(-pad_y0, 0):out.shape[1] - max(-pad_y1, 0), max(-pad_x0, 0):out.shape[2] - max(-pad_x1, 0), :, ] - - out = out.permute(0, 3, 1, 2) - out = out.reshape([-1, 1, in_h * up_y + pad_y0 + pad_y1, in_w * up_x + pad_x0 + pad_x1]) - w = torch.flip(kernel, [0, 1]).view(1, 1, kernel_h, kernel_w) - out = F.conv2d(out, w) - out = out.reshape( - -1, - minor, - in_h * up_y + pad_y0 + pad_y1 - kernel_h + 1, - in_w * up_x + pad_x0 + pad_x1 - kernel_w + 1, - ) - out = out.permute(0, 2, 3, 1) - out = out[:, ::down_y, ::down_x, :] - - out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h) // down_y + 1 - out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w) // down_x + 1 - - return out.view(-1, channel, out_h, out_w) diff --git a/CodeFormer/CodeFormer/basicsr/setup.py b/CodeFormer/CodeFormer/basicsr/setup.py deleted file mode 100644 index 382a2aa1006e581eaf31dbb3155d4b0ba3b31140..0000000000000000000000000000000000000000 --- a/CodeFormer/CodeFormer/basicsr/setup.py +++ /dev/null @@ -1,165 +0,0 @@ -#!/usr/bin/env python - -from setuptools import find_packages, setup - -import os -import subprocess -import sys -import time -import torch -from torch.utils.cpp_extension import BuildExtension, CppExtension, CUDAExtension - -version_file = './basicsr/version.py' - - -def readme(): - with open('README.md', encoding='utf-8') as f: - content = f.read() - return content - - -def get_git_hash(): - - def _minimal_ext_cmd(cmd): - # construct minimal environment - env = {} - for k in ['SYSTEMROOT', 'PATH', 'HOME']: - v = os.environ.get(k) - if v is not None: - env[k] = v - # LANGUAGE is used on win32 - env['LANGUAGE'] = 'C' - env['LANG'] = 'C' - env['LC_ALL'] = 'C' - out = subprocess.Popen(cmd, stdout=subprocess.PIPE, env=env).communicate()[0] - return out - - try: - out = _minimal_ext_cmd(['git', 'rev-parse', 'HEAD']) - sha = out.strip().decode('ascii') - except OSError: - sha = 'unknown' - - return sha - - -def get_hash(): - if os.path.exists('.git'): - sha = get_git_hash()[:7] - elif os.path.exists(version_file): - try: - from version import __version__ - sha = __version__.split('+')[-1] - except ImportError: - raise ImportError('Unable to get git version') - else: - sha = 'unknown' - - return sha - - -def write_version_py(): - content = """# GENERATED VERSION FILE -# TIME: {} -__version__ = '{}' -__gitsha__ = '{}' -version_info = ({}) -""" - sha = get_hash() - with open('./basicsr/VERSION', 'r') as f: - SHORT_VERSION = f.read().strip() - VERSION_INFO = ', '.join([x if x.isdigit() else f'"{x}"' for x in SHORT_VERSION.split('.')]) - - version_file_str = content.format(time.asctime(), SHORT_VERSION, sha, VERSION_INFO) - with open(version_file, 'w') as f: - f.write(version_file_str) - - -def get_version(): - with open(version_file, 'r') as f: - exec(compile(f.read(), version_file, 'exec')) - return locals()['__version__'] - - -def make_cuda_ext(name, module, sources, sources_cuda=None): - if sources_cuda is None: - sources_cuda = [] - define_macros = [] - extra_compile_args = {'cxx': []} - - if torch.cuda.is_available() or os.getenv('FORCE_CUDA', '0') == '1': - define_macros += [('WITH_CUDA', None)] - extension = CUDAExtension - extra_compile_args['nvcc'] = [ - '-D__CUDA_NO_HALF_OPERATORS__', - '-D__CUDA_NO_HALF_CONVERSIONS__', - '-D__CUDA_NO_HALF2_OPERATORS__', - ] - sources += sources_cuda - else: - print(f'Compiling {name} without CUDA') - extension = CppExtension - - return extension( - name=f'{module}.{name}', - sources=[os.path.join(*module.split('.'), p) for p in sources], - define_macros=define_macros, - extra_compile_args=extra_compile_args) - - -def get_requirements(filename='requirements.txt'): - with open(os.path.join('.', filename), 'r') as f: - requires = [line.replace('\n', '') for line in f.readlines()] - return requires - - -if __name__ == '__main__': - if '--cuda_ext' in sys.argv: - ext_modules = [ - make_cuda_ext( - name='deform_conv_ext', - module='ops.dcn', - sources=['src/deform_conv_ext.cpp'], - sources_cuda=['src/deform_conv_cuda.cpp', 'src/deform_conv_cuda_kernel.cu']), - make_cuda_ext( - name='fused_act_ext', - module='ops.fused_act', - sources=['src/fused_bias_act.cpp'], - sources_cuda=['src/fused_bias_act_kernel.cu']), - make_cuda_ext( - name='upfirdn2d_ext', - module='ops.upfirdn2d', - sources=['src/upfirdn2d.cpp'], - sources_cuda=['src/upfirdn2d_kernel.cu']), - ] - sys.argv.remove('--cuda_ext') - else: - ext_modules = [] - - write_version_py() - setup( - name='basicsr', - version=get_version(), - description='Open Source Image and Video Super-Resolution Toolbox', - long_description=readme(), - long_description_content_type='text/markdown', - author='Xintao Wang', - author_email='xintao.wang@outlook.com', - keywords='computer vision, restoration, super resolution', - url='https://github.com/xinntao/BasicSR', - include_package_data=True, - packages=find_packages(exclude=('options', 'datasets', 'experiments', 'results', 'tb_logger', 'wandb')), - classifiers=[ - 'Development Status :: 4 - Beta', - 'License :: OSI Approved :: Apache Software License', - 'Operating System :: OS Independent', - 'Programming Language :: Python :: 3', - 'Programming Language :: Python :: 3.7', - 'Programming Language :: Python :: 3.8', - ], - license='Apache License 2.0', - setup_requires=['cython', 'numpy'], - install_requires=get_requirements(), - ext_modules=ext_modules, - cmdclass={'build_ext': BuildExtension}, - zip_safe=False) diff --git a/CodeFormer/CodeFormer/basicsr/train.py b/CodeFormer/CodeFormer/basicsr/train.py deleted file mode 100644 index a01c0dfccdb8b02283100ec5b792c33afaf22f5e..0000000000000000000000000000000000000000 --- a/CodeFormer/CodeFormer/basicsr/train.py +++ /dev/null @@ -1,225 +0,0 @@ -import argparse -import datetime -import logging -import math -import copy -import random -import time -import torch -from os import path as osp - -from basicsr.data import build_dataloader, build_dataset -from basicsr.data.data_sampler import EnlargedSampler -from basicsr.data.prefetch_dataloader import CPUPrefetcher, CUDAPrefetcher -from basicsr.models import build_model -from basicsr.utils import (MessageLogger, check_resume, get_env_info, get_root_logger, init_tb_logger, - init_wandb_logger, make_exp_dirs, mkdir_and_rename, set_random_seed) -from basicsr.utils.dist_util import get_dist_info, init_dist -from basicsr.utils.options import dict2str, parse - -import warnings -# ignore UserWarning: Detected call of `lr_scheduler.step()` before `optimizer.step()`. -warnings.filterwarnings("ignore", category=UserWarning) - -def parse_options(root_path, is_train=True): - parser = argparse.ArgumentParser() - parser.add_argument('-opt', type=str, required=True, help='Path to option YAML file.') - parser.add_argument('--launcher', choices=['none', 'pytorch', 'slurm'], default='none', help='job launcher') - parser.add_argument('--local_rank', type=int, default=0) - args = parser.parse_args() - opt = parse(args.opt, root_path, is_train=is_train) - - # distributed settings - if args.launcher == 'none': - opt['dist'] = False - print('Disable distributed.', flush=True) - else: - opt['dist'] = True - if args.launcher == 'slurm' and 'dist_params' in opt: - init_dist(args.launcher, **opt['dist_params']) - else: - init_dist(args.launcher) - - opt['rank'], opt['world_size'] = get_dist_info() - - # random seed - seed = opt.get('manual_seed') - if seed is None: - seed = random.randint(1, 10000) - opt['manual_seed'] = seed - set_random_seed(seed + opt['rank']) - - return opt - - -def init_loggers(opt): - log_file = osp.join(opt['path']['log'], f"train_{opt['name']}.log") - logger = get_root_logger(logger_name='basicsr', log_level=logging.INFO, log_file=log_file) - logger.info(get_env_info()) - logger.info(dict2str(opt)) - - # initialize wandb logger before tensorboard logger to allow proper sync: - if (opt['logger'].get('wandb') is not None) and (opt['logger']['wandb'].get('project') is not None): - assert opt['logger'].get('use_tb_logger') is True, ('should turn on tensorboard when using wandb') - init_wandb_logger(opt) - tb_logger = None - if opt['logger'].get('use_tb_logger'): - tb_logger = init_tb_logger(log_dir=osp.join('tb_logger', opt['name'])) - return logger, tb_logger - - -def create_train_val_dataloader(opt, logger): - # create train and val dataloaders - train_loader, val_loader = None, None - for phase, dataset_opt in opt['datasets'].items(): - if phase == 'train': - dataset_enlarge_ratio = dataset_opt.get('dataset_enlarge_ratio', 1) - train_set = build_dataset(dataset_opt) - train_sampler = EnlargedSampler(train_set, opt['world_size'], opt['rank'], dataset_enlarge_ratio) - train_loader = build_dataloader( - train_set, - dataset_opt, - num_gpu=opt['num_gpu'], - dist=opt['dist'], - sampler=train_sampler, - seed=opt['manual_seed']) - - num_iter_per_epoch = math.ceil( - len(train_set) * dataset_enlarge_ratio / (dataset_opt['batch_size_per_gpu'] * opt['world_size'])) - total_iters = int(opt['train']['total_iter']) - total_epochs = math.ceil(total_iters / (num_iter_per_epoch)) - logger.info('Training statistics:' - f'\n\tNumber of train images: {len(train_set)}' - f'\n\tDataset enlarge ratio: {dataset_enlarge_ratio}' - f'\n\tBatch size per gpu: {dataset_opt["batch_size_per_gpu"]}' - f'\n\tWorld size (gpu number): {opt["world_size"]}' - f'\n\tRequire iter number per epoch: {num_iter_per_epoch}' - f'\n\tTotal epochs: {total_epochs}; iters: {total_iters}.') - - elif phase == 'val': - val_set = build_dataset(dataset_opt) - val_loader = build_dataloader( - val_set, dataset_opt, num_gpu=opt['num_gpu'], dist=opt['dist'], sampler=None, seed=opt['manual_seed']) - logger.info(f'Number of val images/folders in {dataset_opt["name"]}: ' f'{len(val_set)}') - else: - raise ValueError(f'Dataset phase {phase} is not recognized.') - - return train_loader, train_sampler, val_loader, total_epochs, total_iters - - -def train_pipeline(root_path): - # parse options, set distributed setting, set ramdom seed - opt = parse_options(root_path, is_train=True) - - torch.backends.cudnn.benchmark = True - # torch.backends.cudnn.deterministic = True - - # load resume states if necessary - if opt['path'].get('resume_state'): - device_id = torch.cuda.current_device() - resume_state = torch.load( - opt['path']['resume_state'], map_location=lambda storage, loc: storage.cuda(device_id)) - else: - resume_state = None - - # mkdir for experiments and logger - if resume_state is None: - make_exp_dirs(opt) - if opt['logger'].get('use_tb_logger') and opt['rank'] == 0: - mkdir_and_rename(osp.join('tb_logger', opt['name'])) - - # initialize loggers - logger, tb_logger = init_loggers(opt) - - # create train and validation dataloaders - result = create_train_val_dataloader(opt, logger) - train_loader, train_sampler, val_loader, total_epochs, total_iters = result - - # create model - if resume_state: # resume training - check_resume(opt, resume_state['iter']) - model = build_model(opt) - model.resume_training(resume_state) # handle optimizers and schedulers - logger.info(f"Resuming training from epoch: {resume_state['epoch']}, " f"iter: {resume_state['iter']}.") - start_epoch = resume_state['epoch'] - current_iter = resume_state['iter'] - else: - model = build_model(opt) - start_epoch = 0 - current_iter = 0 - - # create message logger (formatted outputs) - msg_logger = MessageLogger(opt, current_iter, tb_logger) - - # dataloader prefetcher - prefetch_mode = opt['datasets']['train'].get('prefetch_mode') - if prefetch_mode is None or prefetch_mode == 'cpu': - prefetcher = CPUPrefetcher(train_loader) - elif prefetch_mode == 'cuda': - prefetcher = CUDAPrefetcher(train_loader, opt) - logger.info(f'Use {prefetch_mode} prefetch dataloader') - if opt['datasets']['train'].get('pin_memory') is not True: - raise ValueError('Please set pin_memory=True for CUDAPrefetcher.') - else: - raise ValueError(f'Wrong prefetch_mode {prefetch_mode}.' "Supported ones are: None, 'cuda', 'cpu'.") - - # training - logger.info(f'Start training from epoch: {start_epoch}, iter: {current_iter+1}') - data_time, iter_time = time.time(), time.time() - start_time = time.time() - - for epoch in range(start_epoch, total_epochs + 1): - train_sampler.set_epoch(epoch) - prefetcher.reset() - train_data = prefetcher.next() - - while train_data is not None: - data_time = time.time() - data_time - - current_iter += 1 - if current_iter > total_iters: - break - # update learning rate - model.update_learning_rate(current_iter, warmup_iter=opt['train'].get('warmup_iter', -1)) - # training - model.feed_data(train_data) - model.optimize_parameters(current_iter) - iter_time = time.time() - iter_time - # log - if current_iter % opt['logger']['print_freq'] == 0: - log_vars = {'epoch': epoch, 'iter': current_iter} - log_vars.update({'lrs': model.get_current_learning_rate()}) - log_vars.update({'time': iter_time, 'data_time': data_time}) - log_vars.update(model.get_current_log()) - msg_logger(log_vars) - - # save models and training states - if current_iter % opt['logger']['save_checkpoint_freq'] == 0: - logger.info('Saving models and training states.') - model.save(epoch, current_iter) - - # validation - if opt.get('val') is not None and opt['datasets'].get('val') is not None \ - and (current_iter % opt['val']['val_freq'] == 0): - model.validation(val_loader, current_iter, tb_logger, opt['val']['save_img']) - - data_time = time.time() - iter_time = time.time() - train_data = prefetcher.next() - # end of iter - - # end of epoch - - consumed_time = str(datetime.timedelta(seconds=int(time.time() - start_time))) - logger.info(f'End of training. Time consumed: {consumed_time}') - logger.info('Save the latest model.') - model.save(epoch=-1, current_iter=-1) # -1 stands for the latest - if opt.get('val') is not None and opt['datasets'].get('val'): - model.validation(val_loader, current_iter, tb_logger, opt['val']['save_img']) - if tb_logger: - tb_logger.close() - - -if __name__ == '__main__': - root_path = osp.abspath(osp.join(__file__, osp.pardir, osp.pardir)) - train_pipeline(root_path) diff --git a/CodeFormer/CodeFormer/basicsr/utils/__init__.py b/CodeFormer/CodeFormer/basicsr/utils/__init__.py deleted file mode 100644 index 5fcc1d540462712387523d1e326d1dfc2bcfbf32..0000000000000000000000000000000000000000 --- a/CodeFormer/CodeFormer/basicsr/utils/__init__.py +++ /dev/null @@ -1,29 +0,0 @@ -from .file_client import FileClient -from .img_util import crop_border, imfrombytes, img2tensor, imwrite, tensor2img -from .logger import MessageLogger, get_env_info, get_root_logger, init_tb_logger, init_wandb_logger -from .misc import check_resume, get_time_str, make_exp_dirs, mkdir_and_rename, scandir, set_random_seed, sizeof_fmt - -__all__ = [ - # file_client.py - 'FileClient', - # img_util.py - 'img2tensor', - 'tensor2img', - 'imfrombytes', - 'imwrite', - 'crop_border', - # logger.py - 'MessageLogger', - 'init_tb_logger', - 'init_wandb_logger', - 'get_root_logger', - 'get_env_info', - # misc.py - 'set_random_seed', - 'get_time_str', - 'mkdir_and_rename', - 'make_exp_dirs', - 'scandir', - 'check_resume', - 'sizeof_fmt' -] diff --git a/CodeFormer/CodeFormer/basicsr/utils/__pycache__/__init__.cpython-310.pyc b/CodeFormer/CodeFormer/basicsr/utils/__pycache__/__init__.cpython-310.pyc deleted file mode 100644 index 76c92bd89a443acd886ddc4303c323267e7a1dd3..0000000000000000000000000000000000000000 Binary files a/CodeFormer/CodeFormer/basicsr/utils/__pycache__/__init__.cpython-310.pyc and /dev/null differ diff --git a/CodeFormer/CodeFormer/basicsr/utils/__pycache__/dist_util.cpython-310.pyc b/CodeFormer/CodeFormer/basicsr/utils/__pycache__/dist_util.cpython-310.pyc deleted file mode 100644 index 0c96ed888fdc2fbbd337d8070dfb4d310a5df587..0000000000000000000000000000000000000000 Binary files a/CodeFormer/CodeFormer/basicsr/utils/__pycache__/dist_util.cpython-310.pyc and /dev/null differ diff --git a/CodeFormer/CodeFormer/basicsr/utils/__pycache__/download_util.cpython-310.pyc b/CodeFormer/CodeFormer/basicsr/utils/__pycache__/download_util.cpython-310.pyc deleted file mode 100644 index 808f00a39acc05970b31826214775a2e2671eab3..0000000000000000000000000000000000000000 Binary files a/CodeFormer/CodeFormer/basicsr/utils/__pycache__/download_util.cpython-310.pyc and /dev/null differ diff --git a/CodeFormer/CodeFormer/basicsr/utils/__pycache__/file_client.cpython-310.pyc b/CodeFormer/CodeFormer/basicsr/utils/__pycache__/file_client.cpython-310.pyc deleted file mode 100644 index 0e1643a0d2911863a736e5977d3a6672e0eec63d..0000000000000000000000000000000000000000 Binary files a/CodeFormer/CodeFormer/basicsr/utils/__pycache__/file_client.cpython-310.pyc and /dev/null differ diff --git a/CodeFormer/CodeFormer/basicsr/utils/__pycache__/img_util.cpython-310.pyc b/CodeFormer/CodeFormer/basicsr/utils/__pycache__/img_util.cpython-310.pyc deleted file mode 100644 index 4b6d80f0b1225fbb70bf08d6b032d0e53c5a0e19..0000000000000000000000000000000000000000 Binary files a/CodeFormer/CodeFormer/basicsr/utils/__pycache__/img_util.cpython-310.pyc and /dev/null differ diff --git a/CodeFormer/CodeFormer/basicsr/utils/__pycache__/logger.cpython-310.pyc b/CodeFormer/CodeFormer/basicsr/utils/__pycache__/logger.cpython-310.pyc deleted file mode 100644 index 7efee53a43080e2e28a4c67f8bb35f09e168712f..0000000000000000000000000000000000000000 Binary files a/CodeFormer/CodeFormer/basicsr/utils/__pycache__/logger.cpython-310.pyc and /dev/null differ diff --git a/CodeFormer/CodeFormer/basicsr/utils/__pycache__/matlab_functions.cpython-310.pyc b/CodeFormer/CodeFormer/basicsr/utils/__pycache__/matlab_functions.cpython-310.pyc deleted file mode 100644 index a80007d2140a779a03e745db1f95a72f1e57ac4b..0000000000000000000000000000000000000000 Binary files a/CodeFormer/CodeFormer/basicsr/utils/__pycache__/matlab_functions.cpython-310.pyc and /dev/null differ diff --git a/CodeFormer/CodeFormer/basicsr/utils/__pycache__/misc.cpython-310.pyc b/CodeFormer/CodeFormer/basicsr/utils/__pycache__/misc.cpython-310.pyc deleted file mode 100644 index a71b9f64a53afd493a0ed0110c3c17dc97600864..0000000000000000000000000000000000000000 Binary files a/CodeFormer/CodeFormer/basicsr/utils/__pycache__/misc.cpython-310.pyc and /dev/null differ diff --git a/CodeFormer/CodeFormer/basicsr/utils/__pycache__/options.cpython-310.pyc b/CodeFormer/CodeFormer/basicsr/utils/__pycache__/options.cpython-310.pyc deleted file mode 100644 index 39242d4ee7a2320334f3586f4d9e79e41d2cc79a..0000000000000000000000000000000000000000 Binary files a/CodeFormer/CodeFormer/basicsr/utils/__pycache__/options.cpython-310.pyc and /dev/null differ diff --git a/CodeFormer/CodeFormer/basicsr/utils/__pycache__/realesrgan_utils.cpython-310.pyc b/CodeFormer/CodeFormer/basicsr/utils/__pycache__/realesrgan_utils.cpython-310.pyc deleted file mode 100644 index a94d285bd192673f1ee2fdafe5fca9760ec56084..0000000000000000000000000000000000000000 Binary files a/CodeFormer/CodeFormer/basicsr/utils/__pycache__/realesrgan_utils.cpython-310.pyc and /dev/null differ diff --git a/CodeFormer/CodeFormer/basicsr/utils/__pycache__/registry.cpython-310.pyc b/CodeFormer/CodeFormer/basicsr/utils/__pycache__/registry.cpython-310.pyc deleted file mode 100644 index 0f7523c25ffe4a7cc6ed97653771cc87d644fc88..0000000000000000000000000000000000000000 Binary files a/CodeFormer/CodeFormer/basicsr/utils/__pycache__/registry.cpython-310.pyc and /dev/null differ diff --git a/CodeFormer/CodeFormer/basicsr/utils/dist_util.py b/CodeFormer/CodeFormer/basicsr/utils/dist_util.py deleted file mode 100644 index 0fab887b2cb1ce8533d2e8fdee72ae0c24f68fd0..0000000000000000000000000000000000000000 --- a/CodeFormer/CodeFormer/basicsr/utils/dist_util.py +++ /dev/null @@ -1,82 +0,0 @@ -# Modified from https://github.com/open-mmlab/mmcv/blob/master/mmcv/runner/dist_utils.py # noqa: E501 -import functools -import os -import subprocess -import torch -import torch.distributed as dist -import torch.multiprocessing as mp - - -def init_dist(launcher, backend='nccl', **kwargs): - if mp.get_start_method(allow_none=True) is None: - mp.set_start_method('spawn') - if launcher == 'pytorch': - _init_dist_pytorch(backend, **kwargs) - elif launcher == 'slurm': - _init_dist_slurm(backend, **kwargs) - else: - raise ValueError(f'Invalid launcher type: {launcher}') - - -def _init_dist_pytorch(backend, **kwargs): - rank = int(os.environ['RANK']) - num_gpus = torch.cuda.device_count() - torch.cuda.set_device(rank % num_gpus) - dist.init_process_group(backend=backend, **kwargs) - - -def _init_dist_slurm(backend, port=None): - """Initialize slurm distributed training environment. - - If argument ``port`` is not specified, then the master port will be system - environment variable ``MASTER_PORT``. If ``MASTER_PORT`` is not in system - environment variable, then a default port ``29500`` will be used. - - Args: - backend (str): Backend of torch.distributed. - port (int, optional): Master port. Defaults to None. - """ - proc_id = int(os.environ['SLURM_PROCID']) - ntasks = int(os.environ['SLURM_NTASKS']) - node_list = os.environ['SLURM_NODELIST'] - num_gpus = torch.cuda.device_count() - torch.cuda.set_device(proc_id % num_gpus) - addr = subprocess.getoutput(f'scontrol show hostname {node_list} | head -n1') - # specify master port - if port is not None: - os.environ['MASTER_PORT'] = str(port) - elif 'MASTER_PORT' in os.environ: - pass # use MASTER_PORT in the environment variable - else: - # 29500 is torch.distributed default port - os.environ['MASTER_PORT'] = '29500' - os.environ['MASTER_ADDR'] = addr - os.environ['WORLD_SIZE'] = str(ntasks) - os.environ['LOCAL_RANK'] = str(proc_id % num_gpus) - os.environ['RANK'] = str(proc_id) - dist.init_process_group(backend=backend) - - -def get_dist_info(): - if dist.is_available(): - initialized = dist.is_initialized() - else: - initialized = False - if initialized: - rank = dist.get_rank() - world_size = dist.get_world_size() - else: - rank = 0 - world_size = 1 - return rank, world_size - - -def master_only(func): - - @functools.wraps(func) - def wrapper(*args, **kwargs): - rank, _ = get_dist_info() - if rank == 0: - return func(*args, **kwargs) - - return wrapper diff --git a/CodeFormer/CodeFormer/basicsr/utils/download_util.py b/CodeFormer/CodeFormer/basicsr/utils/download_util.py deleted file mode 100644 index 2a267915743ee3f3232bc8fe992466b52468979a..0000000000000000000000000000000000000000 --- a/CodeFormer/CodeFormer/basicsr/utils/download_util.py +++ /dev/null @@ -1,95 +0,0 @@ -import math -import os -import requests -from torch.hub import download_url_to_file, get_dir -from tqdm import tqdm -from urllib.parse import urlparse - -from .misc import sizeof_fmt - - -def download_file_from_google_drive(file_id, save_path): - """Download files from google drive. - Ref: - https://stackoverflow.com/questions/25010369/wget-curl-large-file-from-google-drive # noqa E501 - Args: - file_id (str): File id. - save_path (str): Save path. - """ - - session = requests.Session() - URL = 'https://docs.google.com/uc?export=download' - params = {'id': file_id} - - response = session.get(URL, params=params, stream=True) - token = get_confirm_token(response) - if token: - params['confirm'] = token - response = session.get(URL, params=params, stream=True) - - # get file size - response_file_size = session.get(URL, params=params, stream=True, headers={'Range': 'bytes=0-2'}) - print(response_file_size) - if 'Content-Range' in response_file_size.headers: - file_size = int(response_file_size.headers['Content-Range'].split('/')[1]) - else: - file_size = None - - save_response_content(response, save_path, file_size) - - -def get_confirm_token(response): - for key, value in response.cookies.items(): - if key.startswith('download_warning'): - return value - return None - - -def save_response_content(response, destination, file_size=None, chunk_size=32768): - if file_size is not None: - pbar = tqdm(total=math.ceil(file_size / chunk_size), unit='chunk') - - readable_file_size = sizeof_fmt(file_size) - else: - pbar = None - - with open(destination, 'wb') as f: - downloaded_size = 0 - for chunk in response.iter_content(chunk_size): - downloaded_size += chunk_size - if pbar is not None: - pbar.update(1) - pbar.set_description(f'Download {sizeof_fmt(downloaded_size)} / {readable_file_size}') - if chunk: # filter out keep-alive new chunks - f.write(chunk) - if pbar is not None: - pbar.close() - - -def load_file_from_url(url, model_dir=None, progress=True, file_name=None): - """Load file form http url, will download models if necessary. - Ref:https://github.com/1adrianb/face-alignment/blob/master/face_alignment/utils.py - Args: - url (str): URL to be downloaded. - model_dir (str): The path to save the downloaded model. Should be a full path. If None, use pytorch hub_dir. - Default: None. - progress (bool): Whether to show the download progress. Default: True. - file_name (str): The downloaded file name. If None, use the file name in the url. Default: None. - Returns: - str: The path to the downloaded file. - """ - if model_dir is None: # use the pytorch hub_dir - hub_dir = get_dir() - model_dir = os.path.join(hub_dir, 'checkpoints') - - os.makedirs(model_dir, exist_ok=True) - - parts = urlparse(url) - filename = os.path.basename(parts.path) - if file_name is not None: - filename = file_name - cached_file = os.path.abspath(os.path.join(model_dir, filename)) - if not os.path.exists(cached_file): - print(f'Downloading: "{url}" to {cached_file}\n') - download_url_to_file(url, cached_file, hash_prefix=None, progress=progress) - return cached_file \ No newline at end of file diff --git a/CodeFormer/CodeFormer/basicsr/utils/file_client.py b/CodeFormer/CodeFormer/basicsr/utils/file_client.py deleted file mode 100644 index 7f38d9796da3899048924f2f803d1088927966b0..0000000000000000000000000000000000000000 --- a/CodeFormer/CodeFormer/basicsr/utils/file_client.py +++ /dev/null @@ -1,167 +0,0 @@ -# Modified from https://github.com/open-mmlab/mmcv/blob/master/mmcv/fileio/file_client.py # noqa: E501 -from abc import ABCMeta, abstractmethod - - -class BaseStorageBackend(metaclass=ABCMeta): - """Abstract class of storage backends. - - All backends need to implement two apis: ``get()`` and ``get_text()``. - ``get()`` reads the file as a byte stream and ``get_text()`` reads the file - as texts. - """ - - @abstractmethod - def get(self, filepath): - pass - - @abstractmethod - def get_text(self, filepath): - pass - - -class MemcachedBackend(BaseStorageBackend): - """Memcached storage backend. - - Attributes: - server_list_cfg (str): Config file for memcached server list. - client_cfg (str): Config file for memcached client. - sys_path (str | None): Additional path to be appended to `sys.path`. - Default: None. - """ - - def __init__(self, server_list_cfg, client_cfg, sys_path=None): - if sys_path is not None: - import sys - sys.path.append(sys_path) - try: - import mc - except ImportError: - raise ImportError('Please install memcached to enable MemcachedBackend.') - - self.server_list_cfg = server_list_cfg - self.client_cfg = client_cfg - self._client = mc.MemcachedClient.GetInstance(self.server_list_cfg, self.client_cfg) - # mc.pyvector servers as a point which points to a memory cache - self._mc_buffer = mc.pyvector() - - def get(self, filepath): - filepath = str(filepath) - import mc - self._client.Get(filepath, self._mc_buffer) - value_buf = mc.ConvertBuffer(self._mc_buffer) - return value_buf - - def get_text(self, filepath): - raise NotImplementedError - - -class HardDiskBackend(BaseStorageBackend): - """Raw hard disks storage backend.""" - - def get(self, filepath): - filepath = str(filepath) - with open(filepath, 'rb') as f: - value_buf = f.read() - return value_buf - - def get_text(self, filepath): - filepath = str(filepath) - with open(filepath, 'r') as f: - value_buf = f.read() - return value_buf - - -class LmdbBackend(BaseStorageBackend): - """Lmdb storage backend. - - Args: - db_paths (str | list[str]): Lmdb database paths. - client_keys (str | list[str]): Lmdb client keys. Default: 'default'. - readonly (bool, optional): Lmdb environment parameter. If True, - disallow any write operations. Default: True. - lock (bool, optional): Lmdb environment parameter. If False, when - concurrent access occurs, do not lock the database. Default: False. - readahead (bool, optional): Lmdb environment parameter. If False, - disable the OS filesystem readahead mechanism, which may improve - random read performance when a database is larger than RAM. - Default: False. - - Attributes: - db_paths (list): Lmdb database path. - _client (list): A list of several lmdb envs. - """ - - def __init__(self, db_paths, client_keys='default', readonly=True, lock=False, readahead=False, **kwargs): - try: - import lmdb - except ImportError: - raise ImportError('Please install lmdb to enable LmdbBackend.') - - if isinstance(client_keys, str): - client_keys = [client_keys] - - if isinstance(db_paths, list): - self.db_paths = [str(v) for v in db_paths] - elif isinstance(db_paths, str): - self.db_paths = [str(db_paths)] - assert len(client_keys) == len(self.db_paths), ('client_keys and db_paths should have the same length, ' - f'but received {len(client_keys)} and {len(self.db_paths)}.') - - self._client = {} - for client, path in zip(client_keys, self.db_paths): - self._client[client] = lmdb.open(path, readonly=readonly, lock=lock, readahead=readahead, **kwargs) - - def get(self, filepath, client_key): - """Get values according to the filepath from one lmdb named client_key. - - Args: - filepath (str | obj:`Path`): Here, filepath is the lmdb key. - client_key (str): Used for distinguishing differnet lmdb envs. - """ - filepath = str(filepath) - assert client_key in self._client, (f'client_key {client_key} is not ' 'in lmdb clients.') - client = self._client[client_key] - with client.begin(write=False) as txn: - value_buf = txn.get(filepath.encode('ascii')) - return value_buf - - def get_text(self, filepath): - raise NotImplementedError - - -class FileClient(object): - """A general file client to access files in different backend. - - The client loads a file or text in a specified backend from its path - and return it as a binary file. it can also register other backend - accessor with a given name and backend class. - - Attributes: - backend (str): The storage backend type. Options are "disk", - "memcached" and "lmdb". - client (:obj:`BaseStorageBackend`): The backend object. - """ - - _backends = { - 'disk': HardDiskBackend, - 'memcached': MemcachedBackend, - 'lmdb': LmdbBackend, - } - - def __init__(self, backend='disk', **kwargs): - if backend not in self._backends: - raise ValueError(f'Backend {backend} is not supported. Currently supported ones' - f' are {list(self._backends.keys())}') - self.backend = backend - self.client = self._backends[backend](**kwargs) - - def get(self, filepath, client_key='default'): - # client_key is used only for lmdb, where different fileclients have - # different lmdb environments. - if self.backend == 'lmdb': - return self.client.get(filepath, client_key) - else: - return self.client.get(filepath) - - def get_text(self, filepath): - return self.client.get_text(filepath) diff --git a/CodeFormer/CodeFormer/basicsr/utils/img_util.py b/CodeFormer/CodeFormer/basicsr/utils/img_util.py deleted file mode 100644 index d409a132ff216e6943a276fb5d8cd5f410824883..0000000000000000000000000000000000000000 --- a/CodeFormer/CodeFormer/basicsr/utils/img_util.py +++ /dev/null @@ -1,170 +0,0 @@ -import cv2 -import math -import numpy as np -import os -import torch -from torchvision.utils import make_grid - - -def img2tensor(imgs, bgr2rgb=True, float32=True): - """Numpy array to tensor. - - Args: - imgs (list[ndarray] | ndarray): Input images. - bgr2rgb (bool): Whether to change bgr to rgb. - float32 (bool): Whether to change to float32. - - Returns: - list[tensor] | tensor: Tensor images. If returned results only have - one element, just return tensor. - """ - - def _totensor(img, bgr2rgb, float32): - if img.shape[2] == 3 and bgr2rgb: - if img.dtype == 'float64': - img = img.astype('float32') - img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) - img = torch.from_numpy(img.transpose(2, 0, 1)) - if float32: - img = img.float() - return img - - if isinstance(imgs, list): - return [_totensor(img, bgr2rgb, float32) for img in imgs] - else: - return _totensor(imgs, bgr2rgb, float32) - - -def tensor2img(tensor, rgb2bgr=True, out_type=np.uint8, min_max=(0, 1)): - """Convert torch Tensors into image numpy arrays. - - After clamping to [min, max], values will be normalized to [0, 1]. - - Args: - tensor (Tensor or list[Tensor]): Accept shapes: - 1) 4D mini-batch Tensor of shape (B x 3/1 x H x W); - 2) 3D Tensor of shape (3/1 x H x W); - 3) 2D Tensor of shape (H x W). - Tensor channel should be in RGB order. - rgb2bgr (bool): Whether to change rgb to bgr. - out_type (numpy type): output types. If ``np.uint8``, transform outputs - to uint8 type with range [0, 255]; otherwise, float type with - range [0, 1]. Default: ``np.uint8``. - min_max (tuple[int]): min and max values for clamp. - - Returns: - (Tensor or list): 3D ndarray of shape (H x W x C) OR 2D ndarray of - shape (H x W). The channel order is BGR. - """ - if not (torch.is_tensor(tensor) or (isinstance(tensor, list) and all(torch.is_tensor(t) for t in tensor))): - raise TypeError(f'tensor or list of tensors expected, got {type(tensor)}') - - if torch.is_tensor(tensor): - tensor = [tensor] - result = [] - for _tensor in tensor: - _tensor = _tensor.squeeze(0).float().detach().cpu().clamp_(*min_max) - _tensor = (_tensor - min_max[0]) / (min_max[1] - min_max[0]) - - n_dim = _tensor.dim() - if n_dim == 4: - img_np = make_grid(_tensor, nrow=int(math.sqrt(_tensor.size(0))), normalize=False).numpy() - img_np = img_np.transpose(1, 2, 0) - if rgb2bgr: - img_np = cv2.cvtColor(img_np, cv2.COLOR_RGB2BGR) - elif n_dim == 3: - img_np = _tensor.numpy() - img_np = img_np.transpose(1, 2, 0) - if img_np.shape[2] == 1: # gray image - img_np = np.squeeze(img_np, axis=2) - else: - if rgb2bgr: - img_np = cv2.cvtColor(img_np, cv2.COLOR_RGB2BGR) - elif n_dim == 2: - img_np = _tensor.numpy() - else: - raise TypeError('Only support 4D, 3D or 2D tensor. ' f'But received with dimension: {n_dim}') - if out_type == np.uint8: - # Unlike MATLAB, numpy.unit8() WILL NOT round by default. - img_np = (img_np * 255.0).round() - img_np = img_np.astype(out_type) - result.append(img_np) - if len(result) == 1: - result = result[0] - return result - - -def tensor2img_fast(tensor, rgb2bgr=True, min_max=(0, 1)): - """This implementation is slightly faster than tensor2img. - It now only supports torch tensor with shape (1, c, h, w). - - Args: - tensor (Tensor): Now only support torch tensor with (1, c, h, w). - rgb2bgr (bool): Whether to change rgb to bgr. Default: True. - min_max (tuple[int]): min and max values for clamp. - """ - output = tensor.squeeze(0).detach().clamp_(*min_max).permute(1, 2, 0) - output = (output - min_max[0]) / (min_max[1] - min_max[0]) * 255 - output = output.type(torch.uint8).cpu().numpy() - if rgb2bgr: - output = cv2.cvtColor(output, cv2.COLOR_RGB2BGR) - return output - - -def imfrombytes(content, flag='color', float32=False): - """Read an image from bytes. - - Args: - content (bytes): Image bytes got from files or other streams. - flag (str): Flags specifying the color type of a loaded image, - candidates are `color`, `grayscale` and `unchanged`. - float32 (bool): Whether to change to float32., If True, will also norm - to [0, 1]. Default: False. - - Returns: - ndarray: Loaded image array. - """ - img_np = np.frombuffer(content, np.uint8) - imread_flags = {'color': cv2.IMREAD_COLOR, 'grayscale': cv2.IMREAD_GRAYSCALE, 'unchanged': cv2.IMREAD_UNCHANGED} - img = cv2.imdecode(img_np, imread_flags[flag]) - if float32: - img = img.astype(np.float32) / 255. - return img - - -def imwrite(img, file_path, params=None, auto_mkdir=True): - """Write image to file. - - Args: - img (ndarray): Image array to be written. - file_path (str): Image file path. - params (None or list): Same as opencv's :func:`imwrite` interface. - auto_mkdir (bool): If the parent folder of `file_path` does not exist, - whether to create it automatically. - - Returns: - bool: Successful or not. - """ - if auto_mkdir: - dir_name = os.path.abspath(os.path.dirname(file_path)) - os.makedirs(dir_name, exist_ok=True) - return cv2.imwrite(file_path, img, params) - - -def crop_border(imgs, crop_border): - """Crop borders of images. - - Args: - imgs (list[ndarray] | ndarray): Images with shape (h, w, c). - crop_border (int): Crop border for each end of height and weight. - - Returns: - list[ndarray]: Cropped images. - """ - if crop_border == 0: - return imgs - else: - if isinstance(imgs, list): - return [v[crop_border:-crop_border, crop_border:-crop_border, ...] for v in imgs] - else: - return imgs[crop_border:-crop_border, crop_border:-crop_border, ...] diff --git a/CodeFormer/CodeFormer/basicsr/utils/lmdb_util.py b/CodeFormer/CodeFormer/basicsr/utils/lmdb_util.py deleted file mode 100644 index e0a10f60ffca2e36ac5f5564aafd70e79d06a723..0000000000000000000000000000000000000000 --- a/CodeFormer/CodeFormer/basicsr/utils/lmdb_util.py +++ /dev/null @@ -1,196 +0,0 @@ -import cv2 -import lmdb -import sys -from multiprocessing import Pool -from os import path as osp -from tqdm import tqdm - - -def make_lmdb_from_imgs(data_path, - lmdb_path, - img_path_list, - keys, - batch=5000, - compress_level=1, - multiprocessing_read=False, - n_thread=40, - map_size=None): - """Make lmdb from images. - - Contents of lmdb. The file structure is: - example.lmdb - ├── data.mdb - ├── lock.mdb - ├── meta_info.txt - - The data.mdb and lock.mdb are standard lmdb files and you can refer to - https://lmdb.readthedocs.io/en/release/ for more details. - - The meta_info.txt is a specified txt file to record the meta information - of our datasets. It will be automatically created when preparing - datasets by our provided dataset tools. - Each line in the txt file records 1)image name (with extension), - 2)image shape, and 3)compression level, separated by a white space. - - For example, the meta information could be: - `000_00000000.png (720,1280,3) 1`, which means: - 1) image name (with extension): 000_00000000.png; - 2) image shape: (720,1280,3); - 3) compression level: 1 - - We use the image name without extension as the lmdb key. - - If `multiprocessing_read` is True, it will read all the images to memory - using multiprocessing. Thus, your server needs to have enough memory. - - Args: - data_path (str): Data path for reading images. - lmdb_path (str): Lmdb save path. - img_path_list (str): Image path list. - keys (str): Used for lmdb keys. - batch (int): After processing batch images, lmdb commits. - Default: 5000. - compress_level (int): Compress level when encoding images. Default: 1. - multiprocessing_read (bool): Whether use multiprocessing to read all - the images to memory. Default: False. - n_thread (int): For multiprocessing. - map_size (int | None): Map size for lmdb env. If None, use the - estimated size from images. Default: None - """ - - assert len(img_path_list) == len(keys), ('img_path_list and keys should have the same length, ' - f'but got {len(img_path_list)} and {len(keys)}') - print(f'Create lmdb for {data_path}, save to {lmdb_path}...') - print(f'Totoal images: {len(img_path_list)}') - if not lmdb_path.endswith('.lmdb'): - raise ValueError("lmdb_path must end with '.lmdb'.") - if osp.exists(lmdb_path): - print(f'Folder {lmdb_path} already exists. Exit.') - sys.exit(1) - - if multiprocessing_read: - # read all the images to memory (multiprocessing) - dataset = {} # use dict to keep the order for multiprocessing - shapes = {} - print(f'Read images with multiprocessing, #thread: {n_thread} ...') - pbar = tqdm(total=len(img_path_list), unit='image') - - def callback(arg): - """get the image data and update pbar.""" - key, dataset[key], shapes[key] = arg - pbar.update(1) - pbar.set_description(f'Read {key}') - - pool = Pool(n_thread) - for path, key in zip(img_path_list, keys): - pool.apply_async(read_img_worker, args=(osp.join(data_path, path), key, compress_level), callback=callback) - pool.close() - pool.join() - pbar.close() - print(f'Finish reading {len(img_path_list)} images.') - - # create lmdb environment - if map_size is None: - # obtain data size for one image - img = cv2.imread(osp.join(data_path, img_path_list[0]), cv2.IMREAD_UNCHANGED) - _, img_byte = cv2.imencode('.png', img, [cv2.IMWRITE_PNG_COMPRESSION, compress_level]) - data_size_per_img = img_byte.nbytes - print('Data size per image is: ', data_size_per_img) - data_size = data_size_per_img * len(img_path_list) - map_size = data_size * 10 - - env = lmdb.open(lmdb_path, map_size=map_size) - - # write data to lmdb - pbar = tqdm(total=len(img_path_list), unit='chunk') - txn = env.begin(write=True) - txt_file = open(osp.join(lmdb_path, 'meta_info.txt'), 'w') - for idx, (path, key) in enumerate(zip(img_path_list, keys)): - pbar.update(1) - pbar.set_description(f'Write {key}') - key_byte = key.encode('ascii') - if multiprocessing_read: - img_byte = dataset[key] - h, w, c = shapes[key] - else: - _, img_byte, img_shape = read_img_worker(osp.join(data_path, path), key, compress_level) - h, w, c = img_shape - - txn.put(key_byte, img_byte) - # write meta information - txt_file.write(f'{key}.png ({h},{w},{c}) {compress_level}\n') - if idx % batch == 0: - txn.commit() - txn = env.begin(write=True) - pbar.close() - txn.commit() - env.close() - txt_file.close() - print('\nFinish writing lmdb.') - - -def read_img_worker(path, key, compress_level): - """Read image worker. - - Args: - path (str): Image path. - key (str): Image key. - compress_level (int): Compress level when encoding images. - - Returns: - str: Image key. - byte: Image byte. - tuple[int]: Image shape. - """ - - img = cv2.imread(path, cv2.IMREAD_UNCHANGED) - if img.ndim == 2: - h, w = img.shape - c = 1 - else: - h, w, c = img.shape - _, img_byte = cv2.imencode('.png', img, [cv2.IMWRITE_PNG_COMPRESSION, compress_level]) - return (key, img_byte, (h, w, c)) - - -class LmdbMaker(): - """LMDB Maker. - - Args: - lmdb_path (str): Lmdb save path. - map_size (int): Map size for lmdb env. Default: 1024 ** 4, 1TB. - batch (int): After processing batch images, lmdb commits. - Default: 5000. - compress_level (int): Compress level when encoding images. Default: 1. - """ - - def __init__(self, lmdb_path, map_size=1024**4, batch=5000, compress_level=1): - if not lmdb_path.endswith('.lmdb'): - raise ValueError("lmdb_path must end with '.lmdb'.") - if osp.exists(lmdb_path): - print(f'Folder {lmdb_path} already exists. Exit.') - sys.exit(1) - - self.lmdb_path = lmdb_path - self.batch = batch - self.compress_level = compress_level - self.env = lmdb.open(lmdb_path, map_size=map_size) - self.txn = self.env.begin(write=True) - self.txt_file = open(osp.join(lmdb_path, 'meta_info.txt'), 'w') - self.counter = 0 - - def put(self, img_byte, key, img_shape): - self.counter += 1 - key_byte = key.encode('ascii') - self.txn.put(key_byte, img_byte) - # write meta information - h, w, c = img_shape - self.txt_file.write(f'{key}.png ({h},{w},{c}) {self.compress_level}\n') - if self.counter % self.batch == 0: - self.txn.commit() - self.txn = self.env.begin(write=True) - - def close(self): - self.txn.commit() - self.env.close() - self.txt_file.close() diff --git a/CodeFormer/CodeFormer/basicsr/utils/logger.py b/CodeFormer/CodeFormer/basicsr/utils/logger.py deleted file mode 100644 index 9714bf59c30fc82de24c1ee58d9118d0864b3572..0000000000000000000000000000000000000000 --- a/CodeFormer/CodeFormer/basicsr/utils/logger.py +++ /dev/null @@ -1,169 +0,0 @@ -import datetime -import logging -import time - -from .dist_util import get_dist_info, master_only - -initialized_logger = {} - - -class MessageLogger(): - """Message logger for printing. - Args: - opt (dict): Config. It contains the following keys: - name (str): Exp name. - logger (dict): Contains 'print_freq' (str) for logger interval. - train (dict): Contains 'total_iter' (int) for total iters. - use_tb_logger (bool): Use tensorboard logger. - start_iter (int): Start iter. Default: 1. - tb_logger (obj:`tb_logger`): Tensorboard logger. Default: None. - """ - - def __init__(self, opt, start_iter=1, tb_logger=None): - self.exp_name = opt['name'] - self.interval = opt['logger']['print_freq'] - self.start_iter = start_iter - self.max_iters = opt['train']['total_iter'] - self.use_tb_logger = opt['logger']['use_tb_logger'] - self.tb_logger = tb_logger - self.start_time = time.time() - self.logger = get_root_logger() - - @master_only - def __call__(self, log_vars): - """Format logging message. - Args: - log_vars (dict): It contains the following keys: - epoch (int): Epoch number. - iter (int): Current iter. - lrs (list): List for learning rates. - time (float): Iter time. - data_time (float): Data time for each iter. - """ - # epoch, iter, learning rates - epoch = log_vars.pop('epoch') - current_iter = log_vars.pop('iter') - lrs = log_vars.pop('lrs') - - message = (f'[{self.exp_name[:5]}..][epoch:{epoch:3d}, ' f'iter:{current_iter:8,d}, lr:(') - for v in lrs: - message += f'{v:.3e},' - message += ')] ' - - # time and estimated time - if 'time' in log_vars.keys(): - iter_time = log_vars.pop('time') - data_time = log_vars.pop('data_time') - - total_time = time.time() - self.start_time - time_sec_avg = total_time / (current_iter - self.start_iter + 1) - eta_sec = time_sec_avg * (self.max_iters - current_iter - 1) - eta_str = str(datetime.timedelta(seconds=int(eta_sec))) - message += f'[eta: {eta_str}, ' - message += f'time (data): {iter_time:.3f} ({data_time:.3f})] ' - - # other items, especially losses - for k, v in log_vars.items(): - message += f'{k}: {v:.4e} ' - # tensorboard logger - if self.use_tb_logger: - if k.startswith('l_'): - self.tb_logger.add_scalar(f'losses/{k}', v, current_iter) - else: - self.tb_logger.add_scalar(k, v, current_iter) - self.logger.info(message) - - -@master_only -def init_tb_logger(log_dir): - from torch.utils.tensorboard import SummaryWriter - tb_logger = SummaryWriter(log_dir=log_dir) - return tb_logger - - -@master_only -def init_wandb_logger(opt): - """We now only use wandb to sync tensorboard log.""" - import wandb - logger = logging.getLogger('basicsr') - - project = opt['logger']['wandb']['project'] - resume_id = opt['logger']['wandb'].get('resume_id') - if resume_id: - wandb_id = resume_id - resume = 'allow' - logger.warning(f'Resume wandb logger with id={wandb_id}.') - else: - wandb_id = wandb.util.generate_id() - resume = 'never' - - wandb.init(id=wandb_id, resume=resume, name=opt['name'], config=opt, project=project, sync_tensorboard=True) - - logger.info(f'Use wandb logger with id={wandb_id}; project={project}.') - - -def get_root_logger(logger_name='basicsr', log_level=logging.INFO, log_file=None): - """Get the root logger. - The logger will be initialized if it has not been initialized. By default a - StreamHandler will be added. If `log_file` is specified, a FileHandler will - also be added. - Args: - logger_name (str): root logger name. Default: 'basicsr'. - log_file (str | None): The log filename. If specified, a FileHandler - will be added to the root logger. - log_level (int): The root logger level. Note that only the process of - rank 0 is affected, while other processes will set the level to - "Error" and be silent most of the time. - Returns: - logging.Logger: The root logger. - """ - logger = logging.getLogger(logger_name) - # if the logger has been initialized, just return it - if logger_name in initialized_logger: - return logger - - format_str = '%(asctime)s %(levelname)s: %(message)s' - stream_handler = logging.StreamHandler() - stream_handler.setFormatter(logging.Formatter(format_str)) - logger.addHandler(stream_handler) - logger.propagate = False - rank, _ = get_dist_info() - if rank != 0: - logger.setLevel('ERROR') - elif log_file is not None: - logger.setLevel(log_level) - # add file handler - # file_handler = logging.FileHandler(log_file, 'w') - file_handler = logging.FileHandler(log_file, 'a') #Shangchen: keep the previous log - file_handler.setFormatter(logging.Formatter(format_str)) - file_handler.setLevel(log_level) - logger.addHandler(file_handler) - initialized_logger[logger_name] = True - return logger - - -def get_env_info(): - """Get environment information. - Currently, only log the software version. - """ - import torch - import torchvision - - from basicsr.version import __version__ - msg = r""" - ____ _ _____ ____ - / __ ) ____ _ _____ (_)_____/ ___/ / __ \ - / __ |/ __ `// ___// // ___/\__ \ / /_/ / - / /_/ // /_/ /(__ )/ // /__ ___/ // _, _/ - /_____/ \__,_//____//_/ \___//____//_/ |_| - ______ __ __ __ __ - / ____/____ ____ ____/ / / / __ __ _____ / /__ / / - / / __ / __ \ / __ \ / __ / / / / / / // ___// //_/ / / - / /_/ // /_/ // /_/ // /_/ / / /___/ /_/ // /__ / /< /_/ - \____/ \____/ \____/ \____/ /_____/\____/ \___//_/|_| (_) - """ - msg += ('\nVersion Information: ' - f'\n\tBasicSR: {__version__}' - f'\n\tPyTorch: {torch.__version__}' - f'\n\tTorchVision: {torchvision.__version__}') - return msg \ No newline at end of file diff --git a/CodeFormer/CodeFormer/basicsr/utils/matlab_functions.py b/CodeFormer/CodeFormer/basicsr/utils/matlab_functions.py deleted file mode 100644 index c6ce1004a2c9f8521505c4b5889d3c24a909c70d..0000000000000000000000000000000000000000 --- a/CodeFormer/CodeFormer/basicsr/utils/matlab_functions.py +++ /dev/null @@ -1,347 +0,0 @@ -import math -import numpy as np -import torch - - -def cubic(x): - """cubic function used for calculate_weights_indices.""" - absx = torch.abs(x) - absx2 = absx**2 - absx3 = absx**3 - return (1.5 * absx3 - 2.5 * absx2 + 1) * ( - (absx <= 1).type_as(absx)) + (-0.5 * absx3 + 2.5 * absx2 - 4 * absx + 2) * (((absx > 1) * - (absx <= 2)).type_as(absx)) - - -def calculate_weights_indices(in_length, out_length, scale, kernel, kernel_width, antialiasing): - """Calculate weights and indices, used for imresize function. - - Args: - in_length (int): Input length. - out_length (int): Output length. - scale (float): Scale factor. - kernel_width (int): Kernel width. - antialisaing (bool): Whether to apply anti-aliasing when downsampling. - """ - - if (scale < 1) and antialiasing: - # Use a modified kernel (larger kernel width) to simultaneously - # interpolate and antialias - kernel_width = kernel_width / scale - - # Output-space coordinates - x = torch.linspace(1, out_length, out_length) - - # Input-space coordinates. Calculate the inverse mapping such that 0.5 - # in output space maps to 0.5 in input space, and 0.5 + scale in output - # space maps to 1.5 in input space. - u = x / scale + 0.5 * (1 - 1 / scale) - - # What is the left-most pixel that can be involved in the computation? - left = torch.floor(u - kernel_width / 2) - - # What is the maximum number of pixels that can be involved in the - # computation? Note: it's OK to use an extra pixel here; if the - # corresponding weights are all zero, it will be eliminated at the end - # of this function. - p = math.ceil(kernel_width) + 2 - - # The indices of the input pixels involved in computing the k-th output - # pixel are in row k of the indices matrix. - indices = left.view(out_length, 1).expand(out_length, p) + torch.linspace(0, p - 1, p).view(1, p).expand( - out_length, p) - - # The weights used to compute the k-th output pixel are in row k of the - # weights matrix. - distance_to_center = u.view(out_length, 1).expand(out_length, p) - indices - - # apply cubic kernel - if (scale < 1) and antialiasing: - weights = scale * cubic(distance_to_center * scale) - else: - weights = cubic(distance_to_center) - - # Normalize the weights matrix so that each row sums to 1. - weights_sum = torch.sum(weights, 1).view(out_length, 1) - weights = weights / weights_sum.expand(out_length, p) - - # If a column in weights is all zero, get rid of it. only consider the - # first and last column. - weights_zero_tmp = torch.sum((weights == 0), 0) - if not math.isclose(weights_zero_tmp[0], 0, rel_tol=1e-6): - indices = indices.narrow(1, 1, p - 2) - weights = weights.narrow(1, 1, p - 2) - if not math.isclose(weights_zero_tmp[-1], 0, rel_tol=1e-6): - indices = indices.narrow(1, 0, p - 2) - weights = weights.narrow(1, 0, p - 2) - weights = weights.contiguous() - indices = indices.contiguous() - sym_len_s = -indices.min() + 1 - sym_len_e = indices.max() - in_length - indices = indices + sym_len_s - 1 - return weights, indices, int(sym_len_s), int(sym_len_e) - - -@torch.no_grad() -def imresize(img, scale, antialiasing=True): - """imresize function same as MATLAB. - - It now only supports bicubic. - The same scale applies for both height and width. - - Args: - img (Tensor | Numpy array): - Tensor: Input image with shape (c, h, w), [0, 1] range. - Numpy: Input image with shape (h, w, c), [0, 1] range. - scale (float): Scale factor. The same scale applies for both height - and width. - antialisaing (bool): Whether to apply anti-aliasing when downsampling. - Default: True. - - Returns: - Tensor: Output image with shape (c, h, w), [0, 1] range, w/o round. - """ - if type(img).__module__ == np.__name__: # numpy type - numpy_type = True - img = torch.from_numpy(img.transpose(2, 0, 1)).float() - else: - numpy_type = False - - in_c, in_h, in_w = img.size() - out_h, out_w = math.ceil(in_h * scale), math.ceil(in_w * scale) - kernel_width = 4 - kernel = 'cubic' - - # get weights and indices - weights_h, indices_h, sym_len_hs, sym_len_he = calculate_weights_indices(in_h, out_h, scale, kernel, kernel_width, - antialiasing) - weights_w, indices_w, sym_len_ws, sym_len_we = calculate_weights_indices(in_w, out_w, scale, kernel, kernel_width, - antialiasing) - # process H dimension - # symmetric copying - img_aug = torch.FloatTensor(in_c, in_h + sym_len_hs + sym_len_he, in_w) - img_aug.narrow(1, sym_len_hs, in_h).copy_(img) - - sym_patch = img[:, :sym_len_hs, :] - inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long() - sym_patch_inv = sym_patch.index_select(1, inv_idx) - img_aug.narrow(1, 0, sym_len_hs).copy_(sym_patch_inv) - - sym_patch = img[:, -sym_len_he:, :] - inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long() - sym_patch_inv = sym_patch.index_select(1, inv_idx) - img_aug.narrow(1, sym_len_hs + in_h, sym_len_he).copy_(sym_patch_inv) - - out_1 = torch.FloatTensor(in_c, out_h, in_w) - kernel_width = weights_h.size(1) - for i in range(out_h): - idx = int(indices_h[i][0]) - for j in range(in_c): - out_1[j, i, :] = img_aug[j, idx:idx + kernel_width, :].transpose(0, 1).mv(weights_h[i]) - - # process W dimension - # symmetric copying - out_1_aug = torch.FloatTensor(in_c, out_h, in_w + sym_len_ws + sym_len_we) - out_1_aug.narrow(2, sym_len_ws, in_w).copy_(out_1) - - sym_patch = out_1[:, :, :sym_len_ws] - inv_idx = torch.arange(sym_patch.size(2) - 1, -1, -1).long() - sym_patch_inv = sym_patch.index_select(2, inv_idx) - out_1_aug.narrow(2, 0, sym_len_ws).copy_(sym_patch_inv) - - sym_patch = out_1[:, :, -sym_len_we:] - inv_idx = torch.arange(sym_patch.size(2) - 1, -1, -1).long() - sym_patch_inv = sym_patch.index_select(2, inv_idx) - out_1_aug.narrow(2, sym_len_ws + in_w, sym_len_we).copy_(sym_patch_inv) - - out_2 = torch.FloatTensor(in_c, out_h, out_w) - kernel_width = weights_w.size(1) - for i in range(out_w): - idx = int(indices_w[i][0]) - for j in range(in_c): - out_2[j, :, i] = out_1_aug[j, :, idx:idx + kernel_width].mv(weights_w[i]) - - if numpy_type: - out_2 = out_2.numpy().transpose(1, 2, 0) - return out_2 - - -def rgb2ycbcr(img, y_only=False): - """Convert a RGB image to YCbCr image. - - This function produces the same results as Matlab's `rgb2ycbcr` function. - It implements the ITU-R BT.601 conversion for standard-definition - television. See more details in - https://en.wikipedia.org/wiki/YCbCr#ITU-R_BT.601_conversion. - - It differs from a similar function in cv2.cvtColor: `RGB <-> YCrCb`. - In OpenCV, it implements a JPEG conversion. See more details in - https://en.wikipedia.org/wiki/YCbCr#JPEG_conversion. - - Args: - img (ndarray): The input image. It accepts: - 1. np.uint8 type with range [0, 255]; - 2. np.float32 type with range [0, 1]. - y_only (bool): Whether to only return Y channel. Default: False. - - Returns: - ndarray: The converted YCbCr image. The output image has the same type - and range as input image. - """ - img_type = img.dtype - img = _convert_input_type_range(img) - if y_only: - out_img = np.dot(img, [65.481, 128.553, 24.966]) + 16.0 - else: - out_img = np.matmul( - img, [[65.481, -37.797, 112.0], [128.553, -74.203, -93.786], [24.966, 112.0, -18.214]]) + [16, 128, 128] - out_img = _convert_output_type_range(out_img, img_type) - return out_img - - -def bgr2ycbcr(img, y_only=False): - """Convert a BGR image to YCbCr image. - - The bgr version of rgb2ycbcr. - It implements the ITU-R BT.601 conversion for standard-definition - television. See more details in - https://en.wikipedia.org/wiki/YCbCr#ITU-R_BT.601_conversion. - - It differs from a similar function in cv2.cvtColor: `BGR <-> YCrCb`. - In OpenCV, it implements a JPEG conversion. See more details in - https://en.wikipedia.org/wiki/YCbCr#JPEG_conversion. - - Args: - img (ndarray): The input image. It accepts: - 1. np.uint8 type with range [0, 255]; - 2. np.float32 type with range [0, 1]. - y_only (bool): Whether to only return Y channel. Default: False. - - Returns: - ndarray: The converted YCbCr image. The output image has the same type - and range as input image. - """ - img_type = img.dtype - img = _convert_input_type_range(img) - if y_only: - out_img = np.dot(img, [24.966, 128.553, 65.481]) + 16.0 - else: - out_img = np.matmul( - img, [[24.966, 112.0, -18.214], [128.553, -74.203, -93.786], [65.481, -37.797, 112.0]]) + [16, 128, 128] - out_img = _convert_output_type_range(out_img, img_type) - return out_img - - -def ycbcr2rgb(img): - """Convert a YCbCr image to RGB image. - - This function produces the same results as Matlab's ycbcr2rgb function. - It implements the ITU-R BT.601 conversion for standard-definition - television. See more details in - https://en.wikipedia.org/wiki/YCbCr#ITU-R_BT.601_conversion. - - It differs from a similar function in cv2.cvtColor: `YCrCb <-> RGB`. - In OpenCV, it implements a JPEG conversion. See more details in - https://en.wikipedia.org/wiki/YCbCr#JPEG_conversion. - - Args: - img (ndarray): The input image. It accepts: - 1. np.uint8 type with range [0, 255]; - 2. np.float32 type with range [0, 1]. - - Returns: - ndarray: The converted RGB image. The output image has the same type - and range as input image. - """ - img_type = img.dtype - img = _convert_input_type_range(img) * 255 - out_img = np.matmul(img, [[0.00456621, 0.00456621, 0.00456621], [0, -0.00153632, 0.00791071], - [0.00625893, -0.00318811, 0]]) * 255.0 + [-222.921, 135.576, -276.836] # noqa: E126 - out_img = _convert_output_type_range(out_img, img_type) - return out_img - - -def ycbcr2bgr(img): - """Convert a YCbCr image to BGR image. - - The bgr version of ycbcr2rgb. - It implements the ITU-R BT.601 conversion for standard-definition - television. See more details in - https://en.wikipedia.org/wiki/YCbCr#ITU-R_BT.601_conversion. - - It differs from a similar function in cv2.cvtColor: `YCrCb <-> BGR`. - In OpenCV, it implements a JPEG conversion. See more details in - https://en.wikipedia.org/wiki/YCbCr#JPEG_conversion. - - Args: - img (ndarray): The input image. It accepts: - 1. np.uint8 type with range [0, 255]; - 2. np.float32 type with range [0, 1]. - - Returns: - ndarray: The converted BGR image. The output image has the same type - and range as input image. - """ - img_type = img.dtype - img = _convert_input_type_range(img) * 255 - out_img = np.matmul(img, [[0.00456621, 0.00456621, 0.00456621], [0.00791071, -0.00153632, 0], - [0, -0.00318811, 0.00625893]]) * 255.0 + [-276.836, 135.576, -222.921] # noqa: E126 - out_img = _convert_output_type_range(out_img, img_type) - return out_img - - -def _convert_input_type_range(img): - """Convert the type and range of the input image. - - It converts the input image to np.float32 type and range of [0, 1]. - It is mainly used for pre-processing the input image in colorspace - convertion functions such as rgb2ycbcr and ycbcr2rgb. - - Args: - img (ndarray): The input image. It accepts: - 1. np.uint8 type with range [0, 255]; - 2. np.float32 type with range [0, 1]. - - Returns: - (ndarray): The converted image with type of np.float32 and range of - [0, 1]. - """ - img_type = img.dtype - img = img.astype(np.float32) - if img_type == np.float32: - pass - elif img_type == np.uint8: - img /= 255. - else: - raise TypeError('The img type should be np.float32 or np.uint8, ' f'but got {img_type}') - return img - - -def _convert_output_type_range(img, dst_type): - """Convert the type and range of the image according to dst_type. - - It converts the image to desired type and range. If `dst_type` is np.uint8, - images will be converted to np.uint8 type with range [0, 255]. If - `dst_type` is np.float32, it converts the image to np.float32 type with - range [0, 1]. - It is mainly used for post-processing images in colorspace convertion - functions such as rgb2ycbcr and ycbcr2rgb. - - Args: - img (ndarray): The image to be converted with np.float32 type and - range [0, 255]. - dst_type (np.uint8 | np.float32): If dst_type is np.uint8, it - converts the image to np.uint8 type with range [0, 255]. If - dst_type is np.float32, it converts the image to np.float32 type - with range [0, 1]. - - Returns: - (ndarray): The converted image with desired type and range. - """ - if dst_type not in (np.uint8, np.float32): - raise TypeError('The dst_type should be np.float32 or np.uint8, ' f'but got {dst_type}') - if dst_type == np.uint8: - img = img.round() - else: - img /= 255. - return img.astype(dst_type) diff --git a/CodeFormer/CodeFormer/basicsr/utils/misc.py b/CodeFormer/CodeFormer/basicsr/utils/misc.py deleted file mode 100644 index 3b444ff3b950e38f43a5451d1330ff1b65951a9e..0000000000000000000000000000000000000000 --- a/CodeFormer/CodeFormer/basicsr/utils/misc.py +++ /dev/null @@ -1,134 +0,0 @@ -import numpy as np -import os -import random -import time -import torch -from os import path as osp - -from .dist_util import master_only -from .logger import get_root_logger - - -def set_random_seed(seed): - """Set random seeds.""" - random.seed(seed) - np.random.seed(seed) - torch.manual_seed(seed) - torch.cuda.manual_seed(seed) - torch.cuda.manual_seed_all(seed) - - -def get_time_str(): - return time.strftime('%Y%m%d_%H%M%S', time.localtime()) - - -def mkdir_and_rename(path): - """mkdirs. If path exists, rename it with timestamp and create a new one. - - Args: - path (str): Folder path. - """ - if osp.exists(path): - new_name = path + '_archived_' + get_time_str() - print(f'Path already exists. Rename it to {new_name}', flush=True) - os.rename(path, new_name) - os.makedirs(path, exist_ok=True) - - -@master_only -def make_exp_dirs(opt): - """Make dirs for experiments.""" - path_opt = opt['path'].copy() - if opt['is_train']: - mkdir_and_rename(path_opt.pop('experiments_root')) - else: - mkdir_and_rename(path_opt.pop('results_root')) - for key, path in path_opt.items(): - if ('strict_load' not in key) and ('pretrain_network' not in key) and ('resume' not in key): - os.makedirs(path, exist_ok=True) - - -def scandir(dir_path, suffix=None, recursive=False, full_path=False): - """Scan a directory to find the interested files. - - Args: - dir_path (str): Path of the directory. - suffix (str | tuple(str), optional): File suffix that we are - interested in. Default: None. - recursive (bool, optional): If set to True, recursively scan the - directory. Default: False. - full_path (bool, optional): If set to True, include the dir_path. - Default: False. - - Returns: - A generator for all the interested files with relative pathes. - """ - - if (suffix is not None) and not isinstance(suffix, (str, tuple)): - raise TypeError('"suffix" must be a string or tuple of strings') - - root = dir_path - - def _scandir(dir_path, suffix, recursive): - for entry in os.scandir(dir_path): - if not entry.name.startswith('.') and entry.is_file(): - if full_path: - return_path = entry.path - else: - return_path = osp.relpath(entry.path, root) - - if suffix is None: - yield return_path - elif return_path.endswith(suffix): - yield return_path - else: - if recursive: - yield from _scandir(entry.path, suffix=suffix, recursive=recursive) - else: - continue - - return _scandir(dir_path, suffix=suffix, recursive=recursive) - - -def check_resume(opt, resume_iter): - """Check resume states and pretrain_network paths. - - Args: - opt (dict): Options. - resume_iter (int): Resume iteration. - """ - logger = get_root_logger() - if opt['path']['resume_state']: - # get all the networks - networks = [key for key in opt.keys() if key.startswith('network_')] - flag_pretrain = False - for network in networks: - if opt['path'].get(f'pretrain_{network}') is not None: - flag_pretrain = True - if flag_pretrain: - logger.warning('pretrain_network path will be ignored during resuming.') - # set pretrained model paths - for network in networks: - name = f'pretrain_{network}' - basename = network.replace('network_', '') - if opt['path'].get('ignore_resume_networks') is None or (basename - not in opt['path']['ignore_resume_networks']): - opt['path'][name] = osp.join(opt['path']['models'], f'net_{basename}_{resume_iter}.pth') - logger.info(f"Set {name} to {opt['path'][name]}") - - -def sizeof_fmt(size, suffix='B'): - """Get human readable file size. - - Args: - size (int): File size. - suffix (str): Suffix. Default: 'B'. - - Return: - str: Formated file siz. - """ - for unit in ['', 'K', 'M', 'G', 'T', 'P', 'E', 'Z']: - if abs(size) < 1024.0: - return f'{size:3.1f} {unit}{suffix}' - size /= 1024.0 - return f'{size:3.1f} Y{suffix}' diff --git a/CodeFormer/CodeFormer/basicsr/utils/options.py b/CodeFormer/CodeFormer/basicsr/utils/options.py deleted file mode 100644 index db490e4aa52e26fde31959fd74c2cef3af2ecf76..0000000000000000000000000000000000000000 --- a/CodeFormer/CodeFormer/basicsr/utils/options.py +++ /dev/null @@ -1,108 +0,0 @@ -import yaml -import time -from collections import OrderedDict -from os import path as osp -from basicsr.utils.misc import get_time_str - -def ordered_yaml(): - """Support OrderedDict for yaml. - - Returns: - yaml Loader and Dumper. - """ - try: - from yaml import CDumper as Dumper - from yaml import CLoader as Loader - except ImportError: - from yaml import Dumper, Loader - - _mapping_tag = yaml.resolver.BaseResolver.DEFAULT_MAPPING_TAG - - def dict_representer(dumper, data): - return dumper.represent_dict(data.items()) - - def dict_constructor(loader, node): - return OrderedDict(loader.construct_pairs(node)) - - Dumper.add_representer(OrderedDict, dict_representer) - Loader.add_constructor(_mapping_tag, dict_constructor) - return Loader, Dumper - - -def parse(opt_path, root_path, is_train=True): - """Parse option file. - - Args: - opt_path (str): Option file path. - is_train (str): Indicate whether in training or not. Default: True. - - Returns: - (dict): Options. - """ - with open(opt_path, mode='r') as f: - Loader, _ = ordered_yaml() - opt = yaml.load(f, Loader=Loader) - - opt['is_train'] = is_train - - # opt['name'] = f"{get_time_str()}_{opt['name']}" - if opt['path'].get('resume_state', None): # Shangchen added - resume_state_path = opt['path'].get('resume_state') - opt['name'] = resume_state_path.split("/")[-3] - else: - opt['name'] = f"{get_time_str()}_{opt['name']}" - - - # datasets - for phase, dataset in opt['datasets'].items(): - # for several datasets, e.g., test_1, test_2 - phase = phase.split('_')[0] - dataset['phase'] = phase - if 'scale' in opt: - dataset['scale'] = opt['scale'] - if dataset.get('dataroot_gt') is not None: - dataset['dataroot_gt'] = osp.expanduser(dataset['dataroot_gt']) - if dataset.get('dataroot_lq') is not None: - dataset['dataroot_lq'] = osp.expanduser(dataset['dataroot_lq']) - - # paths - for key, val in opt['path'].items(): - if (val is not None) and ('resume_state' in key or 'pretrain_network' in key): - opt['path'][key] = osp.expanduser(val) - - if is_train: - experiments_root = osp.join(root_path, 'experiments', opt['name']) - opt['path']['experiments_root'] = experiments_root - opt['path']['models'] = osp.join(experiments_root, 'models') - opt['path']['training_states'] = osp.join(experiments_root, 'training_states') - opt['path']['log'] = experiments_root - opt['path']['visualization'] = osp.join(experiments_root, 'visualization') - - else: # test - results_root = osp.join(root_path, 'results', opt['name']) - opt['path']['results_root'] = results_root - opt['path']['log'] = results_root - opt['path']['visualization'] = osp.join(results_root, 'visualization') - - return opt - - -def dict2str(opt, indent_level=1): - """dict to string for printing options. - - Args: - opt (dict): Option dict. - indent_level (int): Indent level. Default: 1. - - Return: - (str): Option string for printing. - """ - msg = '\n' - for k, v in opt.items(): - if isinstance(v, dict): - msg += ' ' * (indent_level * 2) + k + ':[' - msg += dict2str(v, indent_level + 1) - msg += ' ' * (indent_level * 2) + ']\n' - else: - msg += ' ' * (indent_level * 2) + k + ': ' + str(v) + '\n' - return msg diff --git a/CodeFormer/CodeFormer/basicsr/utils/realesrgan_utils.py b/CodeFormer/CodeFormer/basicsr/utils/realesrgan_utils.py deleted file mode 100644 index 5a7b159b697d9e1ca0c51900ec1fe01f9feeb18f..0000000000000000000000000000000000000000 --- a/CodeFormer/CodeFormer/basicsr/utils/realesrgan_utils.py +++ /dev/null @@ -1,301 +0,0 @@ -import cv2 -import math -import numpy as np -import os -import queue -import threading -import torch -from basicsr.utils.download_util import load_file_from_url -from torch.nn import functional as F - -# ROOT_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) - - -class RealESRGANer(): - """A helper class for upsampling images with RealESRGAN. - - Args: - scale (int): Upsampling scale factor used in the networks. It is usually 2 or 4. - model_path (str): The path to the pretrained model. It can be urls (will first download it automatically). - model (nn.Module): The defined network. Default: None. - tile (int): As too large images result in the out of GPU memory issue, so this tile option will first crop - input images into tiles, and then process each of them. Finally, they will be merged into one image. - 0 denotes for do not use tile. Default: 0. - tile_pad (int): The pad size for each tile, to remove border artifacts. Default: 10. - pre_pad (int): Pad the input images to avoid border artifacts. Default: 10. - half (float): Whether to use half precision during inference. Default: False. - """ - - def __init__(self, - scale, - model_path, - model=None, - tile=0, - tile_pad=10, - pre_pad=10, - half=False, - device=None, - gpu_id=None): - self.scale = scale - self.tile_size = tile - self.tile_pad = tile_pad - self.pre_pad = pre_pad - self.mod_scale = None - self.half = half - - # initialize model - if gpu_id: - self.device = torch.device( - f'cuda:{gpu_id}' if torch.cuda.is_available() else 'cpu') if device is None else device - else: - self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') if device is None else device - # if the model_path starts with https, it will first download models to the folder: realesrgan/weights - if model_path.startswith('https://'): - model_path = load_file_from_url( - url=model_path, model_dir=os.path.join('weights/realesrgan'), progress=True, file_name=None) - loadnet = torch.load(model_path, map_location=torch.device('cpu')) - # prefer to use params_ema - if 'params_ema' in loadnet: - keyname = 'params_ema' - else: - keyname = 'params' - model.load_state_dict(loadnet[keyname], strict=True) - model.eval() - self.model = model.to(self.device) - if self.half: - self.model = self.model.half() - - def pre_process(self, img): - """Pre-process, such as pre-pad and mod pad, so that the images can be divisible - """ - img = torch.from_numpy(np.transpose(img, (2, 0, 1))).float() - self.img = img.unsqueeze(0).to(self.device) - if self.half: - self.img = self.img.half() - - # pre_pad - self.img_pre_pad = self.img.clone() - if self.pre_pad != 0: - self.img = F.pad(self.img, (0, self.pre_pad, 0, self.pre_pad), 'reflect') - # mod pad for divisible borders - if self.scale == 2: - self.mod_scale = 2 - elif self.scale == 1: - self.mod_scale = 4 - if self.mod_scale is not None: - self.mod_pad_h, self.mod_pad_w = 0, 0 - _, _, h, w = self.img.size() - if (h % self.mod_scale != 0): - self.mod_pad_h = (self.mod_scale - h % self.mod_scale) - if (w % self.mod_scale != 0): - self.mod_pad_w = (self.mod_scale - w % self.mod_scale) - self.img = F.pad(self.img, (0, self.mod_pad_w, 0, self.mod_pad_h), 'reflect') - - def process(self): - # model inference - self.output = self.model(self.img) - - def tile_process(self): - """It will first crop input images to tiles, and then process each tile. - Finally, all the processed tiles are merged into one images. - - Modified from: https://github.com/ata4/esrgan-launcher - """ - batch, channel, height, width = self.img.shape - output_height = height * self.scale - output_width = width * self.scale - output_shape = (batch, channel, output_height, output_width) - - # start with black image - self.output = self.img.new_zeros(output_shape) - tiles_x = math.ceil(width / self.tile_size) - tiles_y = math.ceil(height / self.tile_size) - - # loop over all tiles - for y in range(tiles_y): - for x in range(tiles_x): - # extract tile from input image - ofs_x = x * self.tile_size - ofs_y = y * self.tile_size - # input tile area on total image - input_start_x = ofs_x - input_end_x = min(ofs_x + self.tile_size, width) - input_start_y = ofs_y - input_end_y = min(ofs_y + self.tile_size, height) - - # input tile area on total image with padding - input_start_x_pad = max(input_start_x - self.tile_pad, 0) - input_end_x_pad = min(input_end_x + self.tile_pad, width) - input_start_y_pad = max(input_start_y - self.tile_pad, 0) - input_end_y_pad = min(input_end_y + self.tile_pad, height) - - # input tile dimensions - input_tile_width = input_end_x - input_start_x - input_tile_height = input_end_y - input_start_y - tile_idx = y * tiles_x + x + 1 - input_tile = self.img[:, :, input_start_y_pad:input_end_y_pad, input_start_x_pad:input_end_x_pad] - - # upscale tile - try: - with torch.no_grad(): - output_tile = self.model(input_tile) - except RuntimeError as error: - print('Error', error) - # print(f'\tTile {tile_idx}/{tiles_x * tiles_y}') - - # output tile area on total image - output_start_x = input_start_x * self.scale - output_end_x = input_end_x * self.scale - output_start_y = input_start_y * self.scale - output_end_y = input_end_y * self.scale - - # output tile area without padding - output_start_x_tile = (input_start_x - input_start_x_pad) * self.scale - output_end_x_tile = output_start_x_tile + input_tile_width * self.scale - output_start_y_tile = (input_start_y - input_start_y_pad) * self.scale - output_end_y_tile = output_start_y_tile + input_tile_height * self.scale - - # put tile into output image - self.output[:, :, output_start_y:output_end_y, - output_start_x:output_end_x] = output_tile[:, :, output_start_y_tile:output_end_y_tile, - output_start_x_tile:output_end_x_tile] - - def post_process(self): - # remove extra pad - if self.mod_scale is not None: - _, _, h, w = self.output.size() - self.output = self.output[:, :, 0:h - self.mod_pad_h * self.scale, 0:w - self.mod_pad_w * self.scale] - # remove prepad - if self.pre_pad != 0: - _, _, h, w = self.output.size() - self.output = self.output[:, :, 0:h - self.pre_pad * self.scale, 0:w - self.pre_pad * self.scale] - return self.output - - @torch.no_grad() - def enhance(self, img, outscale=None, alpha_upsampler='realesrgan'): - h_input, w_input = img.shape[0:2] - # img: numpy - img = img.astype(np.float32) - if np.max(img) > 256: # 16-bit image - max_range = 65535 - print('\tInput is a 16-bit image') - else: - max_range = 255 - img = img / max_range - if len(img.shape) == 2: # gray image - img_mode = 'L' - img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB) - elif img.shape[2] == 4: # RGBA image with alpha channel - img_mode = 'RGBA' - alpha = img[:, :, 3] - img = img[:, :, 0:3] - img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) - if alpha_upsampler == 'realesrgan': - alpha = cv2.cvtColor(alpha, cv2.COLOR_GRAY2RGB) - else: - img_mode = 'RGB' - img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) - - # ------------------- process image (without the alpha channel) ------------------- # - try: - with torch.no_grad(): - self.pre_process(img) - if self.tile_size > 0: - self.tile_process() - else: - self.process() - output_img_t = self.post_process() - output_img = output_img_t.data.squeeze().float().cpu().clamp_(0, 1).numpy() - output_img = np.transpose(output_img[[2, 1, 0], :, :], (1, 2, 0)) - if img_mode == 'L': - output_img = cv2.cvtColor(output_img, cv2.COLOR_BGR2GRAY) - del output_img_t - torch.cuda.empty_cache() - except RuntimeError as error: - output_img = cv2.resize(self.img_pre_pad, (w_input * self.scale, h_input * self.scale), interpolation=cv2.INTER_LINEAR) - print(f"Failed inference for RealESRGAN: {error}") - - # ------------------- process the alpha channel if necessary ------------------- # - if img_mode == 'RGBA': - if alpha_upsampler == 'realesrgan': - self.pre_process(alpha) - if self.tile_size > 0: - self.tile_process() - else: - self.process() - output_alpha = self.post_process() - output_alpha = output_alpha.data.squeeze().float().cpu().clamp_(0, 1).numpy() - output_alpha = np.transpose(output_alpha[[2, 1, 0], :, :], (1, 2, 0)) - output_alpha = cv2.cvtColor(output_alpha, cv2.COLOR_BGR2GRAY) - else: # use the cv2 resize for alpha channel - h, w = alpha.shape[0:2] - output_alpha = cv2.resize(alpha, (w * self.scale, h * self.scale), interpolation=cv2.INTER_LINEAR) - - # merge the alpha channel - output_img = cv2.cvtColor(output_img, cv2.COLOR_BGR2BGRA) - output_img[:, :, 3] = output_alpha - - # ------------------------------ return ------------------------------ # - if max_range == 65535: # 16-bit image - output = (output_img * 65535.0).round().astype(np.uint16) - else: - output = (output_img * 255.0).round().astype(np.uint8) - - if outscale is not None and outscale != float(self.scale): - output = cv2.resize( - output, ( - int(w_input * outscale), - int(h_input * outscale), - ), interpolation=cv2.INTER_LANCZOS4) - - return output, img_mode - - -class PrefetchReader(threading.Thread): - """Prefetch images. - - Args: - img_list (list[str]): A image list of image paths to be read. - num_prefetch_queue (int): Number of prefetch queue. - """ - - def __init__(self, img_list, num_prefetch_queue): - super().__init__() - self.que = queue.Queue(num_prefetch_queue) - self.img_list = img_list - - def run(self): - for img_path in self.img_list: - img = cv2.imread(img_path, cv2.IMREAD_UNCHANGED) - self.que.put(img) - - self.que.put(None) - - def __next__(self): - next_item = self.que.get() - if next_item is None: - raise StopIteration - return next_item - - def __iter__(self): - return self - - -class IOConsumer(threading.Thread): - - def __init__(self, opt, que, qid): - super().__init__() - self._queue = que - self.qid = qid - self.opt = opt - - def run(self): - while True: - msg = self._queue.get() - if isinstance(msg, str) and msg == 'quit': - break - - output = msg['output'] - save_path = msg['save_path'] - cv2.imwrite(save_path, output) - print(f'IO worker {self.qid} is done.') \ No newline at end of file diff --git a/CodeFormer/CodeFormer/basicsr/utils/registry.py b/CodeFormer/CodeFormer/basicsr/utils/registry.py deleted file mode 100644 index 655753b3b9cbd0cfe73fe93a77cf1fcc3db6d827..0000000000000000000000000000000000000000 --- a/CodeFormer/CodeFormer/basicsr/utils/registry.py +++ /dev/null @@ -1,82 +0,0 @@ -# Modified from: https://github.com/facebookresearch/fvcore/blob/master/fvcore/common/registry.py # noqa: E501 - - -class Registry(): - """ - The registry that provides name -> object mapping, to support third-party - users' custom modules. - - To create a registry (e.g. a backbone registry): - - .. code-block:: python - - BACKBONE_REGISTRY = Registry('BACKBONE') - - To register an object: - - .. code-block:: python - - @BACKBONE_REGISTRY.register() - class MyBackbone(): - ... - - Or: - - .. code-block:: python - - BACKBONE_REGISTRY.register(MyBackbone) - """ - - def __init__(self, name): - """ - Args: - name (str): the name of this registry - """ - self._name = name - self._obj_map = {} - - def _do_register(self, name, obj): - assert (name not in self._obj_map), (f"An object named '{name}' was already registered " - f"in '{self._name}' registry!") - self._obj_map[name] = obj - - def register(self, obj=None): - """ - Register the given object under the the name `obj.__name__`. - Can be used as either a decorator or not. - See docstring of this class for usage. - """ - if obj is None: - # used as a decorator - def deco(func_or_class): - name = func_or_class.__name__ - self._do_register(name, func_or_class) - return func_or_class - - return deco - - # used as a function call - name = obj.__name__ - self._do_register(name, obj) - - def get(self, name): - ret = self._obj_map.get(name) - if ret is None: - raise KeyError(f"No object named '{name}' found in '{self._name}' registry!") - return ret - - def __contains__(self, name): - return name in self._obj_map - - def __iter__(self): - return iter(self._obj_map.items()) - - def keys(self): - return self._obj_map.keys() - - -DATASET_REGISTRY = Registry('dataset') -ARCH_REGISTRY = Registry('arch') -MODEL_REGISTRY = Registry('model') -LOSS_REGISTRY = Registry('loss') -METRIC_REGISTRY = Registry('metric') diff --git a/CodeFormer/CodeFormer/basicsr/version.py b/CodeFormer/CodeFormer/basicsr/version.py deleted file mode 100644 index 3c30a9a5d2c3af85b06034f080d6f9f7e0a53e7e..0000000000000000000000000000000000000000 --- a/CodeFormer/CodeFormer/basicsr/version.py +++ /dev/null @@ -1,5 +0,0 @@ -# GENERATED VERSION FILE -# TIME: Sun Aug 7 15:14:26 2022 -__version__ = '1.3.2' -__gitsha__ = '6f94023' -version_info = (1, 3, 2) diff --git a/CodeFormer/CodeFormer/facelib/detection/__init__.py b/CodeFormer/CodeFormer/facelib/detection/__init__.py deleted file mode 100644 index 296262d4e2e29eaa2afba7bda1f0399d77da24f6..0000000000000000000000000000000000000000 --- a/CodeFormer/CodeFormer/facelib/detection/__init__.py +++ /dev/null @@ -1,100 +0,0 @@ -import os -import torch -from torch import nn -from copy import deepcopy - -from facelib.utils import load_file_from_url -from facelib.utils import download_pretrained_models -from facelib.detection.yolov5face.models.common import Conv - -from .retinaface.retinaface import RetinaFace -from .yolov5face.face_detector import YoloDetector - - -def init_detection_model(model_name, half=False, device='cuda'): - if 'retinaface' in model_name: - model = init_retinaface_model(model_name, half, device) - elif 'YOLOv5' in model_name: - model = init_yolov5face_model(model_name, device) - else: - raise NotImplementedError(f'{model_name} is not implemented.') - - return model - - -def init_retinaface_model(model_name, half=False, device='cuda'): - if model_name == 'retinaface_resnet50': - model = RetinaFace(network_name='resnet50', half=half) - model_url = 'https://github.com/xinntao/facexlib/releases/download/v0.1.0/detection_Resnet50_Final.pth' - elif model_name == 'retinaface_mobile0.25': - model = RetinaFace(network_name='mobile0.25', half=half) - model_url = 'https://github.com/xinntao/facexlib/releases/download/v0.1.0/detection_mobilenet0.25_Final.pth' - else: - raise NotImplementedError(f'{model_name} is not implemented.') - - model_path = load_file_from_url(url=model_url, model_dir='weights/facelib', progress=True, file_name=None) - load_net = torch.load(model_path, map_location=lambda storage, loc: storage) - # remove unnecessary 'module.' - for k, v in deepcopy(load_net).items(): - if k.startswith('module.'): - load_net[k[7:]] = v - load_net.pop(k) - model.load_state_dict(load_net, strict=True) - model.eval() - model = model.to(device) - - return model - - -def init_yolov5face_model(model_name, device='cuda'): - if model_name == 'YOLOv5l': - model = YoloDetector(config_name='facelib/detection/yolov5face/models/yolov5l.yaml', device=device) - model_url = 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/yolov5l-face.pth' - elif model_name == 'YOLOv5n': - model = YoloDetector(config_name='facelib/detection/yolov5face/models/yolov5n.yaml', device=device) - model_url = 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/yolov5n-face.pth' - else: - raise NotImplementedError(f'{model_name} is not implemented.') - - model_path = load_file_from_url(url=model_url, model_dir='weights/facelib', progress=True, file_name=None) - load_net = torch.load(model_path, map_location=lambda storage, loc: storage) - model.detector.load_state_dict(load_net, strict=True) - model.detector.eval() - model.detector = model.detector.to(device).float() - - for m in model.detector.modules(): - if type(m) in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU]: - m.inplace = True # pytorch 1.7.0 compatibility - elif isinstance(m, Conv): - m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatibility - - return model - - -# Download from Google Drive -# def init_yolov5face_model(model_name, device='cuda'): -# if model_name == 'YOLOv5l': -# model = YoloDetector(config_name='facelib/detection/yolov5face/models/yolov5l.yaml', device=device) -# f_id = {'yolov5l-face.pth': '131578zMA6B2x8VQHyHfa6GEPtulMCNzV'} -# elif model_name == 'YOLOv5n': -# model = YoloDetector(config_name='facelib/detection/yolov5face/models/yolov5n.yaml', device=device) -# f_id = {'yolov5n-face.pth': '1fhcpFvWZqghpGXjYPIne2sw1Fy4yhw6o'} -# else: -# raise NotImplementedError(f'{model_name} is not implemented.') - -# model_path = os.path.join('weights/facelib', list(f_id.keys())[0]) -# if not os.path.exists(model_path): -# download_pretrained_models(file_ids=f_id, save_path_root='weights/facelib') - -# load_net = torch.load(model_path, map_location=lambda storage, loc: storage) -# model.detector.load_state_dict(load_net, strict=True) -# model.detector.eval() -# model.detector = model.detector.to(device).float() - -# for m in model.detector.modules(): -# if type(m) in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU]: -# m.inplace = True # pytorch 1.7.0 compatibility -# elif isinstance(m, Conv): -# m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatibility - -# return model \ No newline at end of file diff --git a/CodeFormer/CodeFormer/facelib/detection/__pycache__/__init__.cpython-310.pyc b/CodeFormer/CodeFormer/facelib/detection/__pycache__/__init__.cpython-310.pyc deleted file mode 100644 index 8831860c88b9d0d6dfdc6f162b96f13950a3a2f9..0000000000000000000000000000000000000000 Binary files a/CodeFormer/CodeFormer/facelib/detection/__pycache__/__init__.cpython-310.pyc and /dev/null differ diff --git a/CodeFormer/CodeFormer/facelib/detection/__pycache__/align_trans.cpython-310.pyc b/CodeFormer/CodeFormer/facelib/detection/__pycache__/align_trans.cpython-310.pyc deleted file mode 100644 index d07bb449d11d3218516df8f328aaa531a0b094e2..0000000000000000000000000000000000000000 Binary files a/CodeFormer/CodeFormer/facelib/detection/__pycache__/align_trans.cpython-310.pyc and /dev/null differ diff --git a/CodeFormer/CodeFormer/facelib/detection/__pycache__/matlab_cp2tform.cpython-310.pyc b/CodeFormer/CodeFormer/facelib/detection/__pycache__/matlab_cp2tform.cpython-310.pyc deleted file mode 100644 index dc87ef24f65f00b456df246fa501e683b27dadbb..0000000000000000000000000000000000000000 Binary files a/CodeFormer/CodeFormer/facelib/detection/__pycache__/matlab_cp2tform.cpython-310.pyc and /dev/null differ diff --git a/CodeFormer/CodeFormer/facelib/detection/align_trans.py b/CodeFormer/CodeFormer/facelib/detection/align_trans.py deleted file mode 100644 index 07f1eb365462c2ec5bbac6d1854c786b6fd6be90..0000000000000000000000000000000000000000 --- a/CodeFormer/CodeFormer/facelib/detection/align_trans.py +++ /dev/null @@ -1,219 +0,0 @@ -import cv2 -import numpy as np - -from .matlab_cp2tform import get_similarity_transform_for_cv2 - -# reference facial points, a list of coordinates (x,y) -REFERENCE_FACIAL_POINTS = [[30.29459953, 51.69630051], [65.53179932, 51.50139999], [48.02519989, 71.73660278], - [33.54930115, 92.3655014], [62.72990036, 92.20410156]] - -DEFAULT_CROP_SIZE = (96, 112) - - -class FaceWarpException(Exception): - - def __str__(self): - return 'In File {}:{}'.format(__file__, super.__str__(self)) - - -def get_reference_facial_points(output_size=None, inner_padding_factor=0.0, outer_padding=(0, 0), default_square=False): - """ - Function: - ---------- - get reference 5 key points according to crop settings: - 0. Set default crop_size: - if default_square: - crop_size = (112, 112) - else: - crop_size = (96, 112) - 1. Pad the crop_size by inner_padding_factor in each side; - 2. Resize crop_size into (output_size - outer_padding*2), - pad into output_size with outer_padding; - 3. Output reference_5point; - Parameters: - ---------- - @output_size: (w, h) or None - size of aligned face image - @inner_padding_factor: (w_factor, h_factor) - padding factor for inner (w, h) - @outer_padding: (w_pad, h_pad) - each row is a pair of coordinates (x, y) - @default_square: True or False - if True: - default crop_size = (112, 112) - else: - default crop_size = (96, 112); - !!! make sure, if output_size is not None: - (output_size - outer_padding) - = some_scale * (default crop_size * (1.0 + - inner_padding_factor)) - Returns: - ---------- - @reference_5point: 5x2 np.array - each row is a pair of transformed coordinates (x, y) - """ - - tmp_5pts = np.array(REFERENCE_FACIAL_POINTS) - tmp_crop_size = np.array(DEFAULT_CROP_SIZE) - - # 0) make the inner region a square - if default_square: - size_diff = max(tmp_crop_size) - tmp_crop_size - tmp_5pts += size_diff / 2 - tmp_crop_size += size_diff - - if (output_size and output_size[0] == tmp_crop_size[0] and output_size[1] == tmp_crop_size[1]): - - return tmp_5pts - - if (inner_padding_factor == 0 and outer_padding == (0, 0)): - if output_size is None: - return tmp_5pts - else: - raise FaceWarpException('No paddings to do, output_size must be None or {}'.format(tmp_crop_size)) - - # check output size - if not (0 <= inner_padding_factor <= 1.0): - raise FaceWarpException('Not (0 <= inner_padding_factor <= 1.0)') - - if ((inner_padding_factor > 0 or outer_padding[0] > 0 or outer_padding[1] > 0) and output_size is None): - output_size = tmp_crop_size * \ - (1 + inner_padding_factor * 2).astype(np.int32) - output_size += np.array(outer_padding) - if not (outer_padding[0] < output_size[0] and outer_padding[1] < output_size[1]): - raise FaceWarpException('Not (outer_padding[0] < output_size[0] and outer_padding[1] < output_size[1])') - - # 1) pad the inner region according inner_padding_factor - if inner_padding_factor > 0: - size_diff = tmp_crop_size * inner_padding_factor * 2 - tmp_5pts += size_diff / 2 - tmp_crop_size += np.round(size_diff).astype(np.int32) - - # 2) resize the padded inner region - size_bf_outer_pad = np.array(output_size) - np.array(outer_padding) * 2 - - if size_bf_outer_pad[0] * tmp_crop_size[1] != size_bf_outer_pad[1] * tmp_crop_size[0]: - raise FaceWarpException('Must have (output_size - outer_padding)' - '= some_scale * (crop_size * (1.0 + inner_padding_factor)') - - scale_factor = size_bf_outer_pad[0].astype(np.float32) / tmp_crop_size[0] - tmp_5pts = tmp_5pts * scale_factor - # size_diff = tmp_crop_size * (scale_factor - min(scale_factor)) - # tmp_5pts = tmp_5pts + size_diff / 2 - tmp_crop_size = size_bf_outer_pad - - # 3) add outer_padding to make output_size - reference_5point = tmp_5pts + np.array(outer_padding) - tmp_crop_size = output_size - - return reference_5point - - -def get_affine_transform_matrix(src_pts, dst_pts): - """ - Function: - ---------- - get affine transform matrix 'tfm' from src_pts to dst_pts - Parameters: - ---------- - @src_pts: Kx2 np.array - source points matrix, each row is a pair of coordinates (x, y) - @dst_pts: Kx2 np.array - destination points matrix, each row is a pair of coordinates (x, y) - Returns: - ---------- - @tfm: 2x3 np.array - transform matrix from src_pts to dst_pts - """ - - tfm = np.float32([[1, 0, 0], [0, 1, 0]]) - n_pts = src_pts.shape[0] - ones = np.ones((n_pts, 1), src_pts.dtype) - src_pts_ = np.hstack([src_pts, ones]) - dst_pts_ = np.hstack([dst_pts, ones]) - - A, res, rank, s = np.linalg.lstsq(src_pts_, dst_pts_) - - if rank == 3: - tfm = np.float32([[A[0, 0], A[1, 0], A[2, 0]], [A[0, 1], A[1, 1], A[2, 1]]]) - elif rank == 2: - tfm = np.float32([[A[0, 0], A[1, 0], 0], [A[0, 1], A[1, 1], 0]]) - - return tfm - - -def warp_and_crop_face(src_img, facial_pts, reference_pts=None, crop_size=(96, 112), align_type='smilarity'): - """ - Function: - ---------- - apply affine transform 'trans' to uv - Parameters: - ---------- - @src_img: 3x3 np.array - input image - @facial_pts: could be - 1)a list of K coordinates (x,y) - or - 2) Kx2 or 2xK np.array - each row or col is a pair of coordinates (x, y) - @reference_pts: could be - 1) a list of K coordinates (x,y) - or - 2) Kx2 or 2xK np.array - each row or col is a pair of coordinates (x, y) - or - 3) None - if None, use default reference facial points - @crop_size: (w, h) - output face image size - @align_type: transform type, could be one of - 1) 'similarity': use similarity transform - 2) 'cv2_affine': use the first 3 points to do affine transform, - by calling cv2.getAffineTransform() - 3) 'affine': use all points to do affine transform - Returns: - ---------- - @face_img: output face image with size (w, h) = @crop_size - """ - - if reference_pts is None: - if crop_size[0] == 96 and crop_size[1] == 112: - reference_pts = REFERENCE_FACIAL_POINTS - else: - default_square = False - inner_padding_factor = 0 - outer_padding = (0, 0) - output_size = crop_size - - reference_pts = get_reference_facial_points(output_size, inner_padding_factor, outer_padding, - default_square) - - ref_pts = np.float32(reference_pts) - ref_pts_shp = ref_pts.shape - if max(ref_pts_shp) < 3 or min(ref_pts_shp) != 2: - raise FaceWarpException('reference_pts.shape must be (K,2) or (2,K) and K>2') - - if ref_pts_shp[0] == 2: - ref_pts = ref_pts.T - - src_pts = np.float32(facial_pts) - src_pts_shp = src_pts.shape - if max(src_pts_shp) < 3 or min(src_pts_shp) != 2: - raise FaceWarpException('facial_pts.shape must be (K,2) or (2,K) and K>2') - - if src_pts_shp[0] == 2: - src_pts = src_pts.T - - if src_pts.shape != ref_pts.shape: - raise FaceWarpException('facial_pts and reference_pts must have the same shape') - - if align_type == 'cv2_affine': - tfm = cv2.getAffineTransform(src_pts[0:3], ref_pts[0:3]) - elif align_type == 'affine': - tfm = get_affine_transform_matrix(src_pts, ref_pts) - else: - tfm = get_similarity_transform_for_cv2(src_pts, ref_pts) - - face_img = cv2.warpAffine(src_img, tfm, (crop_size[0], crop_size[1])) - - return face_img diff --git a/CodeFormer/CodeFormer/facelib/detection/matlab_cp2tform.py b/CodeFormer/CodeFormer/facelib/detection/matlab_cp2tform.py deleted file mode 100644 index b2a8b54a91709c71437e15c68d3be9a9b0a20a34..0000000000000000000000000000000000000000 --- a/CodeFormer/CodeFormer/facelib/detection/matlab_cp2tform.py +++ /dev/null @@ -1,317 +0,0 @@ -import numpy as np -from numpy.linalg import inv, lstsq -from numpy.linalg import matrix_rank as rank -from numpy.linalg import norm - - -class MatlabCp2tormException(Exception): - - def __str__(self): - return 'In File {}:{}'.format(__file__, super.__str__(self)) - - -def tformfwd(trans, uv): - """ - Function: - ---------- - apply affine transform 'trans' to uv - - Parameters: - ---------- - @trans: 3x3 np.array - transform matrix - @uv: Kx2 np.array - each row is a pair of coordinates (x, y) - - Returns: - ---------- - @xy: Kx2 np.array - each row is a pair of transformed coordinates (x, y) - """ - uv = np.hstack((uv, np.ones((uv.shape[0], 1)))) - xy = np.dot(uv, trans) - xy = xy[:, 0:-1] - return xy - - -def tforminv(trans, uv): - """ - Function: - ---------- - apply the inverse of affine transform 'trans' to uv - - Parameters: - ---------- - @trans: 3x3 np.array - transform matrix - @uv: Kx2 np.array - each row is a pair of coordinates (x, y) - - Returns: - ---------- - @xy: Kx2 np.array - each row is a pair of inverse-transformed coordinates (x, y) - """ - Tinv = inv(trans) - xy = tformfwd(Tinv, uv) - return xy - - -def findNonreflectiveSimilarity(uv, xy, options=None): - options = {'K': 2} - - K = options['K'] - M = xy.shape[0] - x = xy[:, 0].reshape((-1, 1)) # use reshape to keep a column vector - y = xy[:, 1].reshape((-1, 1)) # use reshape to keep a column vector - - tmp1 = np.hstack((x, y, np.ones((M, 1)), np.zeros((M, 1)))) - tmp2 = np.hstack((y, -x, np.zeros((M, 1)), np.ones((M, 1)))) - X = np.vstack((tmp1, tmp2)) - - u = uv[:, 0].reshape((-1, 1)) # use reshape to keep a column vector - v = uv[:, 1].reshape((-1, 1)) # use reshape to keep a column vector - U = np.vstack((u, v)) - - # We know that X * r = U - if rank(X) >= 2 * K: - r, _, _, _ = lstsq(X, U, rcond=-1) - r = np.squeeze(r) - else: - raise Exception('cp2tform:twoUniquePointsReq') - sc = r[0] - ss = r[1] - tx = r[2] - ty = r[3] - - Tinv = np.array([[sc, -ss, 0], [ss, sc, 0], [tx, ty, 1]]) - T = inv(Tinv) - T[:, 2] = np.array([0, 0, 1]) - - return T, Tinv - - -def findSimilarity(uv, xy, options=None): - options = {'K': 2} - - # uv = np.array(uv) - # xy = np.array(xy) - - # Solve for trans1 - trans1, trans1_inv = findNonreflectiveSimilarity(uv, xy, options) - - # Solve for trans2 - - # manually reflect the xy data across the Y-axis - xyR = xy - xyR[:, 0] = -1 * xyR[:, 0] - - trans2r, trans2r_inv = findNonreflectiveSimilarity(uv, xyR, options) - - # manually reflect the tform to undo the reflection done on xyR - TreflectY = np.array([[-1, 0, 0], [0, 1, 0], [0, 0, 1]]) - - trans2 = np.dot(trans2r, TreflectY) - - # Figure out if trans1 or trans2 is better - xy1 = tformfwd(trans1, uv) - norm1 = norm(xy1 - xy) - - xy2 = tformfwd(trans2, uv) - norm2 = norm(xy2 - xy) - - if norm1 <= norm2: - return trans1, trans1_inv - else: - trans2_inv = inv(trans2) - return trans2, trans2_inv - - -def get_similarity_transform(src_pts, dst_pts, reflective=True): - """ - Function: - ---------- - Find Similarity Transform Matrix 'trans': - u = src_pts[:, 0] - v = src_pts[:, 1] - x = dst_pts[:, 0] - y = dst_pts[:, 1] - [x, y, 1] = [u, v, 1] * trans - - Parameters: - ---------- - @src_pts: Kx2 np.array - source points, each row is a pair of coordinates (x, y) - @dst_pts: Kx2 np.array - destination points, each row is a pair of transformed - coordinates (x, y) - @reflective: True or False - if True: - use reflective similarity transform - else: - use non-reflective similarity transform - - Returns: - ---------- - @trans: 3x3 np.array - transform matrix from uv to xy - trans_inv: 3x3 np.array - inverse of trans, transform matrix from xy to uv - """ - - if reflective: - trans, trans_inv = findSimilarity(src_pts, dst_pts) - else: - trans, trans_inv = findNonreflectiveSimilarity(src_pts, dst_pts) - - return trans, trans_inv - - -def cvt_tform_mat_for_cv2(trans): - """ - Function: - ---------- - Convert Transform Matrix 'trans' into 'cv2_trans' which could be - directly used by cv2.warpAffine(): - u = src_pts[:, 0] - v = src_pts[:, 1] - x = dst_pts[:, 0] - y = dst_pts[:, 1] - [x, y].T = cv_trans * [u, v, 1].T - - Parameters: - ---------- - @trans: 3x3 np.array - transform matrix from uv to xy - - Returns: - ---------- - @cv2_trans: 2x3 np.array - transform matrix from src_pts to dst_pts, could be directly used - for cv2.warpAffine() - """ - cv2_trans = trans[:, 0:2].T - - return cv2_trans - - -def get_similarity_transform_for_cv2(src_pts, dst_pts, reflective=True): - """ - Function: - ---------- - Find Similarity Transform Matrix 'cv2_trans' which could be - directly used by cv2.warpAffine(): - u = src_pts[:, 0] - v = src_pts[:, 1] - x = dst_pts[:, 0] - y = dst_pts[:, 1] - [x, y].T = cv_trans * [u, v, 1].T - - Parameters: - ---------- - @src_pts: Kx2 np.array - source points, each row is a pair of coordinates (x, y) - @dst_pts: Kx2 np.array - destination points, each row is a pair of transformed - coordinates (x, y) - reflective: True or False - if True: - use reflective similarity transform - else: - use non-reflective similarity transform - - Returns: - ---------- - @cv2_trans: 2x3 np.array - transform matrix from src_pts to dst_pts, could be directly used - for cv2.warpAffine() - """ - trans, trans_inv = get_similarity_transform(src_pts, dst_pts, reflective) - cv2_trans = cvt_tform_mat_for_cv2(trans) - - return cv2_trans - - -if __name__ == '__main__': - """ - u = [0, 6, -2] - v = [0, 3, 5] - x = [-1, 0, 4] - y = [-1, -10, 4] - - # In Matlab, run: - # - # uv = [u'; v']; - # xy = [x'; y']; - # tform_sim=cp2tform(uv,xy,'similarity'); - # - # trans = tform_sim.tdata.T - # ans = - # -0.0764 -1.6190 0 - # 1.6190 -0.0764 0 - # -3.2156 0.0290 1.0000 - # trans_inv = tform_sim.tdata.Tinv - # ans = - # - # -0.0291 0.6163 0 - # -0.6163 -0.0291 0 - # -0.0756 1.9826 1.0000 - # xy_m=tformfwd(tform_sim, u,v) - # - # xy_m = - # - # -3.2156 0.0290 - # 1.1833 -9.9143 - # 5.0323 2.8853 - # uv_m=tforminv(tform_sim, x,y) - # - # uv_m = - # - # 0.5698 1.3953 - # 6.0872 2.2733 - # -2.6570 4.3314 - """ - u = [0, 6, -2] - v = [0, 3, 5] - x = [-1, 0, 4] - y = [-1, -10, 4] - - uv = np.array((u, v)).T - xy = np.array((x, y)).T - - print('\n--->uv:') - print(uv) - print('\n--->xy:') - print(xy) - - trans, trans_inv = get_similarity_transform(uv, xy) - - print('\n--->trans matrix:') - print(trans) - - print('\n--->trans_inv matrix:') - print(trans_inv) - - print('\n---> apply transform to uv') - print('\nxy_m = uv_augmented * trans') - uv_aug = np.hstack((uv, np.ones((uv.shape[0], 1)))) - xy_m = np.dot(uv_aug, trans) - print(xy_m) - - print('\nxy_m = tformfwd(trans, uv)') - xy_m = tformfwd(trans, uv) - print(xy_m) - - print('\n---> apply inverse transform to xy') - print('\nuv_m = xy_augmented * trans_inv') - xy_aug = np.hstack((xy, np.ones((xy.shape[0], 1)))) - uv_m = np.dot(xy_aug, trans_inv) - print(uv_m) - - print('\nuv_m = tformfwd(trans_inv, xy)') - uv_m = tformfwd(trans_inv, xy) - print(uv_m) - - uv_m = tforminv(trans, xy) - print('\nuv_m = tforminv(trans, xy)') - print(uv_m) diff --git a/CodeFormer/CodeFormer/facelib/detection/retinaface/__pycache__/retinaface.cpython-310.pyc b/CodeFormer/CodeFormer/facelib/detection/retinaface/__pycache__/retinaface.cpython-310.pyc deleted file mode 100644 index 3b2f4602dc69218c3566ed999249dcb9d1a0f8d8..0000000000000000000000000000000000000000 Binary files a/CodeFormer/CodeFormer/facelib/detection/retinaface/__pycache__/retinaface.cpython-310.pyc and /dev/null differ diff --git a/CodeFormer/CodeFormer/facelib/detection/retinaface/__pycache__/retinaface_net.cpython-310.pyc b/CodeFormer/CodeFormer/facelib/detection/retinaface/__pycache__/retinaface_net.cpython-310.pyc deleted file mode 100644 index a228523655c8acd8fdf9a28beee9ec303a947346..0000000000000000000000000000000000000000 Binary files a/CodeFormer/CodeFormer/facelib/detection/retinaface/__pycache__/retinaface_net.cpython-310.pyc and /dev/null differ diff --git a/CodeFormer/CodeFormer/facelib/detection/retinaface/__pycache__/retinaface_utils.cpython-310.pyc b/CodeFormer/CodeFormer/facelib/detection/retinaface/__pycache__/retinaface_utils.cpython-310.pyc deleted file mode 100644 index c41ae10a425926ebf3cc746c1f0bf3289c0f4a66..0000000000000000000000000000000000000000 Binary files a/CodeFormer/CodeFormer/facelib/detection/retinaface/__pycache__/retinaface_utils.cpython-310.pyc and /dev/null differ diff --git a/CodeFormer/CodeFormer/facelib/detection/retinaface/retinaface.py b/CodeFormer/CodeFormer/facelib/detection/retinaface/retinaface.py deleted file mode 100644 index 02593556d88a90232bbe55a062875f4af4520621..0000000000000000000000000000000000000000 --- a/CodeFormer/CodeFormer/facelib/detection/retinaface/retinaface.py +++ /dev/null @@ -1,370 +0,0 @@ -import cv2 -import numpy as np -import torch -import torch.nn as nn -import torch.nn.functional as F -from PIL import Image -from torchvision.models._utils import IntermediateLayerGetter as IntermediateLayerGetter - -from facelib.detection.align_trans import get_reference_facial_points, warp_and_crop_face -from facelib.detection.retinaface.retinaface_net import FPN, SSH, MobileNetV1, make_bbox_head, make_class_head, make_landmark_head -from facelib.detection.retinaface.retinaface_utils import (PriorBox, batched_decode, batched_decode_landm, decode, decode_landm, - py_cpu_nms) - -device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') - - -def generate_config(network_name): - - cfg_mnet = { - 'name': 'mobilenet0.25', - 'min_sizes': [[16, 32], [64, 128], [256, 512]], - 'steps': [8, 16, 32], - 'variance': [0.1, 0.2], - 'clip': False, - 'loc_weight': 2.0, - 'gpu_train': True, - 'batch_size': 32, - 'ngpu': 1, - 'epoch': 250, - 'decay1': 190, - 'decay2': 220, - 'image_size': 640, - 'return_layers': { - 'stage1': 1, - 'stage2': 2, - 'stage3': 3 - }, - 'in_channel': 32, - 'out_channel': 64 - } - - cfg_re50 = { - 'name': 'Resnet50', - 'min_sizes': [[16, 32], [64, 128], [256, 512]], - 'steps': [8, 16, 32], - 'variance': [0.1, 0.2], - 'clip': False, - 'loc_weight': 2.0, - 'gpu_train': True, - 'batch_size': 24, - 'ngpu': 4, - 'epoch': 100, - 'decay1': 70, - 'decay2': 90, - 'image_size': 840, - 'return_layers': { - 'layer2': 1, - 'layer3': 2, - 'layer4': 3 - }, - 'in_channel': 256, - 'out_channel': 256 - } - - if network_name == 'mobile0.25': - return cfg_mnet - elif network_name == 'resnet50': - return cfg_re50 - else: - raise NotImplementedError(f'network_name={network_name}') - - -class RetinaFace(nn.Module): - - def __init__(self, network_name='resnet50', half=False, phase='test'): - super(RetinaFace, self).__init__() - self.half_inference = half - cfg = generate_config(network_name) - self.backbone = cfg['name'] - - self.model_name = f'retinaface_{network_name}' - self.cfg = cfg - self.phase = phase - self.target_size, self.max_size = 1600, 2150 - self.resize, self.scale, self.scale1 = 1., None, None - self.mean_tensor = torch.tensor([[[[104.]], [[117.]], [[123.]]]]).to(device) - self.reference = get_reference_facial_points(default_square=True) - # Build network. - backbone = None - if cfg['name'] == 'mobilenet0.25': - backbone = MobileNetV1() - self.body = IntermediateLayerGetter(backbone, cfg['return_layers']) - elif cfg['name'] == 'Resnet50': - import torchvision.models as models - backbone = models.resnet50(pretrained=False) - self.body = IntermediateLayerGetter(backbone, cfg['return_layers']) - - in_channels_stage2 = cfg['in_channel'] - in_channels_list = [ - in_channels_stage2 * 2, - in_channels_stage2 * 4, - in_channels_stage2 * 8, - ] - - out_channels = cfg['out_channel'] - self.fpn = FPN(in_channels_list, out_channels) - self.ssh1 = SSH(out_channels, out_channels) - self.ssh2 = SSH(out_channels, out_channels) - self.ssh3 = SSH(out_channels, out_channels) - - self.ClassHead = make_class_head(fpn_num=3, inchannels=cfg['out_channel']) - self.BboxHead = make_bbox_head(fpn_num=3, inchannels=cfg['out_channel']) - self.LandmarkHead = make_landmark_head(fpn_num=3, inchannels=cfg['out_channel']) - - self.to(device) - self.eval() - if self.half_inference: - self.half() - - def forward(self, inputs): - out = self.body(inputs) - - if self.backbone == 'mobilenet0.25' or self.backbone == 'Resnet50': - out = list(out.values()) - # FPN - fpn = self.fpn(out) - - # SSH - feature1 = self.ssh1(fpn[0]) - feature2 = self.ssh2(fpn[1]) - feature3 = self.ssh3(fpn[2]) - features = [feature1, feature2, feature3] - - bbox_regressions = torch.cat([self.BboxHead[i](feature) for i, feature in enumerate(features)], dim=1) - classifications = torch.cat([self.ClassHead[i](feature) for i, feature in enumerate(features)], dim=1) - tmp = [self.LandmarkHead[i](feature) for i, feature in enumerate(features)] - ldm_regressions = (torch.cat(tmp, dim=1)) - - if self.phase == 'train': - output = (bbox_regressions, classifications, ldm_regressions) - else: - output = (bbox_regressions, F.softmax(classifications, dim=-1), ldm_regressions) - return output - - def __detect_faces(self, inputs): - # get scale - height, width = inputs.shape[2:] - self.scale = torch.tensor([width, height, width, height], dtype=torch.float32).to(device) - tmp = [width, height, width, height, width, height, width, height, width, height] - self.scale1 = torch.tensor(tmp, dtype=torch.float32).to(device) - - # forawrd - inputs = inputs.to(device) - if self.half_inference: - inputs = inputs.half() - loc, conf, landmarks = self(inputs) - - # get priorbox - priorbox = PriorBox(self.cfg, image_size=inputs.shape[2:]) - priors = priorbox.forward().to(device) - - return loc, conf, landmarks, priors - - # single image detection - def transform(self, image, use_origin_size): - # convert to opencv format - if isinstance(image, Image.Image): - image = cv2.cvtColor(np.asarray(image), cv2.COLOR_RGB2BGR) - image = image.astype(np.float32) - - # testing scale - im_size_min = np.min(image.shape[0:2]) - im_size_max = np.max(image.shape[0:2]) - resize = float(self.target_size) / float(im_size_min) - - # prevent bigger axis from being more than max_size - if np.round(resize * im_size_max) > self.max_size: - resize = float(self.max_size) / float(im_size_max) - resize = 1 if use_origin_size else resize - - # resize - if resize != 1: - image = cv2.resize(image, None, None, fx=resize, fy=resize, interpolation=cv2.INTER_LINEAR) - - # convert to torch.tensor format - # image -= (104, 117, 123) - image = image.transpose(2, 0, 1) - image = torch.from_numpy(image).unsqueeze(0) - - return image, resize - - def detect_faces( - self, - image, - conf_threshold=0.8, - nms_threshold=0.4, - use_origin_size=True, - ): - """ - Params: - imgs: BGR image - """ - image, self.resize = self.transform(image, use_origin_size) - image = image.to(device) - if self.half_inference: - image = image.half() - image = image - self.mean_tensor - - loc, conf, landmarks, priors = self.__detect_faces(image) - - boxes = decode(loc.data.squeeze(0), priors.data, self.cfg['variance']) - boxes = boxes * self.scale / self.resize - boxes = boxes.cpu().numpy() - - scores = conf.squeeze(0).data.cpu().numpy()[:, 1] - - landmarks = decode_landm(landmarks.squeeze(0), priors, self.cfg['variance']) - landmarks = landmarks * self.scale1 / self.resize - landmarks = landmarks.cpu().numpy() - - # ignore low scores - inds = np.where(scores > conf_threshold)[0] - boxes, landmarks, scores = boxes[inds], landmarks[inds], scores[inds] - - # sort - order = scores.argsort()[::-1] - boxes, landmarks, scores = boxes[order], landmarks[order], scores[order] - - # do NMS - bounding_boxes = np.hstack((boxes, scores[:, np.newaxis])).astype(np.float32, copy=False) - keep = py_cpu_nms(bounding_boxes, nms_threshold) - bounding_boxes, landmarks = bounding_boxes[keep, :], landmarks[keep] - # self.t['forward_pass'].toc() - # print(self.t['forward_pass'].average_time) - # import sys - # sys.stdout.flush() - return np.concatenate((bounding_boxes, landmarks), axis=1) - - def __align_multi(self, image, boxes, landmarks, limit=None): - - if len(boxes) < 1: - return [], [] - - if limit: - boxes = boxes[:limit] - landmarks = landmarks[:limit] - - faces = [] - for landmark in landmarks: - facial5points = [[landmark[2 * j], landmark[2 * j + 1]] for j in range(5)] - - warped_face = warp_and_crop_face(np.array(image), facial5points, self.reference, crop_size=(112, 112)) - faces.append(warped_face) - - return np.concatenate((boxes, landmarks), axis=1), faces - - def align_multi(self, img, conf_threshold=0.8, limit=None): - - rlt = self.detect_faces(img, conf_threshold=conf_threshold) - boxes, landmarks = rlt[:, 0:5], rlt[:, 5:] - - return self.__align_multi(img, boxes, landmarks, limit) - - # batched detection - def batched_transform(self, frames, use_origin_size): - """ - Arguments: - frames: a list of PIL.Image, or torch.Tensor(shape=[n, h, w, c], - type=np.float32, BGR format). - use_origin_size: whether to use origin size. - """ - from_PIL = True if isinstance(frames[0], Image.Image) else False - - # convert to opencv format - if from_PIL: - frames = [cv2.cvtColor(np.asarray(frame), cv2.COLOR_RGB2BGR) for frame in frames] - frames = np.asarray(frames, dtype=np.float32) - - # testing scale - im_size_min = np.min(frames[0].shape[0:2]) - im_size_max = np.max(frames[0].shape[0:2]) - resize = float(self.target_size) / float(im_size_min) - - # prevent bigger axis from being more than max_size - if np.round(resize * im_size_max) > self.max_size: - resize = float(self.max_size) / float(im_size_max) - resize = 1 if use_origin_size else resize - - # resize - if resize != 1: - if not from_PIL: - frames = F.interpolate(frames, scale_factor=resize) - else: - frames = [ - cv2.resize(frame, None, None, fx=resize, fy=resize, interpolation=cv2.INTER_LINEAR) - for frame in frames - ] - - # convert to torch.tensor format - if not from_PIL: - frames = frames.transpose(1, 2).transpose(1, 3).contiguous() - else: - frames = frames.transpose((0, 3, 1, 2)) - frames = torch.from_numpy(frames) - - return frames, resize - - def batched_detect_faces(self, frames, conf_threshold=0.8, nms_threshold=0.4, use_origin_size=True): - """ - Arguments: - frames: a list of PIL.Image, or np.array(shape=[n, h, w, c], - type=np.uint8, BGR format). - conf_threshold: confidence threshold. - nms_threshold: nms threshold. - use_origin_size: whether to use origin size. - Returns: - final_bounding_boxes: list of np.array ([n_boxes, 5], - type=np.float32). - final_landmarks: list of np.array ([n_boxes, 10], type=np.float32). - """ - # self.t['forward_pass'].tic() - frames, self.resize = self.batched_transform(frames, use_origin_size) - frames = frames.to(device) - frames = frames - self.mean_tensor - - b_loc, b_conf, b_landmarks, priors = self.__detect_faces(frames) - - final_bounding_boxes, final_landmarks = [], [] - - # decode - priors = priors.unsqueeze(0) - b_loc = batched_decode(b_loc, priors, self.cfg['variance']) * self.scale / self.resize - b_landmarks = batched_decode_landm(b_landmarks, priors, self.cfg['variance']) * self.scale1 / self.resize - b_conf = b_conf[:, :, 1] - - # index for selection - b_indice = b_conf > conf_threshold - - # concat - b_loc_and_conf = torch.cat((b_loc, b_conf.unsqueeze(-1)), dim=2).float() - - for pred, landm, inds in zip(b_loc_and_conf, b_landmarks, b_indice): - - # ignore low scores - pred, landm = pred[inds, :], landm[inds, :] - if pred.shape[0] == 0: - final_bounding_boxes.append(np.array([], dtype=np.float32)) - final_landmarks.append(np.array([], dtype=np.float32)) - continue - - # sort - # order = score.argsort(descending=True) - # box, landm, score = box[order], landm[order], score[order] - - # to CPU - bounding_boxes, landm = pred.cpu().numpy(), landm.cpu().numpy() - - # NMS - keep = py_cpu_nms(bounding_boxes, nms_threshold) - bounding_boxes, landmarks = bounding_boxes[keep, :], landm[keep] - - # append - final_bounding_boxes.append(bounding_boxes) - final_landmarks.append(landmarks) - # self.t['forward_pass'].toc(average=True) - # self.batch_time += self.t['forward_pass'].diff - # self.total_frame += len(frames) - # print(self.batch_time / self.total_frame) - - return final_bounding_boxes, final_landmarks diff --git a/CodeFormer/CodeFormer/facelib/detection/retinaface/retinaface_net.py b/CodeFormer/CodeFormer/facelib/detection/retinaface/retinaface_net.py deleted file mode 100644 index ab6aa82d3e9055a838f1f9076b12f05fdfc154d0..0000000000000000000000000000000000000000 --- a/CodeFormer/CodeFormer/facelib/detection/retinaface/retinaface_net.py +++ /dev/null @@ -1,196 +0,0 @@ -import torch -import torch.nn as nn -import torch.nn.functional as F - - -def conv_bn(inp, oup, stride=1, leaky=0): - return nn.Sequential( - nn.Conv2d(inp, oup, 3, stride, 1, bias=False), nn.BatchNorm2d(oup), - nn.LeakyReLU(negative_slope=leaky, inplace=True)) - - -def conv_bn_no_relu(inp, oup, stride): - return nn.Sequential( - nn.Conv2d(inp, oup, 3, stride, 1, bias=False), - nn.BatchNorm2d(oup), - ) - - -def conv_bn1X1(inp, oup, stride, leaky=0): - return nn.Sequential( - nn.Conv2d(inp, oup, 1, stride, padding=0, bias=False), nn.BatchNorm2d(oup), - nn.LeakyReLU(negative_slope=leaky, inplace=True)) - - -def conv_dw(inp, oup, stride, leaky=0.1): - return nn.Sequential( - nn.Conv2d(inp, inp, 3, stride, 1, groups=inp, bias=False), - nn.BatchNorm2d(inp), - nn.LeakyReLU(negative_slope=leaky, inplace=True), - nn.Conv2d(inp, oup, 1, 1, 0, bias=False), - nn.BatchNorm2d(oup), - nn.LeakyReLU(negative_slope=leaky, inplace=True), - ) - - -class SSH(nn.Module): - - def __init__(self, in_channel, out_channel): - super(SSH, self).__init__() - assert out_channel % 4 == 0 - leaky = 0 - if (out_channel <= 64): - leaky = 0.1 - self.conv3X3 = conv_bn_no_relu(in_channel, out_channel // 2, stride=1) - - self.conv5X5_1 = conv_bn(in_channel, out_channel // 4, stride=1, leaky=leaky) - self.conv5X5_2 = conv_bn_no_relu(out_channel // 4, out_channel // 4, stride=1) - - self.conv7X7_2 = conv_bn(out_channel // 4, out_channel // 4, stride=1, leaky=leaky) - self.conv7x7_3 = conv_bn_no_relu(out_channel // 4, out_channel // 4, stride=1) - - def forward(self, input): - conv3X3 = self.conv3X3(input) - - conv5X5_1 = self.conv5X5_1(input) - conv5X5 = self.conv5X5_2(conv5X5_1) - - conv7X7_2 = self.conv7X7_2(conv5X5_1) - conv7X7 = self.conv7x7_3(conv7X7_2) - - out = torch.cat([conv3X3, conv5X5, conv7X7], dim=1) - out = F.relu(out) - return out - - -class FPN(nn.Module): - - def __init__(self, in_channels_list, out_channels): - super(FPN, self).__init__() - leaky = 0 - if (out_channels <= 64): - leaky = 0.1 - self.output1 = conv_bn1X1(in_channels_list[0], out_channels, stride=1, leaky=leaky) - self.output2 = conv_bn1X1(in_channels_list[1], out_channels, stride=1, leaky=leaky) - self.output3 = conv_bn1X1(in_channels_list[2], out_channels, stride=1, leaky=leaky) - - self.merge1 = conv_bn(out_channels, out_channels, leaky=leaky) - self.merge2 = conv_bn(out_channels, out_channels, leaky=leaky) - - def forward(self, input): - # names = list(input.keys()) - # input = list(input.values()) - - output1 = self.output1(input[0]) - output2 = self.output2(input[1]) - output3 = self.output3(input[2]) - - up3 = F.interpolate(output3, size=[output2.size(2), output2.size(3)], mode='nearest') - output2 = output2 + up3 - output2 = self.merge2(output2) - - up2 = F.interpolate(output2, size=[output1.size(2), output1.size(3)], mode='nearest') - output1 = output1 + up2 - output1 = self.merge1(output1) - - out = [output1, output2, output3] - return out - - -class MobileNetV1(nn.Module): - - def __init__(self): - super(MobileNetV1, self).__init__() - self.stage1 = nn.Sequential( - conv_bn(3, 8, 2, leaky=0.1), # 3 - conv_dw(8, 16, 1), # 7 - conv_dw(16, 32, 2), # 11 - conv_dw(32, 32, 1), # 19 - conv_dw(32, 64, 2), # 27 - conv_dw(64, 64, 1), # 43 - ) - self.stage2 = nn.Sequential( - conv_dw(64, 128, 2), # 43 + 16 = 59 - conv_dw(128, 128, 1), # 59 + 32 = 91 - conv_dw(128, 128, 1), # 91 + 32 = 123 - conv_dw(128, 128, 1), # 123 + 32 = 155 - conv_dw(128, 128, 1), # 155 + 32 = 187 - conv_dw(128, 128, 1), # 187 + 32 = 219 - ) - self.stage3 = nn.Sequential( - conv_dw(128, 256, 2), # 219 +3 2 = 241 - conv_dw(256, 256, 1), # 241 + 64 = 301 - ) - self.avg = nn.AdaptiveAvgPool2d((1, 1)) - self.fc = nn.Linear(256, 1000) - - def forward(self, x): - x = self.stage1(x) - x = self.stage2(x) - x = self.stage3(x) - x = self.avg(x) - # x = self.model(x) - x = x.view(-1, 256) - x = self.fc(x) - return x - - -class ClassHead(nn.Module): - - def __init__(self, inchannels=512, num_anchors=3): - super(ClassHead, self).__init__() - self.num_anchors = num_anchors - self.conv1x1 = nn.Conv2d(inchannels, self.num_anchors * 2, kernel_size=(1, 1), stride=1, padding=0) - - def forward(self, x): - out = self.conv1x1(x) - out = out.permute(0, 2, 3, 1).contiguous() - - return out.view(out.shape[0], -1, 2) - - -class BboxHead(nn.Module): - - def __init__(self, inchannels=512, num_anchors=3): - super(BboxHead, self).__init__() - self.conv1x1 = nn.Conv2d(inchannels, num_anchors * 4, kernel_size=(1, 1), stride=1, padding=0) - - def forward(self, x): - out = self.conv1x1(x) - out = out.permute(0, 2, 3, 1).contiguous() - - return out.view(out.shape[0], -1, 4) - - -class LandmarkHead(nn.Module): - - def __init__(self, inchannels=512, num_anchors=3): - super(LandmarkHead, self).__init__() - self.conv1x1 = nn.Conv2d(inchannels, num_anchors * 10, kernel_size=(1, 1), stride=1, padding=0) - - def forward(self, x): - out = self.conv1x1(x) - out = out.permute(0, 2, 3, 1).contiguous() - - return out.view(out.shape[0], -1, 10) - - -def make_class_head(fpn_num=3, inchannels=64, anchor_num=2): - classhead = nn.ModuleList() - for i in range(fpn_num): - classhead.append(ClassHead(inchannels, anchor_num)) - return classhead - - -def make_bbox_head(fpn_num=3, inchannels=64, anchor_num=2): - bboxhead = nn.ModuleList() - for i in range(fpn_num): - bboxhead.append(BboxHead(inchannels, anchor_num)) - return bboxhead - - -def make_landmark_head(fpn_num=3, inchannels=64, anchor_num=2): - landmarkhead = nn.ModuleList() - for i in range(fpn_num): - landmarkhead.append(LandmarkHead(inchannels, anchor_num)) - return landmarkhead diff --git a/CodeFormer/CodeFormer/facelib/detection/retinaface/retinaface_utils.py b/CodeFormer/CodeFormer/facelib/detection/retinaface/retinaface_utils.py deleted file mode 100644 index 8c357757741c6d9bd7ce4d8ce740fefd51850fbf..0000000000000000000000000000000000000000 --- a/CodeFormer/CodeFormer/facelib/detection/retinaface/retinaface_utils.py +++ /dev/null @@ -1,421 +0,0 @@ -import numpy as np -import torch -import torchvision -from itertools import product as product -from math import ceil - - -class PriorBox(object): - - def __init__(self, cfg, image_size=None, phase='train'): - super(PriorBox, self).__init__() - self.min_sizes = cfg['min_sizes'] - self.steps = cfg['steps'] - self.clip = cfg['clip'] - self.image_size = image_size - self.feature_maps = [[ceil(self.image_size[0] / step), ceil(self.image_size[1] / step)] for step in self.steps] - self.name = 's' - - def forward(self): - anchors = [] - for k, f in enumerate(self.feature_maps): - min_sizes = self.min_sizes[k] - for i, j in product(range(f[0]), range(f[1])): - for min_size in min_sizes: - s_kx = min_size / self.image_size[1] - s_ky = min_size / self.image_size[0] - dense_cx = [x * self.steps[k] / self.image_size[1] for x in [j + 0.5]] - dense_cy = [y * self.steps[k] / self.image_size[0] for y in [i + 0.5]] - for cy, cx in product(dense_cy, dense_cx): - anchors += [cx, cy, s_kx, s_ky] - - # back to torch land - output = torch.Tensor(anchors).view(-1, 4) - if self.clip: - output.clamp_(max=1, min=0) - return output - - -def py_cpu_nms(dets, thresh): - """Pure Python NMS baseline.""" - keep = torchvision.ops.nms( - boxes=torch.Tensor(dets[:, :4]), - scores=torch.Tensor(dets[:, 4]), - iou_threshold=thresh, - ) - - return list(keep) - - -def point_form(boxes): - """ Convert prior_boxes to (xmin, ymin, xmax, ymax) - representation for comparison to point form ground truth data. - Args: - boxes: (tensor) center-size default boxes from priorbox layers. - Return: - boxes: (tensor) Converted xmin, ymin, xmax, ymax form of boxes. - """ - return torch.cat( - ( - boxes[:, :2] - boxes[:, 2:] / 2, # xmin, ymin - boxes[:, :2] + boxes[:, 2:] / 2), - 1) # xmax, ymax - - -def center_size(boxes): - """ Convert prior_boxes to (cx, cy, w, h) - representation for comparison to center-size form ground truth data. - Args: - boxes: (tensor) point_form boxes - Return: - boxes: (tensor) Converted xmin, ymin, xmax, ymax form of boxes. - """ - return torch.cat( - (boxes[:, 2:] + boxes[:, :2]) / 2, # cx, cy - boxes[:, 2:] - boxes[:, :2], - 1) # w, h - - -def intersect(box_a, box_b): - """ We resize both tensors to [A,B,2] without new malloc: - [A,2] -> [A,1,2] -> [A,B,2] - [B,2] -> [1,B,2] -> [A,B,2] - Then we compute the area of intersect between box_a and box_b. - Args: - box_a: (tensor) bounding boxes, Shape: [A,4]. - box_b: (tensor) bounding boxes, Shape: [B,4]. - Return: - (tensor) intersection area, Shape: [A,B]. - """ - A = box_a.size(0) - B = box_b.size(0) - max_xy = torch.min(box_a[:, 2:].unsqueeze(1).expand(A, B, 2), box_b[:, 2:].unsqueeze(0).expand(A, B, 2)) - min_xy = torch.max(box_a[:, :2].unsqueeze(1).expand(A, B, 2), box_b[:, :2].unsqueeze(0).expand(A, B, 2)) - inter = torch.clamp((max_xy - min_xy), min=0) - return inter[:, :, 0] * inter[:, :, 1] - - -def jaccard(box_a, box_b): - """Compute the jaccard overlap of two sets of boxes. The jaccard overlap - is simply the intersection over union of two boxes. Here we operate on - ground truth boxes and default boxes. - E.g.: - A ∩ B / A ∪ B = A ∩ B / (area(A) + area(B) - A ∩ B) - Args: - box_a: (tensor) Ground truth bounding boxes, Shape: [num_objects,4] - box_b: (tensor) Prior boxes from priorbox layers, Shape: [num_priors,4] - Return: - jaccard overlap: (tensor) Shape: [box_a.size(0), box_b.size(0)] - """ - inter = intersect(box_a, box_b) - area_a = ((box_a[:, 2] - box_a[:, 0]) * (box_a[:, 3] - box_a[:, 1])).unsqueeze(1).expand_as(inter) # [A,B] - area_b = ((box_b[:, 2] - box_b[:, 0]) * (box_b[:, 3] - box_b[:, 1])).unsqueeze(0).expand_as(inter) # [A,B] - union = area_a + area_b - inter - return inter / union # [A,B] - - -def matrix_iou(a, b): - """ - return iou of a and b, numpy version for data augenmentation - """ - lt = np.maximum(a[:, np.newaxis, :2], b[:, :2]) - rb = np.minimum(a[:, np.newaxis, 2:], b[:, 2:]) - - area_i = np.prod(rb - lt, axis=2) * (lt < rb).all(axis=2) - area_a = np.prod(a[:, 2:] - a[:, :2], axis=1) - area_b = np.prod(b[:, 2:] - b[:, :2], axis=1) - return area_i / (area_a[:, np.newaxis] + area_b - area_i) - - -def matrix_iof(a, b): - """ - return iof of a and b, numpy version for data augenmentation - """ - lt = np.maximum(a[:, np.newaxis, :2], b[:, :2]) - rb = np.minimum(a[:, np.newaxis, 2:], b[:, 2:]) - - area_i = np.prod(rb - lt, axis=2) * (lt < rb).all(axis=2) - area_a = np.prod(a[:, 2:] - a[:, :2], axis=1) - return area_i / np.maximum(area_a[:, np.newaxis], 1) - - -def match(threshold, truths, priors, variances, labels, landms, loc_t, conf_t, landm_t, idx): - """Match each prior box with the ground truth box of the highest jaccard - overlap, encode the bounding boxes, then return the matched indices - corresponding to both confidence and location preds. - Args: - threshold: (float) The overlap threshold used when matching boxes. - truths: (tensor) Ground truth boxes, Shape: [num_obj, 4]. - priors: (tensor) Prior boxes from priorbox layers, Shape: [n_priors,4]. - variances: (tensor) Variances corresponding to each prior coord, - Shape: [num_priors, 4]. - labels: (tensor) All the class labels for the image, Shape: [num_obj]. - landms: (tensor) Ground truth landms, Shape [num_obj, 10]. - loc_t: (tensor) Tensor to be filled w/ encoded location targets. - conf_t: (tensor) Tensor to be filled w/ matched indices for conf preds. - landm_t: (tensor) Tensor to be filled w/ encoded landm targets. - idx: (int) current batch index - Return: - The matched indices corresponding to 1)location 2)confidence - 3)landm preds. - """ - # jaccard index - overlaps = jaccard(truths, point_form(priors)) - # (Bipartite Matching) - # [1,num_objects] best prior for each ground truth - best_prior_overlap, best_prior_idx = overlaps.max(1, keepdim=True) - - # ignore hard gt - valid_gt_idx = best_prior_overlap[:, 0] >= 0.2 - best_prior_idx_filter = best_prior_idx[valid_gt_idx, :] - if best_prior_idx_filter.shape[0] <= 0: - loc_t[idx] = 0 - conf_t[idx] = 0 - return - - # [1,num_priors] best ground truth for each prior - best_truth_overlap, best_truth_idx = overlaps.max(0, keepdim=True) - best_truth_idx.squeeze_(0) - best_truth_overlap.squeeze_(0) - best_prior_idx.squeeze_(1) - best_prior_idx_filter.squeeze_(1) - best_prior_overlap.squeeze_(1) - best_truth_overlap.index_fill_(0, best_prior_idx_filter, 2) # ensure best prior - # TODO refactor: index best_prior_idx with long tensor - # ensure every gt matches with its prior of max overlap - for j in range(best_prior_idx.size(0)): # 判别此anchor是预测哪一个boxes - best_truth_idx[best_prior_idx[j]] = j - matches = truths[best_truth_idx] # Shape: [num_priors,4] 此处为每一个anchor对应的bbox取出来 - conf = labels[best_truth_idx] # Shape: [num_priors] 此处为每一个anchor对应的label取出来 - conf[best_truth_overlap < threshold] = 0 # label as background overlap<0.35的全部作为负样本 - loc = encode(matches, priors, variances) - - matches_landm = landms[best_truth_idx] - landm = encode_landm(matches_landm, priors, variances) - loc_t[idx] = loc # [num_priors,4] encoded offsets to learn - conf_t[idx] = conf # [num_priors] top class label for each prior - landm_t[idx] = landm - - -def encode(matched, priors, variances): - """Encode the variances from the priorbox layers into the ground truth boxes - we have matched (based on jaccard overlap) with the prior boxes. - Args: - matched: (tensor) Coords of ground truth for each prior in point-form - Shape: [num_priors, 4]. - priors: (tensor) Prior boxes in center-offset form - Shape: [num_priors,4]. - variances: (list[float]) Variances of priorboxes - Return: - encoded boxes (tensor), Shape: [num_priors, 4] - """ - - # dist b/t match center and prior's center - g_cxcy = (matched[:, :2] + matched[:, 2:]) / 2 - priors[:, :2] - # encode variance - g_cxcy /= (variances[0] * priors[:, 2:]) - # match wh / prior wh - g_wh = (matched[:, 2:] - matched[:, :2]) / priors[:, 2:] - g_wh = torch.log(g_wh) / variances[1] - # return target for smooth_l1_loss - return torch.cat([g_cxcy, g_wh], 1) # [num_priors,4] - - -def encode_landm(matched, priors, variances): - """Encode the variances from the priorbox layers into the ground truth boxes - we have matched (based on jaccard overlap) with the prior boxes. - Args: - matched: (tensor) Coords of ground truth for each prior in point-form - Shape: [num_priors, 10]. - priors: (tensor) Prior boxes in center-offset form - Shape: [num_priors,4]. - variances: (list[float]) Variances of priorboxes - Return: - encoded landm (tensor), Shape: [num_priors, 10] - """ - - # dist b/t match center and prior's center - matched = torch.reshape(matched, (matched.size(0), 5, 2)) - priors_cx = priors[:, 0].unsqueeze(1).expand(matched.size(0), 5).unsqueeze(2) - priors_cy = priors[:, 1].unsqueeze(1).expand(matched.size(0), 5).unsqueeze(2) - priors_w = priors[:, 2].unsqueeze(1).expand(matched.size(0), 5).unsqueeze(2) - priors_h = priors[:, 3].unsqueeze(1).expand(matched.size(0), 5).unsqueeze(2) - priors = torch.cat([priors_cx, priors_cy, priors_w, priors_h], dim=2) - g_cxcy = matched[:, :, :2] - priors[:, :, :2] - # encode variance - g_cxcy /= (variances[0] * priors[:, :, 2:]) - # g_cxcy /= priors[:, :, 2:] - g_cxcy = g_cxcy.reshape(g_cxcy.size(0), -1) - # return target for smooth_l1_loss - return g_cxcy - - -# Adapted from https://github.com/Hakuyume/chainer-ssd -def decode(loc, priors, variances): - """Decode locations from predictions using priors to undo - the encoding we did for offset regression at train time. - Args: - loc (tensor): location predictions for loc layers, - Shape: [num_priors,4] - priors (tensor): Prior boxes in center-offset form. - Shape: [num_priors,4]. - variances: (list[float]) Variances of priorboxes - Return: - decoded bounding box predictions - """ - - boxes = torch.cat((priors[:, :2] + loc[:, :2] * variances[0] * priors[:, 2:], - priors[:, 2:] * torch.exp(loc[:, 2:] * variances[1])), 1) - boxes[:, :2] -= boxes[:, 2:] / 2 - boxes[:, 2:] += boxes[:, :2] - return boxes - - -def decode_landm(pre, priors, variances): - """Decode landm from predictions using priors to undo - the encoding we did for offset regression at train time. - Args: - pre (tensor): landm predictions for loc layers, - Shape: [num_priors,10] - priors (tensor): Prior boxes in center-offset form. - Shape: [num_priors,4]. - variances: (list[float]) Variances of priorboxes - Return: - decoded landm predictions - """ - tmp = ( - priors[:, :2] + pre[:, :2] * variances[0] * priors[:, 2:], - priors[:, :2] + pre[:, 2:4] * variances[0] * priors[:, 2:], - priors[:, :2] + pre[:, 4:6] * variances[0] * priors[:, 2:], - priors[:, :2] + pre[:, 6:8] * variances[0] * priors[:, 2:], - priors[:, :2] + pre[:, 8:10] * variances[0] * priors[:, 2:], - ) - landms = torch.cat(tmp, dim=1) - return landms - - -def batched_decode(b_loc, priors, variances): - """Decode locations from predictions using priors to undo - the encoding we did for offset regression at train time. - Args: - b_loc (tensor): location predictions for loc layers, - Shape: [num_batches,num_priors,4] - priors (tensor): Prior boxes in center-offset form. - Shape: [1,num_priors,4]. - variances: (list[float]) Variances of priorboxes - Return: - decoded bounding box predictions - """ - boxes = ( - priors[:, :, :2] + b_loc[:, :, :2] * variances[0] * priors[:, :, 2:], - priors[:, :, 2:] * torch.exp(b_loc[:, :, 2:] * variances[1]), - ) - boxes = torch.cat(boxes, dim=2) - - boxes[:, :, :2] -= boxes[:, :, 2:] / 2 - boxes[:, :, 2:] += boxes[:, :, :2] - return boxes - - -def batched_decode_landm(pre, priors, variances): - """Decode landm from predictions using priors to undo - the encoding we did for offset regression at train time. - Args: - pre (tensor): landm predictions for loc layers, - Shape: [num_batches,num_priors,10] - priors (tensor): Prior boxes in center-offset form. - Shape: [1,num_priors,4]. - variances: (list[float]) Variances of priorboxes - Return: - decoded landm predictions - """ - landms = ( - priors[:, :, :2] + pre[:, :, :2] * variances[0] * priors[:, :, 2:], - priors[:, :, :2] + pre[:, :, 2:4] * variances[0] * priors[:, :, 2:], - priors[:, :, :2] + pre[:, :, 4:6] * variances[0] * priors[:, :, 2:], - priors[:, :, :2] + pre[:, :, 6:8] * variances[0] * priors[:, :, 2:], - priors[:, :, :2] + pre[:, :, 8:10] * variances[0] * priors[:, :, 2:], - ) - landms = torch.cat(landms, dim=2) - return landms - - -def log_sum_exp(x): - """Utility function for computing log_sum_exp while determining - This will be used to determine unaveraged confidence loss across - all examples in a batch. - Args: - x (Variable(tensor)): conf_preds from conf layers - """ - x_max = x.data.max() - return torch.log(torch.sum(torch.exp(x - x_max), 1, keepdim=True)) + x_max - - -# Original author: Francisco Massa: -# https://github.com/fmassa/object-detection.torch -# Ported to PyTorch by Max deGroot (02/01/2017) -def nms(boxes, scores, overlap=0.5, top_k=200): - """Apply non-maximum suppression at test time to avoid detecting too many - overlapping bounding boxes for a given object. - Args: - boxes: (tensor) The location preds for the img, Shape: [num_priors,4]. - scores: (tensor) The class predscores for the img, Shape:[num_priors]. - overlap: (float) The overlap thresh for suppressing unnecessary boxes. - top_k: (int) The Maximum number of box preds to consider. - Return: - The indices of the kept boxes with respect to num_priors. - """ - - keep = torch.Tensor(scores.size(0)).fill_(0).long() - if boxes.numel() == 0: - return keep - x1 = boxes[:, 0] - y1 = boxes[:, 1] - x2 = boxes[:, 2] - y2 = boxes[:, 3] - area = torch.mul(x2 - x1, y2 - y1) - v, idx = scores.sort(0) # sort in ascending order - # I = I[v >= 0.01] - idx = idx[-top_k:] # indices of the top-k largest vals - xx1 = boxes.new() - yy1 = boxes.new() - xx2 = boxes.new() - yy2 = boxes.new() - w = boxes.new() - h = boxes.new() - - # keep = torch.Tensor() - count = 0 - while idx.numel() > 0: - i = idx[-1] # index of current largest val - # keep.append(i) - keep[count] = i - count += 1 - if idx.size(0) == 1: - break - idx = idx[:-1] # remove kept element from view - # load bboxes of next highest vals - torch.index_select(x1, 0, idx, out=xx1) - torch.index_select(y1, 0, idx, out=yy1) - torch.index_select(x2, 0, idx, out=xx2) - torch.index_select(y2, 0, idx, out=yy2) - # store element-wise max with next highest score - xx1 = torch.clamp(xx1, min=x1[i]) - yy1 = torch.clamp(yy1, min=y1[i]) - xx2 = torch.clamp(xx2, max=x2[i]) - yy2 = torch.clamp(yy2, max=y2[i]) - w.resize_as_(xx2) - h.resize_as_(yy2) - w = xx2 - xx1 - h = yy2 - yy1 - # check sizes of xx1 and xx2.. after each iteration - w = torch.clamp(w, min=0.0) - h = torch.clamp(h, min=0.0) - inter = w * h - # IoU = i / (area(a) + area(b) - i) - rem_areas = torch.index_select(area, 0, idx) # load remaining areas) - union = (rem_areas - inter) + area[i] - IoU = inter / union # store result in iou - # keep only elements with an IoU <= overlap - idx = idx[IoU.le(overlap)] - return keep, count diff --git a/CodeFormer/CodeFormer/facelib/detection/yolov5face/__init__.py b/CodeFormer/CodeFormer/facelib/detection/yolov5face/__init__.py deleted file mode 100644 index e69de29bb2d1d6434b8b29ae775ad8c2e48c5391..0000000000000000000000000000000000000000 diff --git a/CodeFormer/CodeFormer/facelib/detection/yolov5face/__pycache__/__init__.cpython-310.pyc b/CodeFormer/CodeFormer/facelib/detection/yolov5face/__pycache__/__init__.cpython-310.pyc deleted file mode 100644 index 38ad3c1ebf7de60f2b64694a3eae13b14e7ce8f5..0000000000000000000000000000000000000000 Binary files a/CodeFormer/CodeFormer/facelib/detection/yolov5face/__pycache__/__init__.cpython-310.pyc and /dev/null differ diff --git a/CodeFormer/CodeFormer/facelib/detection/yolov5face/__pycache__/face_detector.cpython-310.pyc b/CodeFormer/CodeFormer/facelib/detection/yolov5face/__pycache__/face_detector.cpython-310.pyc deleted file mode 100644 index cddb88c53468bb0b0fa73e2f527a52b67792fa82..0000000000000000000000000000000000000000 Binary files a/CodeFormer/CodeFormer/facelib/detection/yolov5face/__pycache__/face_detector.cpython-310.pyc and /dev/null differ diff --git a/CodeFormer/CodeFormer/facelib/detection/yolov5face/face_detector.py b/CodeFormer/CodeFormer/facelib/detection/yolov5face/face_detector.py deleted file mode 100644 index 0103411e27860898fee470895a7cf59d8be2e11a..0000000000000000000000000000000000000000 --- a/CodeFormer/CodeFormer/facelib/detection/yolov5face/face_detector.py +++ /dev/null @@ -1,142 +0,0 @@ -import copy -import os -from pathlib import Path - -import cv2 -import numpy as np -import torch -from torch import nn - -from facelib.detection.yolov5face.models.common import Conv -from facelib.detection.yolov5face.models.yolo import Model -from facelib.detection.yolov5face.utils.datasets import letterbox -from facelib.detection.yolov5face.utils.general import ( - check_img_size, - non_max_suppression_face, - scale_coords, - scale_coords_landmarks, -) - -IS_HIGH_VERSION = tuple(map(int, torch.__version__.split('+')[0].split('.')[:3])) >= (1, 9, 0) - - -def isListempty(inList): - if isinstance(inList, list): # Is a list - return all(map(isListempty, inList)) - return False # Not a list - -class YoloDetector: - def __init__( - self, - config_name, - min_face=10, - target_size=None, - device='cuda', - ): - """ - config_name: name of .yaml config with network configuration from models/ folder. - min_face : minimal face size in pixels. - target_size : target size of smaller image axis (choose lower for faster work). e.g. 480, 720, 1080. - None for original resolution. - """ - self._class_path = Path(__file__).parent.absolute() - self.target_size = target_size - self.min_face = min_face - self.detector = Model(cfg=config_name) - self.device = device - - - def _preprocess(self, imgs): - """ - Preprocessing image before passing through the network. Resize and conversion to torch tensor. - """ - pp_imgs = [] - for img in imgs: - h0, w0 = img.shape[:2] # orig hw - if self.target_size: - r = self.target_size / min(h0, w0) # resize image to img_size - if r < 1: - img = cv2.resize(img, (int(w0 * r), int(h0 * r)), interpolation=cv2.INTER_LINEAR) - - imgsz = check_img_size(max(img.shape[:2]), s=self.detector.stride.max()) # check img_size - img = letterbox(img, new_shape=imgsz)[0] - pp_imgs.append(img) - pp_imgs = np.array(pp_imgs) - pp_imgs = pp_imgs.transpose(0, 3, 1, 2) - pp_imgs = torch.from_numpy(pp_imgs).to(self.device) - pp_imgs = pp_imgs.float() # uint8 to fp16/32 - return pp_imgs / 255.0 # 0 - 255 to 0.0 - 1.0 - - def _postprocess(self, imgs, origimgs, pred, conf_thres, iou_thres): - """ - Postprocessing of raw pytorch model output. - Returns: - bboxes: list of arrays with 4 coordinates of bounding boxes with format x1,y1,x2,y2. - points: list of arrays with coordinates of 5 facial keypoints (eyes, nose, lips corners). - """ - bboxes = [[] for _ in range(len(origimgs))] - landmarks = [[] for _ in range(len(origimgs))] - - pred = non_max_suppression_face(pred, conf_thres, iou_thres) - - for image_id, origimg in enumerate(origimgs): - img_shape = origimg.shape - image_height, image_width = img_shape[:2] - gn = torch.tensor(img_shape)[[1, 0, 1, 0]] # normalization gain whwh - gn_lks = torch.tensor(img_shape)[[1, 0, 1, 0, 1, 0, 1, 0, 1, 0]] # normalization gain landmarks - det = pred[image_id].cpu() - scale_coords(imgs[image_id].shape[1:], det[:, :4], img_shape).round() - scale_coords_landmarks(imgs[image_id].shape[1:], det[:, 5:15], img_shape).round() - - for j in range(det.size()[0]): - box = (det[j, :4].view(1, 4) / gn).view(-1).tolist() - box = list( - map(int, [box[0] * image_width, box[1] * image_height, box[2] * image_width, box[3] * image_height]) - ) - if box[3] - box[1] < self.min_face: - continue - lm = (det[j, 5:15].view(1, 10) / gn_lks).view(-1).tolist() - lm = list(map(int, [i * image_width if j % 2 == 0 else i * image_height for j, i in enumerate(lm)])) - lm = [lm[i : i + 2] for i in range(0, len(lm), 2)] - bboxes[image_id].append(box) - landmarks[image_id].append(lm) - return bboxes, landmarks - - def detect_faces(self, imgs, conf_thres=0.7, iou_thres=0.5): - """ - Get bbox coordinates and keypoints of faces on original image. - Params: - imgs: image or list of images to detect faces on with BGR order (convert to RGB order for inference) - conf_thres: confidence threshold for each prediction - iou_thres: threshold for NMS (filter of intersecting bboxes) - Returns: - bboxes: list of arrays with 4 coordinates of bounding boxes with format x1,y1,x2,y2. - points: list of arrays with coordinates of 5 facial keypoints (eyes, nose, lips corners). - """ - # Pass input images through face detector - images = imgs if isinstance(imgs, list) else [imgs] - images = [cv2.cvtColor(img, cv2.COLOR_BGR2RGB) for img in images] - origimgs = copy.deepcopy(images) - - images = self._preprocess(images) - - if IS_HIGH_VERSION: - with torch.inference_mode(): # for pytorch>=1.9 - pred = self.detector(images)[0] - else: - with torch.no_grad(): # for pytorch<1.9 - pred = self.detector(images)[0] - - bboxes, points = self._postprocess(images, origimgs, pred, conf_thres, iou_thres) - - # return bboxes, points - if not isListempty(points): - bboxes = np.array(bboxes).reshape(-1,4) - points = np.array(points).reshape(-1,10) - padding = bboxes[:,0].reshape(-1,1) - return np.concatenate((bboxes, padding, points), axis=1) - else: - return None - - def __call__(self, *args): - return self.predict(*args) diff --git a/CodeFormer/CodeFormer/facelib/detection/yolov5face/models/__init__.py b/CodeFormer/CodeFormer/facelib/detection/yolov5face/models/__init__.py deleted file mode 100644 index e69de29bb2d1d6434b8b29ae775ad8c2e48c5391..0000000000000000000000000000000000000000 diff --git a/CodeFormer/CodeFormer/facelib/detection/yolov5face/models/__pycache__/__init__.cpython-310.pyc b/CodeFormer/CodeFormer/facelib/detection/yolov5face/models/__pycache__/__init__.cpython-310.pyc deleted file mode 100644 index 6c4861270547f15cc2af39845ece0e12eeb3990a..0000000000000000000000000000000000000000 Binary files a/CodeFormer/CodeFormer/facelib/detection/yolov5face/models/__pycache__/__init__.cpython-310.pyc and /dev/null differ diff --git a/CodeFormer/CodeFormer/facelib/detection/yolov5face/models/__pycache__/common.cpython-310.pyc b/CodeFormer/CodeFormer/facelib/detection/yolov5face/models/__pycache__/common.cpython-310.pyc deleted file mode 100644 index f1bd1d5a10dd43ae263c6d0305c633326aa18469..0000000000000000000000000000000000000000 Binary files a/CodeFormer/CodeFormer/facelib/detection/yolov5face/models/__pycache__/common.cpython-310.pyc and /dev/null differ diff --git a/CodeFormer/CodeFormer/facelib/detection/yolov5face/models/__pycache__/experimental.cpython-310.pyc b/CodeFormer/CodeFormer/facelib/detection/yolov5face/models/__pycache__/experimental.cpython-310.pyc deleted file mode 100644 index 28a8e4dd3da37c112bbb168267086f6f2528ff08..0000000000000000000000000000000000000000 Binary files a/CodeFormer/CodeFormer/facelib/detection/yolov5face/models/__pycache__/experimental.cpython-310.pyc and /dev/null differ diff --git a/CodeFormer/CodeFormer/facelib/detection/yolov5face/models/__pycache__/yolo.cpython-310.pyc b/CodeFormer/CodeFormer/facelib/detection/yolov5face/models/__pycache__/yolo.cpython-310.pyc deleted file mode 100644 index f27edc94c351b4ec8026b843278d44dad31ecf6e..0000000000000000000000000000000000000000 Binary files a/CodeFormer/CodeFormer/facelib/detection/yolov5face/models/__pycache__/yolo.cpython-310.pyc and /dev/null differ diff --git a/CodeFormer/CodeFormer/facelib/detection/yolov5face/models/common.py b/CodeFormer/CodeFormer/facelib/detection/yolov5face/models/common.py deleted file mode 100644 index 497a00444c4c59725001993a63fe4617e9d323c8..0000000000000000000000000000000000000000 --- a/CodeFormer/CodeFormer/facelib/detection/yolov5face/models/common.py +++ /dev/null @@ -1,299 +0,0 @@ -# This file contains modules common to various models - -import math - -import numpy as np -import torch -from torch import nn - -from facelib.detection.yolov5face.utils.datasets import letterbox -from facelib.detection.yolov5face.utils.general import ( - make_divisible, - non_max_suppression, - scale_coords, - xyxy2xywh, -) - - -def autopad(k, p=None): # kernel, padding - # Pad to 'same' - if p is None: - p = k // 2 if isinstance(k, int) else [x // 2 for x in k] # auto-pad - return p - - -def channel_shuffle(x, groups): - batchsize, num_channels, height, width = x.data.size() - channels_per_group = torch.div(num_channels, groups, rounding_mode="trunc") - - # reshape - x = x.view(batchsize, groups, channels_per_group, height, width) - x = torch.transpose(x, 1, 2).contiguous() - - # flatten - return x.view(batchsize, -1, height, width) - - -def DWConv(c1, c2, k=1, s=1, act=True): - # Depthwise convolution - return Conv(c1, c2, k, s, g=math.gcd(c1, c2), act=act) - - -class Conv(nn.Module): - # Standard convolution - def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups - super().__init__() - self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False) - self.bn = nn.BatchNorm2d(c2) - self.act = nn.SiLU() if act is True else (act if isinstance(act, nn.Module) else nn.Identity()) - - def forward(self, x): - return self.act(self.bn(self.conv(x))) - - def fuseforward(self, x): - return self.act(self.conv(x)) - - -class StemBlock(nn.Module): - def __init__(self, c1, c2, k=3, s=2, p=None, g=1, act=True): - super().__init__() - self.stem_1 = Conv(c1, c2, k, s, p, g, act) - self.stem_2a = Conv(c2, c2 // 2, 1, 1, 0) - self.stem_2b = Conv(c2 // 2, c2, 3, 2, 1) - self.stem_2p = nn.MaxPool2d(kernel_size=2, stride=2, ceil_mode=True) - self.stem_3 = Conv(c2 * 2, c2, 1, 1, 0) - - def forward(self, x): - stem_1_out = self.stem_1(x) - stem_2a_out = self.stem_2a(stem_1_out) - stem_2b_out = self.stem_2b(stem_2a_out) - stem_2p_out = self.stem_2p(stem_1_out) - return self.stem_3(torch.cat((stem_2b_out, stem_2p_out), 1)) - - -class Bottleneck(nn.Module): - # Standard bottleneck - def __init__(self, c1, c2, shortcut=True, g=1, e=0.5): # ch_in, ch_out, shortcut, groups, expansion - super().__init__() - c_ = int(c2 * e) # hidden channels - self.cv1 = Conv(c1, c_, 1, 1) - self.cv2 = Conv(c_, c2, 3, 1, g=g) - self.add = shortcut and c1 == c2 - - def forward(self, x): - return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x)) - - -class BottleneckCSP(nn.Module): - # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks - def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion - super().__init__() - c_ = int(c2 * e) # hidden channels - self.cv1 = Conv(c1, c_, 1, 1) - self.cv2 = nn.Conv2d(c1, c_, 1, 1, bias=False) - self.cv3 = nn.Conv2d(c_, c_, 1, 1, bias=False) - self.cv4 = Conv(2 * c_, c2, 1, 1) - self.bn = nn.BatchNorm2d(2 * c_) # applied to cat(cv2, cv3) - self.act = nn.LeakyReLU(0.1, inplace=True) - self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n))) - - def forward(self, x): - y1 = self.cv3(self.m(self.cv1(x))) - y2 = self.cv2(x) - return self.cv4(self.act(self.bn(torch.cat((y1, y2), dim=1)))) - - -class C3(nn.Module): - # CSP Bottleneck with 3 convolutions - def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion - super().__init__() - c_ = int(c2 * e) # hidden channels - self.cv1 = Conv(c1, c_, 1, 1) - self.cv2 = Conv(c1, c_, 1, 1) - self.cv3 = Conv(2 * c_, c2, 1) # act=FReLU(c2) - self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n))) - - def forward(self, x): - return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), dim=1)) - - -class ShuffleV2Block(nn.Module): - def __init__(self, inp, oup, stride): - super().__init__() - - if not 1 <= stride <= 3: - raise ValueError("illegal stride value") - self.stride = stride - - branch_features = oup // 2 - - if self.stride > 1: - self.branch1 = nn.Sequential( - self.depthwise_conv(inp, inp, kernel_size=3, stride=self.stride, padding=1), - nn.BatchNorm2d(inp), - nn.Conv2d(inp, branch_features, kernel_size=1, stride=1, padding=0, bias=False), - nn.BatchNorm2d(branch_features), - nn.SiLU(), - ) - else: - self.branch1 = nn.Sequential() - - self.branch2 = nn.Sequential( - nn.Conv2d( - inp if (self.stride > 1) else branch_features, - branch_features, - kernel_size=1, - stride=1, - padding=0, - bias=False, - ), - nn.BatchNorm2d(branch_features), - nn.SiLU(), - self.depthwise_conv(branch_features, branch_features, kernel_size=3, stride=self.stride, padding=1), - nn.BatchNorm2d(branch_features), - nn.Conv2d(branch_features, branch_features, kernel_size=1, stride=1, padding=0, bias=False), - nn.BatchNorm2d(branch_features), - nn.SiLU(), - ) - - @staticmethod - def depthwise_conv(i, o, kernel_size, stride=1, padding=0, bias=False): - return nn.Conv2d(i, o, kernel_size, stride, padding, bias=bias, groups=i) - - def forward(self, x): - if self.stride == 1: - x1, x2 = x.chunk(2, dim=1) - out = torch.cat((x1, self.branch2(x2)), dim=1) - else: - out = torch.cat((self.branch1(x), self.branch2(x)), dim=1) - out = channel_shuffle(out, 2) - return out - - -class SPP(nn.Module): - # Spatial pyramid pooling layer used in YOLOv3-SPP - def __init__(self, c1, c2, k=(5, 9, 13)): - super().__init__() - c_ = c1 // 2 # hidden channels - self.cv1 = Conv(c1, c_, 1, 1) - self.cv2 = Conv(c_ * (len(k) + 1), c2, 1, 1) - self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k]) - - def forward(self, x): - x = self.cv1(x) - return self.cv2(torch.cat([x] + [m(x) for m in self.m], 1)) - - -class Focus(nn.Module): - # Focus wh information into c-space - def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups - super().__init__() - self.conv = Conv(c1 * 4, c2, k, s, p, g, act) - - def forward(self, x): # x(b,c,w,h) -> y(b,4c,w/2,h/2) - return self.conv(torch.cat([x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]], 1)) - - -class Concat(nn.Module): - # Concatenate a list of tensors along dimension - def __init__(self, dimension=1): - super().__init__() - self.d = dimension - - def forward(self, x): - return torch.cat(x, self.d) - - -class NMS(nn.Module): - # Non-Maximum Suppression (NMS) module - conf = 0.25 # confidence threshold - iou = 0.45 # IoU threshold - classes = None # (optional list) filter by class - - def forward(self, x): - return non_max_suppression(x[0], conf_thres=self.conf, iou_thres=self.iou, classes=self.classes) - - -class AutoShape(nn.Module): - # input-robust model wrapper for passing cv2/np/PIL/torch inputs. Includes preprocessing, inference and NMS - img_size = 640 # inference size (pixels) - conf = 0.25 # NMS confidence threshold - iou = 0.45 # NMS IoU threshold - classes = None # (optional list) filter by class - - def __init__(self, model): - super().__init__() - self.model = model.eval() - - def autoshape(self): - print("autoShape already enabled, skipping... ") # model already converted to model.autoshape() - return self - - def forward(self, imgs, size=640, augment=False, profile=False): - # Inference from various sources. For height=720, width=1280, RGB images example inputs are: - # OpenCV: = cv2.imread('image.jpg')[:,:,::-1] # HWC BGR to RGB x(720,1280,3) - # PIL: = Image.open('image.jpg') # HWC x(720,1280,3) - # numpy: = np.zeros((720,1280,3)) # HWC - # torch: = torch.zeros(16,3,720,1280) # BCHW - # multiple: = [Image.open('image1.jpg'), Image.open('image2.jpg'), ...] # list of images - - p = next(self.model.parameters()) # for device and type - if isinstance(imgs, torch.Tensor): # torch - return self.model(imgs.to(p.device).type_as(p), augment, profile) # inference - - # Pre-process - n, imgs = (len(imgs), imgs) if isinstance(imgs, list) else (1, [imgs]) # number of images, list of images - shape0, shape1 = [], [] # image and inference shapes - for i, im in enumerate(imgs): - im = np.array(im) # to numpy - if im.shape[0] < 5: # image in CHW - im = im.transpose((1, 2, 0)) # reverse dataloader .transpose(2, 0, 1) - im = im[:, :, :3] if im.ndim == 3 else np.tile(im[:, :, None], 3) # enforce 3ch input - s = im.shape[:2] # HWC - shape0.append(s) # image shape - g = size / max(s) # gain - shape1.append([y * g for y in s]) - imgs[i] = im # update - shape1 = [make_divisible(x, int(self.stride.max())) for x in np.stack(shape1, 0).max(0)] # inference shape - x = [letterbox(im, new_shape=shape1, auto=False)[0] for im in imgs] # pad - x = np.stack(x, 0) if n > 1 else x[0][None] # stack - x = np.ascontiguousarray(x.transpose((0, 3, 1, 2))) # BHWC to BCHW - x = torch.from_numpy(x).to(p.device).type_as(p) / 255.0 # uint8 to fp16/32 - - # Inference - with torch.no_grad(): - y = self.model(x, augment, profile)[0] # forward - y = non_max_suppression(y, conf_thres=self.conf, iou_thres=self.iou, classes=self.classes) # NMS - - # Post-process - for i in range(n): - scale_coords(shape1, y[i][:, :4], shape0[i]) - - return Detections(imgs, y, self.names) - - -class Detections: - # detections class for YOLOv5 inference results - def __init__(self, imgs, pred, names=None): - super().__init__() - d = pred[0].device # device - gn = [torch.tensor([*(im.shape[i] for i in [1, 0, 1, 0]), 1.0, 1.0], device=d) for im in imgs] # normalizations - self.imgs = imgs # list of images as numpy arrays - self.pred = pred # list of tensors pred[0] = (xyxy, conf, cls) - self.names = names # class names - self.xyxy = pred # xyxy pixels - self.xywh = [xyxy2xywh(x) for x in pred] # xywh pixels - self.xyxyn = [x / g for x, g in zip(self.xyxy, gn)] # xyxy normalized - self.xywhn = [x / g for x, g in zip(self.xywh, gn)] # xywh normalized - self.n = len(self.pred) - - def __len__(self): - return self.n - - def tolist(self): - # return a list of Detections objects, i.e. 'for result in results.tolist():' - x = [Detections([self.imgs[i]], [self.pred[i]], self.names) for i in range(self.n)] - for d in x: - for k in ["imgs", "pred", "xyxy", "xyxyn", "xywh", "xywhn"]: - setattr(d, k, getattr(d, k)[0]) # pop out of list - return x diff --git a/CodeFormer/CodeFormer/facelib/detection/yolov5face/models/experimental.py b/CodeFormer/CodeFormer/facelib/detection/yolov5face/models/experimental.py deleted file mode 100644 index 37ba4c4420789c92dc0e2aaeb3d5b64859ec728c..0000000000000000000000000000000000000000 --- a/CodeFormer/CodeFormer/facelib/detection/yolov5face/models/experimental.py +++ /dev/null @@ -1,45 +0,0 @@ -# # This file contains experimental modules - -import numpy as np -import torch -from torch import nn - -from facelib.detection.yolov5face.models.common import Conv - - -class CrossConv(nn.Module): - # Cross Convolution Downsample - def __init__(self, c1, c2, k=3, s=1, g=1, e=1.0, shortcut=False): - # ch_in, ch_out, kernel, stride, groups, expansion, shortcut - super().__init__() - c_ = int(c2 * e) # hidden channels - self.cv1 = Conv(c1, c_, (1, k), (1, s)) - self.cv2 = Conv(c_, c2, (k, 1), (s, 1), g=g) - self.add = shortcut and c1 == c2 - - def forward(self, x): - return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x)) - - -class MixConv2d(nn.Module): - # Mixed Depthwise Conv https://arxiv.org/abs/1907.09595 - def __init__(self, c1, c2, k=(1, 3), s=1, equal_ch=True): - super().__init__() - groups = len(k) - if equal_ch: # equal c_ per group - i = torch.linspace(0, groups - 1e-6, c2).floor() # c2 indices - c_ = [(i == g).sum() for g in range(groups)] # intermediate channels - else: # equal weight.numel() per group - b = [c2] + [0] * groups - a = np.eye(groups + 1, groups, k=-1) - a -= np.roll(a, 1, axis=1) - a *= np.array(k) ** 2 - a[0] = 1 - c_ = np.linalg.lstsq(a, b, rcond=None)[0].round() # solve for equal weight indices, ax = b - - self.m = nn.ModuleList([nn.Conv2d(c1, int(c_[g]), k[g], s, k[g] // 2, bias=False) for g in range(groups)]) - self.bn = nn.BatchNorm2d(c2) - self.act = nn.LeakyReLU(0.1, inplace=True) - - def forward(self, x): - return x + self.act(self.bn(torch.cat([m(x) for m in self.m], 1))) diff --git a/CodeFormer/CodeFormer/facelib/detection/yolov5face/models/yolo.py b/CodeFormer/CodeFormer/facelib/detection/yolov5face/models/yolo.py deleted file mode 100644 index 70845d972f0bcfd3632fcbac096b23e1b4d4d779..0000000000000000000000000000000000000000 --- a/CodeFormer/CodeFormer/facelib/detection/yolov5face/models/yolo.py +++ /dev/null @@ -1,235 +0,0 @@ -import math -from copy import deepcopy -from pathlib import Path - -import torch -import yaml # for torch hub -from torch import nn - -from facelib.detection.yolov5face.models.common import ( - C3, - NMS, - SPP, - AutoShape, - Bottleneck, - BottleneckCSP, - Concat, - Conv, - DWConv, - Focus, - ShuffleV2Block, - StemBlock, -) -from facelib.detection.yolov5face.models.experimental import CrossConv, MixConv2d -from facelib.detection.yolov5face.utils.autoanchor import check_anchor_order -from facelib.detection.yolov5face.utils.general import make_divisible -from facelib.detection.yolov5face.utils.torch_utils import copy_attr, fuse_conv_and_bn - - -class Detect(nn.Module): - stride = None # strides computed during build - export = False # onnx export - - def __init__(self, nc=80, anchors=(), ch=()): # detection layer - super().__init__() - self.nc = nc # number of classes - self.no = nc + 5 + 10 # number of outputs per anchor - - self.nl = len(anchors) # number of detection layers - self.na = len(anchors[0]) // 2 # number of anchors - self.grid = [torch.zeros(1)] * self.nl # init grid - a = torch.tensor(anchors).float().view(self.nl, -1, 2) - self.register_buffer("anchors", a) # shape(nl,na,2) - self.register_buffer("anchor_grid", a.clone().view(self.nl, 1, -1, 1, 1, 2)) # shape(nl,1,na,1,1,2) - self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch) # output conv - - def forward(self, x): - z = [] # inference output - if self.export: - for i in range(self.nl): - x[i] = self.m[i](x[i]) - return x - for i in range(self.nl): - x[i] = self.m[i](x[i]) # conv - bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85) - x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous() - - if not self.training: # inference - if self.grid[i].shape[2:4] != x[i].shape[2:4]: - self.grid[i] = self._make_grid(nx, ny).to(x[i].device) - - y = torch.full_like(x[i], 0) - y[..., [0, 1, 2, 3, 4, 15]] = x[i][..., [0, 1, 2, 3, 4, 15]].sigmoid() - y[..., 5:15] = x[i][..., 5:15] - - y[..., 0:2] = (y[..., 0:2] * 2.0 - 0.5 + self.grid[i].to(x[i].device)) * self.stride[i] # xy - y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh - - y[..., 5:7] = ( - y[..., 5:7] * self.anchor_grid[i] + self.grid[i].to(x[i].device) * self.stride[i] - ) # landmark x1 y1 - y[..., 7:9] = ( - y[..., 7:9] * self.anchor_grid[i] + self.grid[i].to(x[i].device) * self.stride[i] - ) # landmark x2 y2 - y[..., 9:11] = ( - y[..., 9:11] * self.anchor_grid[i] + self.grid[i].to(x[i].device) * self.stride[i] - ) # landmark x3 y3 - y[..., 11:13] = ( - y[..., 11:13] * self.anchor_grid[i] + self.grid[i].to(x[i].device) * self.stride[i] - ) # landmark x4 y4 - y[..., 13:15] = ( - y[..., 13:15] * self.anchor_grid[i] + self.grid[i].to(x[i].device) * self.stride[i] - ) # landmark x5 y5 - - z.append(y.view(bs, -1, self.no)) - - return x if self.training else (torch.cat(z, 1), x) - - @staticmethod - def _make_grid(nx=20, ny=20): - # yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)], indexing="ij") # for pytorch>=1.10 - yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)]) - return torch.stack((xv, yv), 2).view((1, 1, ny, nx, 2)).float() - - -class Model(nn.Module): - def __init__(self, cfg="yolov5s.yaml", ch=3, nc=None): # model, input channels, number of classes - super().__init__() - self.yaml_file = Path(cfg).name - with Path(cfg).open(encoding="utf8") as f: - self.yaml = yaml.safe_load(f) # model dict - - # Define model - ch = self.yaml["ch"] = self.yaml.get("ch", ch) # input channels - if nc and nc != self.yaml["nc"]: - self.yaml["nc"] = nc # override yaml value - - self.model, self.save = parse_model(deepcopy(self.yaml), ch=[ch]) # model, savelist - self.names = [str(i) for i in range(self.yaml["nc"])] # default names - - # Build strides, anchors - m = self.model[-1] # Detect() - if isinstance(m, Detect): - s = 128 # 2x min stride - m.stride = torch.tensor([s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))]) # forward - m.anchors /= m.stride.view(-1, 1, 1) - check_anchor_order(m) - self.stride = m.stride - self._initialize_biases() # only run once - - def forward(self, x): - return self.forward_once(x) # single-scale inference, train - - def forward_once(self, x): - y = [] # outputs - for m in self.model: - if m.f != -1: # if not from previous layer - x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] # from earlier layers - - x = m(x) # run - y.append(x if m.i in self.save else None) # save output - - return x - - def _initialize_biases(self, cf=None): # initialize biases into Detect(), cf is class frequency - # https://arxiv.org/abs/1708.02002 section 3.3 - m = self.model[-1] # Detect() module - for mi, s in zip(m.m, m.stride): # from - b = mi.bias.view(m.na, -1) # conv.bias(255) to (3,85) - b.data[:, 4] += math.log(8 / (640 / s) ** 2) # obj (8 objects per 640 image) - b.data[:, 5:] += math.log(0.6 / (m.nc - 0.99)) if cf is None else torch.log(cf / cf.sum()) # cls - mi.bias = torch.nn.Parameter(b.view(-1), requires_grad=True) - - def _print_biases(self): - m = self.model[-1] # Detect() module - for mi in m.m: # from - b = mi.bias.detach().view(m.na, -1).T # conv.bias(255) to (3,85) - print(("%6g Conv2d.bias:" + "%10.3g" * 6) % (mi.weight.shape[1], *b[:5].mean(1).tolist(), b[5:].mean())) - - def fuse(self): # fuse model Conv2d() + BatchNorm2d() layers - print("Fusing layers... ") - for m in self.model.modules(): - if isinstance(m, Conv) and hasattr(m, "bn"): - m.conv = fuse_conv_and_bn(m.conv, m.bn) # update conv - delattr(m, "bn") # remove batchnorm - m.forward = m.fuseforward # update forward - elif type(m) is nn.Upsample: - m.recompute_scale_factor = None # torch 1.11.0 compatibility - return self - - def nms(self, mode=True): # add or remove NMS module - present = isinstance(self.model[-1], NMS) # last layer is NMS - if mode and not present: - print("Adding NMS... ") - m = NMS() # module - m.f = -1 # from - m.i = self.model[-1].i + 1 # index - self.model.add_module(name=str(m.i), module=m) # add - self.eval() - elif not mode and present: - print("Removing NMS... ") - self.model = self.model[:-1] # remove - return self - - def autoshape(self): # add autoShape module - print("Adding autoShape... ") - m = AutoShape(self) # wrap model - copy_attr(m, self, include=("yaml", "nc", "hyp", "names", "stride"), exclude=()) # copy attributes - return m - - -def parse_model(d, ch): # model_dict, input_channels(3) - anchors, nc, gd, gw = d["anchors"], d["nc"], d["depth_multiple"], d["width_multiple"] - na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors # number of anchors - no = na * (nc + 5) # number of outputs = anchors * (classes + 5) - - layers, save, c2 = [], [], ch[-1] # layers, savelist, ch out - for i, (f, n, m, args) in enumerate(d["backbone"] + d["head"]): # from, number, module, args - m = eval(m) if isinstance(m, str) else m # eval strings - for j, a in enumerate(args): - try: - args[j] = eval(a) if isinstance(a, str) else a # eval strings - except: - pass - - n = max(round(n * gd), 1) if n > 1 else n # depth gain - if m in [ - Conv, - Bottleneck, - SPP, - DWConv, - MixConv2d, - Focus, - CrossConv, - BottleneckCSP, - C3, - ShuffleV2Block, - StemBlock, - ]: - c1, c2 = ch[f], args[0] - - c2 = make_divisible(c2 * gw, 8) if c2 != no else c2 - - args = [c1, c2, *args[1:]] - if m in [BottleneckCSP, C3]: - args.insert(2, n) - n = 1 - elif m is nn.BatchNorm2d: - args = [ch[f]] - elif m is Concat: - c2 = sum(ch[-1 if x == -1 else x + 1] for x in f) - elif m is Detect: - args.append([ch[x + 1] for x in f]) - if isinstance(args[1], int): # number of anchors - args[1] = [list(range(args[1] * 2))] * len(f) - else: - c2 = ch[f] - - m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args) # module - t = str(m)[8:-2].replace("__main__.", "") # module type - np = sum(x.numel() for x in m_.parameters()) # number params - m_.i, m_.f, m_.type, m_.np = i, f, t, np # attach index, 'from' index, type, number params - save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1) # append to savelist - layers.append(m_) - ch.append(c2) - return nn.Sequential(*layers), sorted(save) diff --git a/CodeFormer/CodeFormer/facelib/detection/yolov5face/models/yolov5l.yaml b/CodeFormer/CodeFormer/facelib/detection/yolov5face/models/yolov5l.yaml deleted file mode 100644 index 0532b0e22fa7f59349b178146ffddcfdb368aba6..0000000000000000000000000000000000000000 --- a/CodeFormer/CodeFormer/facelib/detection/yolov5face/models/yolov5l.yaml +++ /dev/null @@ -1,47 +0,0 @@ -# parameters -nc: 1 # number of classes -depth_multiple: 1.0 # model depth multiple -width_multiple: 1.0 # layer channel multiple - -# anchors -anchors: - - [4,5, 8,10, 13,16] # P3/8 - - [23,29, 43,55, 73,105] # P4/16 - - [146,217, 231,300, 335,433] # P5/32 - -# YOLOv5 backbone -backbone: - # [from, number, module, args] - [[-1, 1, StemBlock, [64, 3, 2]], # 0-P1/2 - [-1, 3, C3, [128]], - [-1, 1, Conv, [256, 3, 2]], # 2-P3/8 - [-1, 9, C3, [256]], - [-1, 1, Conv, [512, 3, 2]], # 4-P4/16 - [-1, 9, C3, [512]], - [-1, 1, Conv, [1024, 3, 2]], # 6-P5/32 - [-1, 1, SPP, [1024, [3,5,7]]], - [-1, 3, C3, [1024, False]], # 8 - ] - -# YOLOv5 head -head: - [[-1, 1, Conv, [512, 1, 1]], - [-1, 1, nn.Upsample, [None, 2, 'nearest']], - [[-1, 5], 1, Concat, [1]], # cat backbone P4 - [-1, 3, C3, [512, False]], # 12 - - [-1, 1, Conv, [256, 1, 1]], - [-1, 1, nn.Upsample, [None, 2, 'nearest']], - [[-1, 3], 1, Concat, [1]], # cat backbone P3 - [-1, 3, C3, [256, False]], # 16 (P3/8-small) - - [-1, 1, Conv, [256, 3, 2]], - [[-1, 13], 1, Concat, [1]], # cat head P4 - [-1, 3, C3, [512, False]], # 19 (P4/16-medium) - - [-1, 1, Conv, [512, 3, 2]], - [[-1, 9], 1, Concat, [1]], # cat head P5 - [-1, 3, C3, [1024, False]], # 22 (P5/32-large) - - [[16, 19, 22], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5) - ] \ No newline at end of file diff --git a/CodeFormer/CodeFormer/facelib/detection/yolov5face/models/yolov5n.yaml b/CodeFormer/CodeFormer/facelib/detection/yolov5face/models/yolov5n.yaml deleted file mode 100644 index caba6bed674aa2213b110f19e04eb352ffbeaf1e..0000000000000000000000000000000000000000 --- a/CodeFormer/CodeFormer/facelib/detection/yolov5face/models/yolov5n.yaml +++ /dev/null @@ -1,45 +0,0 @@ -# parameters -nc: 1 # number of classes -depth_multiple: 1.0 # model depth multiple -width_multiple: 1.0 # layer channel multiple - -# anchors -anchors: - - [4,5, 8,10, 13,16] # P3/8 - - [23,29, 43,55, 73,105] # P4/16 - - [146,217, 231,300, 335,433] # P5/32 - -# YOLOv5 backbone -backbone: - # [from, number, module, args] - [[-1, 1, StemBlock, [32, 3, 2]], # 0-P2/4 - [-1, 1, ShuffleV2Block, [128, 2]], # 1-P3/8 - [-1, 3, ShuffleV2Block, [128, 1]], # 2 - [-1, 1, ShuffleV2Block, [256, 2]], # 3-P4/16 - [-1, 7, ShuffleV2Block, [256, 1]], # 4 - [-1, 1, ShuffleV2Block, [512, 2]], # 5-P5/32 - [-1, 3, ShuffleV2Block, [512, 1]], # 6 - ] - -# YOLOv5 head -head: - [[-1, 1, Conv, [128, 1, 1]], - [-1, 1, nn.Upsample, [None, 2, 'nearest']], - [[-1, 4], 1, Concat, [1]], # cat backbone P4 - [-1, 1, C3, [128, False]], # 10 - - [-1, 1, Conv, [128, 1, 1]], - [-1, 1, nn.Upsample, [None, 2, 'nearest']], - [[-1, 2], 1, Concat, [1]], # cat backbone P3 - [-1, 1, C3, [128, False]], # 14 (P3/8-small) - - [-1, 1, Conv, [128, 3, 2]], - [[-1, 11], 1, Concat, [1]], # cat head P4 - [-1, 1, C3, [128, False]], # 17 (P4/16-medium) - - [-1, 1, Conv, [128, 3, 2]], - [[-1, 7], 1, Concat, [1]], # cat head P5 - [-1, 1, C3, [128, False]], # 20 (P5/32-large) - - [[14, 17, 20], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5) - ] diff --git a/CodeFormer/CodeFormer/facelib/detection/yolov5face/utils/__init__.py b/CodeFormer/CodeFormer/facelib/detection/yolov5face/utils/__init__.py deleted file mode 100644 index e69de29bb2d1d6434b8b29ae775ad8c2e48c5391..0000000000000000000000000000000000000000 diff --git a/CodeFormer/CodeFormer/facelib/detection/yolov5face/utils/__pycache__/__init__.cpython-310.pyc b/CodeFormer/CodeFormer/facelib/detection/yolov5face/utils/__pycache__/__init__.cpython-310.pyc deleted file mode 100644 index ce12cb8cf1d3a6b9a233c02fa0fc1ee153f6aa74..0000000000000000000000000000000000000000 Binary files a/CodeFormer/CodeFormer/facelib/detection/yolov5face/utils/__pycache__/__init__.cpython-310.pyc and /dev/null differ diff --git a/CodeFormer/CodeFormer/facelib/detection/yolov5face/utils/__pycache__/autoanchor.cpython-310.pyc b/CodeFormer/CodeFormer/facelib/detection/yolov5face/utils/__pycache__/autoanchor.cpython-310.pyc deleted file mode 100644 index 6a96a829ab3d3aa2cdabddfedcf26cc839d8060c..0000000000000000000000000000000000000000 Binary files a/CodeFormer/CodeFormer/facelib/detection/yolov5face/utils/__pycache__/autoanchor.cpython-310.pyc and /dev/null differ diff --git a/CodeFormer/CodeFormer/facelib/detection/yolov5face/utils/__pycache__/datasets.cpython-310.pyc b/CodeFormer/CodeFormer/facelib/detection/yolov5face/utils/__pycache__/datasets.cpython-310.pyc deleted file mode 100644 index 53b78ac1a5774a61f71a551381857ef46b9570be..0000000000000000000000000000000000000000 Binary files a/CodeFormer/CodeFormer/facelib/detection/yolov5face/utils/__pycache__/datasets.cpython-310.pyc and /dev/null differ diff --git a/CodeFormer/CodeFormer/facelib/detection/yolov5face/utils/__pycache__/general.cpython-310.pyc b/CodeFormer/CodeFormer/facelib/detection/yolov5face/utils/__pycache__/general.cpython-310.pyc deleted file mode 100644 index 8e606f4978be47f028fdb8545656133af8dae171..0000000000000000000000000000000000000000 Binary files a/CodeFormer/CodeFormer/facelib/detection/yolov5face/utils/__pycache__/general.cpython-310.pyc and /dev/null differ diff --git a/CodeFormer/CodeFormer/facelib/detection/yolov5face/utils/__pycache__/torch_utils.cpython-310.pyc b/CodeFormer/CodeFormer/facelib/detection/yolov5face/utils/__pycache__/torch_utils.cpython-310.pyc deleted file mode 100644 index 22210cf87a96a26e7653c4b841dc9f48cfeaeac1..0000000000000000000000000000000000000000 Binary files a/CodeFormer/CodeFormer/facelib/detection/yolov5face/utils/__pycache__/torch_utils.cpython-310.pyc and /dev/null differ diff --git a/CodeFormer/CodeFormer/facelib/detection/yolov5face/utils/autoanchor.py b/CodeFormer/CodeFormer/facelib/detection/yolov5face/utils/autoanchor.py deleted file mode 100644 index a4eba3e94888709be7d2a7c7499fbcc1808b4a88..0000000000000000000000000000000000000000 --- a/CodeFormer/CodeFormer/facelib/detection/yolov5face/utils/autoanchor.py +++ /dev/null @@ -1,12 +0,0 @@ -# Auto-anchor utils - - -def check_anchor_order(m): - # Check anchor order against stride order for YOLOv5 Detect() module m, and correct if necessary - a = m.anchor_grid.prod(-1).view(-1) # anchor area - da = a[-1] - a[0] # delta a - ds = m.stride[-1] - m.stride[0] # delta s - if da.sign() != ds.sign(): # same order - print("Reversing anchor order") - m.anchors[:] = m.anchors.flip(0) - m.anchor_grid[:] = m.anchor_grid.flip(0) diff --git a/CodeFormer/CodeFormer/facelib/detection/yolov5face/utils/datasets.py b/CodeFormer/CodeFormer/facelib/detection/yolov5face/utils/datasets.py deleted file mode 100644 index e672b136f56fd6b05038e24377908361a54fe519..0000000000000000000000000000000000000000 --- a/CodeFormer/CodeFormer/facelib/detection/yolov5face/utils/datasets.py +++ /dev/null @@ -1,35 +0,0 @@ -import cv2 -import numpy as np - - -def letterbox(img, new_shape=(640, 640), color=(114, 114, 114), auto=True, scale_fill=False, scaleup=True): - # Resize image to a 32-pixel-multiple rectangle https://github.com/ultralytics/yolov3/issues/232 - shape = img.shape[:2] # current shape [height, width] - if isinstance(new_shape, int): - new_shape = (new_shape, new_shape) - - # Scale ratio (new / old) - r = min(new_shape[0] / shape[0], new_shape[1] / shape[1]) - if not scaleup: # only scale down, do not scale up (for better test mAP) - r = min(r, 1.0) - - # Compute padding - ratio = r, r # width, height ratios - new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r)) - dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding - if auto: # minimum rectangle - dw, dh = np.mod(dw, 64), np.mod(dh, 64) # wh padding - elif scale_fill: # stretch - dw, dh = 0.0, 0.0 - new_unpad = (new_shape[1], new_shape[0]) - ratio = new_shape[1] / shape[1], new_shape[0] / shape[0] # width, height ratios - - dw /= 2 # divide padding into 2 sides - dh /= 2 - - if shape[::-1] != new_unpad: # resize - img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR) - top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1)) - left, right = int(round(dw - 0.1)), int(round(dw + 0.1)) - img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) # add border - return img, ratio, (dw, dh) diff --git a/CodeFormer/CodeFormer/facelib/detection/yolov5face/utils/extract_ckpt.py b/CodeFormer/CodeFormer/facelib/detection/yolov5face/utils/extract_ckpt.py deleted file mode 100644 index 4b8b631348f2d0cdea4e5a3594bb59f3e8f34a0f..0000000000000000000000000000000000000000 --- a/CodeFormer/CodeFormer/facelib/detection/yolov5face/utils/extract_ckpt.py +++ /dev/null @@ -1,5 +0,0 @@ -import torch -import sys -sys.path.insert(0,'./facelib/detection/yolov5face') -model = torch.load('facelib/detection/yolov5face/yolov5n-face.pt', map_location='cpu')['model'] -torch.save(model.state_dict(),'weights/facelib/yolov5n-face.pth') \ No newline at end of file diff --git a/CodeFormer/CodeFormer/facelib/detection/yolov5face/utils/general.py b/CodeFormer/CodeFormer/facelib/detection/yolov5face/utils/general.py deleted file mode 100644 index 1c8e14f56a107ec3a4269c382cfc5168ad780ffc..0000000000000000000000000000000000000000 --- a/CodeFormer/CodeFormer/facelib/detection/yolov5face/utils/general.py +++ /dev/null @@ -1,271 +0,0 @@ -import math -import time - -import numpy as np -import torch -import torchvision - - -def check_img_size(img_size, s=32): - # Verify img_size is a multiple of stride s - new_size = make_divisible(img_size, int(s)) # ceil gs-multiple - # if new_size != img_size: - # print(f"WARNING: --img-size {img_size:g} must be multiple of max stride {s:g}, updating to {new_size:g}") - return new_size - - -def make_divisible(x, divisor): - # Returns x evenly divisible by divisor - return math.ceil(x / divisor) * divisor - - -def xyxy2xywh(x): - # Convert nx4 boxes from [x1, y1, x2, y2] to [x, y, w, h] where xy1=top-left, xy2=bottom-right - y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x) - y[:, 0] = (x[:, 0] + x[:, 2]) / 2 # x center - y[:, 1] = (x[:, 1] + x[:, 3]) / 2 # y center - y[:, 2] = x[:, 2] - x[:, 0] # width - y[:, 3] = x[:, 3] - x[:, 1] # height - return y - - -def xywh2xyxy(x): - # Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right - y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x) - y[:, 0] = x[:, 0] - x[:, 2] / 2 # top left x - y[:, 1] = x[:, 1] - x[:, 3] / 2 # top left y - y[:, 2] = x[:, 0] + x[:, 2] / 2 # bottom right x - y[:, 3] = x[:, 1] + x[:, 3] / 2 # bottom right y - return y - - -def scale_coords(img1_shape, coords, img0_shape, ratio_pad=None): - # Rescale coords (xyxy) from img1_shape to img0_shape - if ratio_pad is None: # calculate from img0_shape - gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1]) # gain = old / new - pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2 # wh padding - else: - gain = ratio_pad[0][0] - pad = ratio_pad[1] - - coords[:, [0, 2]] -= pad[0] # x padding - coords[:, [1, 3]] -= pad[1] # y padding - coords[:, :4] /= gain - clip_coords(coords, img0_shape) - return coords - - -def clip_coords(boxes, img_shape): - # Clip bounding xyxy bounding boxes to image shape (height, width) - boxes[:, 0].clamp_(0, img_shape[1]) # x1 - boxes[:, 1].clamp_(0, img_shape[0]) # y1 - boxes[:, 2].clamp_(0, img_shape[1]) # x2 - boxes[:, 3].clamp_(0, img_shape[0]) # y2 - - -def box_iou(box1, box2): - # https://github.com/pytorch/vision/blob/master/torchvision/ops/boxes.py - """ - Return intersection-over-union (Jaccard index) of boxes. - Both sets of boxes are expected to be in (x1, y1, x2, y2) format. - Arguments: - box1 (Tensor[N, 4]) - box2 (Tensor[M, 4]) - Returns: - iou (Tensor[N, M]): the NxM matrix containing the pairwise - IoU values for every element in boxes1 and boxes2 - """ - - def box_area(box): - return (box[2] - box[0]) * (box[3] - box[1]) - - area1 = box_area(box1.T) - area2 = box_area(box2.T) - - inter = (torch.min(box1[:, None, 2:], box2[:, 2:]) - torch.max(box1[:, None, :2], box2[:, :2])).clamp(0).prod(2) - return inter / (area1[:, None] + area2 - inter) - - -def non_max_suppression_face(prediction, conf_thres=0.25, iou_thres=0.45, classes=None, agnostic=False, labels=()): - """Performs Non-Maximum Suppression (NMS) on inference results - Returns: - detections with shape: nx6 (x1, y1, x2, y2, conf, cls) - """ - - nc = prediction.shape[2] - 15 # number of classes - xc = prediction[..., 4] > conf_thres # candidates - - # Settings - # (pixels) maximum box width and height - max_wh = 4096 - time_limit = 10.0 # seconds to quit after - redundant = True # require redundant detections - multi_label = nc > 1 # multiple labels per box (adds 0.5ms/img) - merge = False # use merge-NMS - - t = time.time() - output = [torch.zeros((0, 16), device=prediction.device)] * prediction.shape[0] - for xi, x in enumerate(prediction): # image index, image inference - # Apply constraints - x = x[xc[xi]] # confidence - - # Cat apriori labels if autolabelling - if labels and len(labels[xi]): - label = labels[xi] - v = torch.zeros((len(label), nc + 15), device=x.device) - v[:, :4] = label[:, 1:5] # box - v[:, 4] = 1.0 # conf - v[range(len(label)), label[:, 0].long() + 15] = 1.0 # cls - x = torch.cat((x, v), 0) - - # If none remain process next image - if not x.shape[0]: - continue - - # Compute conf - x[:, 15:] *= x[:, 4:5] # conf = obj_conf * cls_conf - - # Box (center x, center y, width, height) to (x1, y1, x2, y2) - box = xywh2xyxy(x[:, :4]) - - # Detections matrix nx6 (xyxy, conf, landmarks, cls) - if multi_label: - i, j = (x[:, 15:] > conf_thres).nonzero(as_tuple=False).T - x = torch.cat((box[i], x[i, j + 15, None], x[:, 5:15], j[:, None].float()), 1) - else: # best class only - conf, j = x[:, 15:].max(1, keepdim=True) - x = torch.cat((box, conf, x[:, 5:15], j.float()), 1)[conf.view(-1) > conf_thres] - - # Filter by class - if classes is not None: - x = x[(x[:, 5:6] == torch.tensor(classes, device=x.device)).any(1)] - - # If none remain process next image - n = x.shape[0] # number of boxes - if not n: - continue - - # Batched NMS - c = x[:, 15:16] * (0 if agnostic else max_wh) # classes - boxes, scores = x[:, :4] + c, x[:, 4] # boxes (offset by class), scores - i = torchvision.ops.nms(boxes, scores, iou_thres) # NMS - - if merge and (1 < n < 3e3): # Merge NMS (boxes merged using weighted mean) - # update boxes as boxes(i,4) = weights(i,n) * boxes(n,4) - iou = box_iou(boxes[i], boxes) > iou_thres # iou matrix - weights = iou * scores[None] # box weights - x[i, :4] = torch.mm(weights, x[:, :4]).float() / weights.sum(1, keepdim=True) # merged boxes - if redundant: - i = i[iou.sum(1) > 1] # require redundancy - - output[xi] = x[i] - if (time.time() - t) > time_limit: - break # time limit exceeded - - return output - - -def non_max_suppression(prediction, conf_thres=0.25, iou_thres=0.45, classes=None, agnostic=False, labels=()): - """Performs Non-Maximum Suppression (NMS) on inference results - - Returns: - detections with shape: nx6 (x1, y1, x2, y2, conf, cls) - """ - - nc = prediction.shape[2] - 5 # number of classes - xc = prediction[..., 4] > conf_thres # candidates - - # Settings - # (pixels) maximum box width and height - max_wh = 4096 - time_limit = 10.0 # seconds to quit after - redundant = True # require redundant detections - multi_label = nc > 1 # multiple labels per box (adds 0.5ms/img) - merge = False # use merge-NMS - - t = time.time() - output = [torch.zeros((0, 6), device=prediction.device)] * prediction.shape[0] - for xi, x in enumerate(prediction): # image index, image inference - x = x[xc[xi]] # confidence - - # Cat apriori labels if autolabelling - if labels and len(labels[xi]): - label_id = labels[xi] - v = torch.zeros((len(label_id), nc + 5), device=x.device) - v[:, :4] = label_id[:, 1:5] # box - v[:, 4] = 1.0 # conf - v[range(len(label_id)), label_id[:, 0].long() + 5] = 1.0 # cls - x = torch.cat((x, v), 0) - - # If none remain process next image - if not x.shape[0]: - continue - - # Compute conf - x[:, 5:] *= x[:, 4:5] # conf = obj_conf * cls_conf - - # Box (center x, center y, width, height) to (x1, y1, x2, y2) - box = xywh2xyxy(x[:, :4]) - - # Detections matrix nx6 (xyxy, conf, cls) - if multi_label: - i, j = (x[:, 5:] > conf_thres).nonzero(as_tuple=False).T - x = torch.cat((box[i], x[i, j + 5, None], j[:, None].float()), 1) - else: # best class only - conf, j = x[:, 5:].max(1, keepdim=True) - x = torch.cat((box, conf, j.float()), 1)[conf.view(-1) > conf_thres] - - # Filter by class - if classes is not None: - x = x[(x[:, 5:6] == torch.tensor(classes, device=x.device)).any(1)] - - # Check shape - n = x.shape[0] # number of boxes - if not n: # no boxes - continue - - x = x[x[:, 4].argsort(descending=True)] # sort by confidence - - # Batched NMS - c = x[:, 5:6] * (0 if agnostic else max_wh) # classes - boxes, scores = x[:, :4] + c, x[:, 4] # boxes (offset by class), scores - i = torchvision.ops.nms(boxes, scores, iou_thres) # NMS - if merge and (1 < n < 3e3): # Merge NMS (boxes merged using weighted mean) - # update boxes as boxes(i,4) = weights(i,n) * boxes(n,4) - iou = box_iou(boxes[i], boxes) > iou_thres # iou matrix - weights = iou * scores[None] # box weights - x[i, :4] = torch.mm(weights, x[:, :4]).float() / weights.sum(1, keepdim=True) # merged boxes - if redundant: - i = i[iou.sum(1) > 1] # require redundancy - - output[xi] = x[i] - if (time.time() - t) > time_limit: - print(f"WARNING: NMS time limit {time_limit}s exceeded") - break # time limit exceeded - - return output - - -def scale_coords_landmarks(img1_shape, coords, img0_shape, ratio_pad=None): - # Rescale coords (xyxy) from img1_shape to img0_shape - if ratio_pad is None: # calculate from img0_shape - gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1]) # gain = old / new - pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2 # wh padding - else: - gain = ratio_pad[0][0] - pad = ratio_pad[1] - - coords[:, [0, 2, 4, 6, 8]] -= pad[0] # x padding - coords[:, [1, 3, 5, 7, 9]] -= pad[1] # y padding - coords[:, :10] /= gain - coords[:, 0].clamp_(0, img0_shape[1]) # x1 - coords[:, 1].clamp_(0, img0_shape[0]) # y1 - coords[:, 2].clamp_(0, img0_shape[1]) # x2 - coords[:, 3].clamp_(0, img0_shape[0]) # y2 - coords[:, 4].clamp_(0, img0_shape[1]) # x3 - coords[:, 5].clamp_(0, img0_shape[0]) # y3 - coords[:, 6].clamp_(0, img0_shape[1]) # x4 - coords[:, 7].clamp_(0, img0_shape[0]) # y4 - coords[:, 8].clamp_(0, img0_shape[1]) # x5 - coords[:, 9].clamp_(0, img0_shape[0]) # y5 - return coords diff --git a/CodeFormer/CodeFormer/facelib/detection/yolov5face/utils/torch_utils.py b/CodeFormer/CodeFormer/facelib/detection/yolov5face/utils/torch_utils.py deleted file mode 100644 index af2d06587b2d07b2eab199a8484380fde1de5c3c..0000000000000000000000000000000000000000 --- a/CodeFormer/CodeFormer/facelib/detection/yolov5face/utils/torch_utils.py +++ /dev/null @@ -1,40 +0,0 @@ -import torch -from torch import nn - - -def fuse_conv_and_bn(conv, bn): - # Fuse convolution and batchnorm layers https://tehnokv.com/posts/fusing-batchnorm-and-conv/ - fusedconv = ( - nn.Conv2d( - conv.in_channels, - conv.out_channels, - kernel_size=conv.kernel_size, - stride=conv.stride, - padding=conv.padding, - groups=conv.groups, - bias=True, - ) - .requires_grad_(False) - .to(conv.weight.device) - ) - - # prepare filters - w_conv = conv.weight.clone().view(conv.out_channels, -1) - w_bn = torch.diag(bn.weight.div(torch.sqrt(bn.eps + bn.running_var))) - fusedconv.weight.copy_(torch.mm(w_bn, w_conv).view(fusedconv.weight.size())) - - # prepare spatial bias - b_conv = torch.zeros(conv.weight.size(0), device=conv.weight.device) if conv.bias is None else conv.bias - b_bn = bn.bias - bn.weight.mul(bn.running_mean).div(torch.sqrt(bn.running_var + bn.eps)) - fusedconv.bias.copy_(torch.mm(w_bn, b_conv.reshape(-1, 1)).reshape(-1) + b_bn) - - return fusedconv - - -def copy_attr(a, b, include=(), exclude=()): - # Copy attributes from b to a, options to only include [...] and to exclude [...] - for k, v in b.__dict__.items(): - if (include and k not in include) or k.startswith("_") or k in exclude: - continue - - setattr(a, k, v) diff --git a/CodeFormer/CodeFormer/facelib/parsing/__init__.py b/CodeFormer/CodeFormer/facelib/parsing/__init__.py deleted file mode 100644 index 72656e4b5f61df8cd0838588b0c6488fcc886e16..0000000000000000000000000000000000000000 --- a/CodeFormer/CodeFormer/facelib/parsing/__init__.py +++ /dev/null @@ -1,23 +0,0 @@ -import torch - -from facelib.utils import load_file_from_url -from .bisenet import BiSeNet -from .parsenet import ParseNet - - -def init_parsing_model(model_name='bisenet', half=False, device='cuda'): - if model_name == 'bisenet': - model = BiSeNet(num_class=19) - model_url = 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/parsing_bisenet.pth' - elif model_name == 'parsenet': - model = ParseNet(in_size=512, out_size=512, parsing_ch=19) - model_url = 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/parsing_parsenet.pth' - else: - raise NotImplementedError(f'{model_name} is not implemented.') - - model_path = load_file_from_url(url=model_url, model_dir='weights/facelib', progress=True, file_name=None) - load_net = torch.load(model_path, map_location=lambda storage, loc: storage) - model.load_state_dict(load_net, strict=True) - model.eval() - model = model.to(device) - return model diff --git a/CodeFormer/CodeFormer/facelib/parsing/__pycache__/__init__.cpython-310.pyc b/CodeFormer/CodeFormer/facelib/parsing/__pycache__/__init__.cpython-310.pyc deleted file mode 100644 index e9457801673e548664ef2185196039efe6da7b10..0000000000000000000000000000000000000000 Binary files a/CodeFormer/CodeFormer/facelib/parsing/__pycache__/__init__.cpython-310.pyc and /dev/null differ diff --git a/CodeFormer/CodeFormer/facelib/parsing/__pycache__/bisenet.cpython-310.pyc b/CodeFormer/CodeFormer/facelib/parsing/__pycache__/bisenet.cpython-310.pyc deleted file mode 100644 index ae52ea7bcc356b6cf528d831c401fb97c648535a..0000000000000000000000000000000000000000 Binary files a/CodeFormer/CodeFormer/facelib/parsing/__pycache__/bisenet.cpython-310.pyc and /dev/null differ diff --git a/CodeFormer/CodeFormer/facelib/parsing/__pycache__/parsenet.cpython-310.pyc b/CodeFormer/CodeFormer/facelib/parsing/__pycache__/parsenet.cpython-310.pyc deleted file mode 100644 index 052f6ceba212fe7f28cdaf2dfa238a05434f01ac..0000000000000000000000000000000000000000 Binary files a/CodeFormer/CodeFormer/facelib/parsing/__pycache__/parsenet.cpython-310.pyc and /dev/null differ diff --git a/CodeFormer/CodeFormer/facelib/parsing/__pycache__/resnet.cpython-310.pyc b/CodeFormer/CodeFormer/facelib/parsing/__pycache__/resnet.cpython-310.pyc deleted file mode 100644 index 6698dd881c3eed0af2f38d207fcdcb5be27752c4..0000000000000000000000000000000000000000 Binary files a/CodeFormer/CodeFormer/facelib/parsing/__pycache__/resnet.cpython-310.pyc and /dev/null differ diff --git a/CodeFormer/CodeFormer/facelib/parsing/bisenet.py b/CodeFormer/CodeFormer/facelib/parsing/bisenet.py deleted file mode 100644 index 3898cab76ae5876459cd4899c54cafa14234971d..0000000000000000000000000000000000000000 --- a/CodeFormer/CodeFormer/facelib/parsing/bisenet.py +++ /dev/null @@ -1,140 +0,0 @@ -import torch -import torch.nn as nn -import torch.nn.functional as F - -from .resnet import ResNet18 - - -class ConvBNReLU(nn.Module): - - def __init__(self, in_chan, out_chan, ks=3, stride=1, padding=1): - super(ConvBNReLU, self).__init__() - self.conv = nn.Conv2d(in_chan, out_chan, kernel_size=ks, stride=stride, padding=padding, bias=False) - self.bn = nn.BatchNorm2d(out_chan) - - def forward(self, x): - x = self.conv(x) - x = F.relu(self.bn(x)) - return x - - -class BiSeNetOutput(nn.Module): - - def __init__(self, in_chan, mid_chan, num_class): - super(BiSeNetOutput, self).__init__() - self.conv = ConvBNReLU(in_chan, mid_chan, ks=3, stride=1, padding=1) - self.conv_out = nn.Conv2d(mid_chan, num_class, kernel_size=1, bias=False) - - def forward(self, x): - feat = self.conv(x) - out = self.conv_out(feat) - return out, feat - - -class AttentionRefinementModule(nn.Module): - - def __init__(self, in_chan, out_chan): - super(AttentionRefinementModule, self).__init__() - self.conv = ConvBNReLU(in_chan, out_chan, ks=3, stride=1, padding=1) - self.conv_atten = nn.Conv2d(out_chan, out_chan, kernel_size=1, bias=False) - self.bn_atten = nn.BatchNorm2d(out_chan) - self.sigmoid_atten = nn.Sigmoid() - - def forward(self, x): - feat = self.conv(x) - atten = F.avg_pool2d(feat, feat.size()[2:]) - atten = self.conv_atten(atten) - atten = self.bn_atten(atten) - atten = self.sigmoid_atten(atten) - out = torch.mul(feat, atten) - return out - - -class ContextPath(nn.Module): - - def __init__(self): - super(ContextPath, self).__init__() - self.resnet = ResNet18() - self.arm16 = AttentionRefinementModule(256, 128) - self.arm32 = AttentionRefinementModule(512, 128) - self.conv_head32 = ConvBNReLU(128, 128, ks=3, stride=1, padding=1) - self.conv_head16 = ConvBNReLU(128, 128, ks=3, stride=1, padding=1) - self.conv_avg = ConvBNReLU(512, 128, ks=1, stride=1, padding=0) - - def forward(self, x): - feat8, feat16, feat32 = self.resnet(x) - h8, w8 = feat8.size()[2:] - h16, w16 = feat16.size()[2:] - h32, w32 = feat32.size()[2:] - - avg = F.avg_pool2d(feat32, feat32.size()[2:]) - avg = self.conv_avg(avg) - avg_up = F.interpolate(avg, (h32, w32), mode='nearest') - - feat32_arm = self.arm32(feat32) - feat32_sum = feat32_arm + avg_up - feat32_up = F.interpolate(feat32_sum, (h16, w16), mode='nearest') - feat32_up = self.conv_head32(feat32_up) - - feat16_arm = self.arm16(feat16) - feat16_sum = feat16_arm + feat32_up - feat16_up = F.interpolate(feat16_sum, (h8, w8), mode='nearest') - feat16_up = self.conv_head16(feat16_up) - - return feat8, feat16_up, feat32_up # x8, x8, x16 - - -class FeatureFusionModule(nn.Module): - - def __init__(self, in_chan, out_chan): - super(FeatureFusionModule, self).__init__() - self.convblk = ConvBNReLU(in_chan, out_chan, ks=1, stride=1, padding=0) - self.conv1 = nn.Conv2d(out_chan, out_chan // 4, kernel_size=1, stride=1, padding=0, bias=False) - self.conv2 = nn.Conv2d(out_chan // 4, out_chan, kernel_size=1, stride=1, padding=0, bias=False) - self.relu = nn.ReLU(inplace=True) - self.sigmoid = nn.Sigmoid() - - def forward(self, fsp, fcp): - fcat = torch.cat([fsp, fcp], dim=1) - feat = self.convblk(fcat) - atten = F.avg_pool2d(feat, feat.size()[2:]) - atten = self.conv1(atten) - atten = self.relu(atten) - atten = self.conv2(atten) - atten = self.sigmoid(atten) - feat_atten = torch.mul(feat, atten) - feat_out = feat_atten + feat - return feat_out - - -class BiSeNet(nn.Module): - - def __init__(self, num_class): - super(BiSeNet, self).__init__() - self.cp = ContextPath() - self.ffm = FeatureFusionModule(256, 256) - self.conv_out = BiSeNetOutput(256, 256, num_class) - self.conv_out16 = BiSeNetOutput(128, 64, num_class) - self.conv_out32 = BiSeNetOutput(128, 64, num_class) - - def forward(self, x, return_feat=False): - h, w = x.size()[2:] - feat_res8, feat_cp8, feat_cp16 = self.cp(x) # return res3b1 feature - feat_sp = feat_res8 # replace spatial path feature with res3b1 feature - feat_fuse = self.ffm(feat_sp, feat_cp8) - - out, feat = self.conv_out(feat_fuse) - out16, feat16 = self.conv_out16(feat_cp8) - out32, feat32 = self.conv_out32(feat_cp16) - - out = F.interpolate(out, (h, w), mode='bilinear', align_corners=True) - out16 = F.interpolate(out16, (h, w), mode='bilinear', align_corners=True) - out32 = F.interpolate(out32, (h, w), mode='bilinear', align_corners=True) - - if return_feat: - feat = F.interpolate(feat, (h, w), mode='bilinear', align_corners=True) - feat16 = F.interpolate(feat16, (h, w), mode='bilinear', align_corners=True) - feat32 = F.interpolate(feat32, (h, w), mode='bilinear', align_corners=True) - return out, out16, out32, feat, feat16, feat32 - else: - return out, out16, out32 diff --git a/CodeFormer/CodeFormer/facelib/parsing/parsenet.py b/CodeFormer/CodeFormer/facelib/parsing/parsenet.py deleted file mode 100644 index e178ebe43a1ef666aaea0bc0faf629485c22a24f..0000000000000000000000000000000000000000 --- a/CodeFormer/CodeFormer/facelib/parsing/parsenet.py +++ /dev/null @@ -1,194 +0,0 @@ -"""Modified from https://github.com/chaofengc/PSFRGAN -""" -import numpy as np -import torch.nn as nn -from torch.nn import functional as F - - -class NormLayer(nn.Module): - """Normalization Layers. - - Args: - channels: input channels, for batch norm and instance norm. - input_size: input shape without batch size, for layer norm. - """ - - def __init__(self, channels, normalize_shape=None, norm_type='bn'): - super(NormLayer, self).__init__() - norm_type = norm_type.lower() - self.norm_type = norm_type - if norm_type == 'bn': - self.norm = nn.BatchNorm2d(channels, affine=True) - elif norm_type == 'in': - self.norm = nn.InstanceNorm2d(channels, affine=False) - elif norm_type == 'gn': - self.norm = nn.GroupNorm(32, channels, affine=True) - elif norm_type == 'pixel': - self.norm = lambda x: F.normalize(x, p=2, dim=1) - elif norm_type == 'layer': - self.norm = nn.LayerNorm(normalize_shape) - elif norm_type == 'none': - self.norm = lambda x: x * 1.0 - else: - assert 1 == 0, f'Norm type {norm_type} not support.' - - def forward(self, x, ref=None): - if self.norm_type == 'spade': - return self.norm(x, ref) - else: - return self.norm(x) - - -class ReluLayer(nn.Module): - """Relu Layer. - - Args: - relu type: type of relu layer, candidates are - - ReLU - - LeakyReLU: default relu slope 0.2 - - PRelu - - SELU - - none: direct pass - """ - - def __init__(self, channels, relu_type='relu'): - super(ReluLayer, self).__init__() - relu_type = relu_type.lower() - if relu_type == 'relu': - self.func = nn.ReLU(True) - elif relu_type == 'leakyrelu': - self.func = nn.LeakyReLU(0.2, inplace=True) - elif relu_type == 'prelu': - self.func = nn.PReLU(channels) - elif relu_type == 'selu': - self.func = nn.SELU(True) - elif relu_type == 'none': - self.func = lambda x: x * 1.0 - else: - assert 1 == 0, f'Relu type {relu_type} not support.' - - def forward(self, x): - return self.func(x) - - -class ConvLayer(nn.Module): - - def __init__(self, - in_channels, - out_channels, - kernel_size=3, - scale='none', - norm_type='none', - relu_type='none', - use_pad=True, - bias=True): - super(ConvLayer, self).__init__() - self.use_pad = use_pad - self.norm_type = norm_type - if norm_type in ['bn']: - bias = False - - stride = 2 if scale == 'down' else 1 - - self.scale_func = lambda x: x - if scale == 'up': - self.scale_func = lambda x: nn.functional.interpolate(x, scale_factor=2, mode='nearest') - - self.reflection_pad = nn.ReflectionPad2d(int(np.ceil((kernel_size - 1.) / 2))) - self.conv2d = nn.Conv2d(in_channels, out_channels, kernel_size, stride, bias=bias) - - self.relu = ReluLayer(out_channels, relu_type) - self.norm = NormLayer(out_channels, norm_type=norm_type) - - def forward(self, x): - out = self.scale_func(x) - if self.use_pad: - out = self.reflection_pad(out) - out = self.conv2d(out) - out = self.norm(out) - out = self.relu(out) - return out - - -class ResidualBlock(nn.Module): - """ - Residual block recommended in: http://torch.ch/blog/2016/02/04/resnets.html - """ - - def __init__(self, c_in, c_out, relu_type='prelu', norm_type='bn', scale='none'): - super(ResidualBlock, self).__init__() - - if scale == 'none' and c_in == c_out: - self.shortcut_func = lambda x: x - else: - self.shortcut_func = ConvLayer(c_in, c_out, 3, scale) - - scale_config_dict = {'down': ['none', 'down'], 'up': ['up', 'none'], 'none': ['none', 'none']} - scale_conf = scale_config_dict[scale] - - self.conv1 = ConvLayer(c_in, c_out, 3, scale_conf[0], norm_type=norm_type, relu_type=relu_type) - self.conv2 = ConvLayer(c_out, c_out, 3, scale_conf[1], norm_type=norm_type, relu_type='none') - - def forward(self, x): - identity = self.shortcut_func(x) - - res = self.conv1(x) - res = self.conv2(res) - return identity + res - - -class ParseNet(nn.Module): - - def __init__(self, - in_size=128, - out_size=128, - min_feat_size=32, - base_ch=64, - parsing_ch=19, - res_depth=10, - relu_type='LeakyReLU', - norm_type='bn', - ch_range=[32, 256]): - super().__init__() - self.res_depth = res_depth - act_args = {'norm_type': norm_type, 'relu_type': relu_type} - min_ch, max_ch = ch_range - - ch_clip = lambda x: max(min_ch, min(x, max_ch)) # noqa: E731 - min_feat_size = min(in_size, min_feat_size) - - down_steps = int(np.log2(in_size // min_feat_size)) - up_steps = int(np.log2(out_size // min_feat_size)) - - # =============== define encoder-body-decoder ==================== - self.encoder = [] - self.encoder.append(ConvLayer(3, base_ch, 3, 1)) - head_ch = base_ch - for i in range(down_steps): - cin, cout = ch_clip(head_ch), ch_clip(head_ch * 2) - self.encoder.append(ResidualBlock(cin, cout, scale='down', **act_args)) - head_ch = head_ch * 2 - - self.body = [] - for i in range(res_depth): - self.body.append(ResidualBlock(ch_clip(head_ch), ch_clip(head_ch), **act_args)) - - self.decoder = [] - for i in range(up_steps): - cin, cout = ch_clip(head_ch), ch_clip(head_ch // 2) - self.decoder.append(ResidualBlock(cin, cout, scale='up', **act_args)) - head_ch = head_ch // 2 - - self.encoder = nn.Sequential(*self.encoder) - self.body = nn.Sequential(*self.body) - self.decoder = nn.Sequential(*self.decoder) - self.out_img_conv = ConvLayer(ch_clip(head_ch), 3) - self.out_mask_conv = ConvLayer(ch_clip(head_ch), parsing_ch) - - def forward(self, x): - feat = self.encoder(x) - x = feat + self.body(feat) - x = self.decoder(x) - out_img = self.out_img_conv(x) - out_mask = self.out_mask_conv(x) - return out_mask, out_img diff --git a/CodeFormer/CodeFormer/facelib/parsing/resnet.py b/CodeFormer/CodeFormer/facelib/parsing/resnet.py deleted file mode 100644 index fec8e82cf64469fb51be21ad5130217052addbda..0000000000000000000000000000000000000000 --- a/CodeFormer/CodeFormer/facelib/parsing/resnet.py +++ /dev/null @@ -1,69 +0,0 @@ -import torch.nn as nn -import torch.nn.functional as F - - -def conv3x3(in_planes, out_planes, stride=1): - """3x3 convolution with padding""" - return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False) - - -class BasicBlock(nn.Module): - - def __init__(self, in_chan, out_chan, stride=1): - super(BasicBlock, self).__init__() - self.conv1 = conv3x3(in_chan, out_chan, stride) - self.bn1 = nn.BatchNorm2d(out_chan) - self.conv2 = conv3x3(out_chan, out_chan) - self.bn2 = nn.BatchNorm2d(out_chan) - self.relu = nn.ReLU(inplace=True) - self.downsample = None - if in_chan != out_chan or stride != 1: - self.downsample = nn.Sequential( - nn.Conv2d(in_chan, out_chan, kernel_size=1, stride=stride, bias=False), - nn.BatchNorm2d(out_chan), - ) - - def forward(self, x): - residual = self.conv1(x) - residual = F.relu(self.bn1(residual)) - residual = self.conv2(residual) - residual = self.bn2(residual) - - shortcut = x - if self.downsample is not None: - shortcut = self.downsample(x) - - out = shortcut + residual - out = self.relu(out) - return out - - -def create_layer_basic(in_chan, out_chan, bnum, stride=1): - layers = [BasicBlock(in_chan, out_chan, stride=stride)] - for i in range(bnum - 1): - layers.append(BasicBlock(out_chan, out_chan, stride=1)) - return nn.Sequential(*layers) - - -class ResNet18(nn.Module): - - def __init__(self): - super(ResNet18, self).__init__() - self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) - self.bn1 = nn.BatchNorm2d(64) - self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) - self.layer1 = create_layer_basic(64, 64, bnum=2, stride=1) - self.layer2 = create_layer_basic(64, 128, bnum=2, stride=2) - self.layer3 = create_layer_basic(128, 256, bnum=2, stride=2) - self.layer4 = create_layer_basic(256, 512, bnum=2, stride=2) - - def forward(self, x): - x = self.conv1(x) - x = F.relu(self.bn1(x)) - x = self.maxpool(x) - - x = self.layer1(x) - feat8 = self.layer2(x) # 1/8 - feat16 = self.layer3(feat8) # 1/16 - feat32 = self.layer4(feat16) # 1/32 - return feat8, feat16, feat32 diff --git a/CodeFormer/CodeFormer/facelib/utils/__init__.py b/CodeFormer/CodeFormer/facelib/utils/__init__.py deleted file mode 100644 index f03b1c2bafcd7759cb7e8722a0c6715f201a46dc..0000000000000000000000000000000000000000 --- a/CodeFormer/CodeFormer/facelib/utils/__init__.py +++ /dev/null @@ -1,7 +0,0 @@ -from .face_utils import align_crop_face_landmarks, compute_increased_bbox, get_valid_bboxes, paste_face_back -from .misc import img2tensor, load_file_from_url, download_pretrained_models, scandir - -__all__ = [ - 'align_crop_face_landmarks', 'compute_increased_bbox', 'get_valid_bboxes', 'load_file_from_url', - 'download_pretrained_models', 'paste_face_back', 'img2tensor', 'scandir' -] diff --git a/CodeFormer/CodeFormer/facelib/utils/__pycache__/__init__.cpython-310.pyc b/CodeFormer/CodeFormer/facelib/utils/__pycache__/__init__.cpython-310.pyc deleted file mode 100644 index 67fd9343c1dd1e580cf77e314f12ae19e2e5f3aa..0000000000000000000000000000000000000000 Binary files a/CodeFormer/CodeFormer/facelib/utils/__pycache__/__init__.cpython-310.pyc and /dev/null differ diff --git a/CodeFormer/CodeFormer/facelib/utils/__pycache__/face_restoration_helper.cpython-310.pyc b/CodeFormer/CodeFormer/facelib/utils/__pycache__/face_restoration_helper.cpython-310.pyc deleted file mode 100644 index 1161f995d963935b0e96b217f96f888472a237e0..0000000000000000000000000000000000000000 Binary files a/CodeFormer/CodeFormer/facelib/utils/__pycache__/face_restoration_helper.cpython-310.pyc and /dev/null differ diff --git a/CodeFormer/CodeFormer/facelib/utils/__pycache__/face_utils.cpython-310.pyc b/CodeFormer/CodeFormer/facelib/utils/__pycache__/face_utils.cpython-310.pyc deleted file mode 100644 index 0f2348b121c11a4a21dec7e920c1248781046931..0000000000000000000000000000000000000000 Binary files a/CodeFormer/CodeFormer/facelib/utils/__pycache__/face_utils.cpython-310.pyc and /dev/null differ diff --git a/CodeFormer/CodeFormer/facelib/utils/__pycache__/misc.cpython-310.pyc b/CodeFormer/CodeFormer/facelib/utils/__pycache__/misc.cpython-310.pyc deleted file mode 100644 index 4dfa27d3c018dd777a579013325cf8c01806552d..0000000000000000000000000000000000000000 Binary files a/CodeFormer/CodeFormer/facelib/utils/__pycache__/misc.cpython-310.pyc and /dev/null differ diff --git a/CodeFormer/CodeFormer/facelib/utils/face_restoration_helper.py b/CodeFormer/CodeFormer/facelib/utils/face_restoration_helper.py deleted file mode 100644 index 5d3fb8f3b95ed9959610e64f6d7373ea8a56ece8..0000000000000000000000000000000000000000 --- a/CodeFormer/CodeFormer/facelib/utils/face_restoration_helper.py +++ /dev/null @@ -1,460 +0,0 @@ -import cv2 -import numpy as np -import os -import torch -from torchvision.transforms.functional import normalize - -from facelib.detection import init_detection_model -from facelib.parsing import init_parsing_model -from facelib.utils.misc import img2tensor, imwrite, is_gray, bgr2gray - - -def get_largest_face(det_faces, h, w): - - def get_location(val, length): - if val < 0: - return 0 - elif val > length: - return length - else: - return val - - face_areas = [] - for det_face in det_faces: - left = get_location(det_face[0], w) - right = get_location(det_face[2], w) - top = get_location(det_face[1], h) - bottom = get_location(det_face[3], h) - face_area = (right - left) * (bottom - top) - face_areas.append(face_area) - largest_idx = face_areas.index(max(face_areas)) - return det_faces[largest_idx], largest_idx - - -def get_center_face(det_faces, h=0, w=0, center=None): - if center is not None: - center = np.array(center) - else: - center = np.array([w / 2, h / 2]) - center_dist = [] - for det_face in det_faces: - face_center = np.array([(det_face[0] + det_face[2]) / 2, (det_face[1] + det_face[3]) / 2]) - dist = np.linalg.norm(face_center - center) - center_dist.append(dist) - center_idx = center_dist.index(min(center_dist)) - return det_faces[center_idx], center_idx - - -class FaceRestoreHelper(object): - """Helper for the face restoration pipeline (base class).""" - - def __init__(self, - upscale_factor, - face_size=512, - crop_ratio=(1, 1), - det_model='retinaface_resnet50', - save_ext='png', - template_3points=False, - pad_blur=False, - use_parse=False, - device=None): - self.template_3points = template_3points # improve robustness - self.upscale_factor = int(upscale_factor) - # the cropped face ratio based on the square face - self.crop_ratio = crop_ratio # (h, w) - assert (self.crop_ratio[0] >= 1 and self.crop_ratio[1] >= 1), 'crop ration only supports >=1' - self.face_size = (int(face_size * self.crop_ratio[1]), int(face_size * self.crop_ratio[0])) - - if self.template_3points: - self.face_template = np.array([[192, 240], [319, 240], [257, 371]]) - else: - # standard 5 landmarks for FFHQ faces with 512 x 512 - # facexlib - self.face_template = np.array([[192.98138, 239.94708], [318.90277, 240.1936], [256.63416, 314.01935], - [201.26117, 371.41043], [313.08905, 371.15118]]) - - # dlib: left_eye: 36:41 right_eye: 42:47 nose: 30,32,33,34 left mouth corner: 48 right mouth corner: 54 - # self.face_template = np.array([[193.65928, 242.98541], [318.32558, 243.06108], [255.67984, 328.82894], - # [198.22603, 372.82502], [313.91018, 372.75659]]) - - - self.face_template = self.face_template * (face_size / 512.0) - if self.crop_ratio[0] > 1: - self.face_template[:, 1] += face_size * (self.crop_ratio[0] - 1) / 2 - if self.crop_ratio[1] > 1: - self.face_template[:, 0] += face_size * (self.crop_ratio[1] - 1) / 2 - self.save_ext = save_ext - self.pad_blur = pad_blur - if self.pad_blur is True: - self.template_3points = False - - self.all_landmarks_5 = [] - self.det_faces = [] - self.affine_matrices = [] - self.inverse_affine_matrices = [] - self.cropped_faces = [] - self.restored_faces = [] - self.pad_input_imgs = [] - - if device is None: - self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') - else: - self.device = device - - # init face detection model - self.face_det = init_detection_model(det_model, half=False, device=self.device) - - # init face parsing model - self.use_parse = use_parse - self.face_parse = init_parsing_model(model_name='parsenet', device=self.device) - - def set_upscale_factor(self, upscale_factor): - self.upscale_factor = upscale_factor - - def read_image(self, img): - """img can be image path or cv2 loaded image.""" - # self.input_img is Numpy array, (h, w, c), BGR, uint8, [0, 255] - if isinstance(img, str): - img = cv2.imread(img) - - if np.max(img) > 256: # 16-bit image - img = img / 65535 * 255 - if len(img.shape) == 2: # gray image - img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) - elif img.shape[2] == 4: # BGRA image with alpha channel - img = img[:, :, 0:3] - - self.input_img = img - self.is_gray = is_gray(img, threshold=5) - if self.is_gray: - print('Grayscale input: True') - - if min(self.input_img.shape[:2])<512: - f = 512.0/min(self.input_img.shape[:2]) - self.input_img = cv2.resize(self.input_img, (0,0), fx=f, fy=f, interpolation=cv2.INTER_LINEAR) - - def get_face_landmarks_5(self, - only_keep_largest=False, - only_center_face=False, - resize=None, - blur_ratio=0.01, - eye_dist_threshold=None): - if resize is None: - scale = 1 - input_img = self.input_img - else: - h, w = self.input_img.shape[0:2] - scale = resize / min(h, w) - scale = max(1, scale) # always scale up - h, w = int(h * scale), int(w * scale) - interp = cv2.INTER_AREA if scale < 1 else cv2.INTER_LINEAR - input_img = cv2.resize(self.input_img, (w, h), interpolation=interp) - - with torch.no_grad(): - bboxes = self.face_det.detect_faces(input_img) - - if bboxes is None or bboxes.shape[0] == 0: - return 0 - else: - bboxes = bboxes / scale - - for bbox in bboxes: - # remove faces with too small eye distance: side faces or too small faces - eye_dist = np.linalg.norm([bbox[6] - bbox[8], bbox[7] - bbox[9]]) - if eye_dist_threshold is not None and (eye_dist < eye_dist_threshold): - continue - - if self.template_3points: - landmark = np.array([[bbox[i], bbox[i + 1]] for i in range(5, 11, 2)]) - else: - landmark = np.array([[bbox[i], bbox[i + 1]] for i in range(5, 15, 2)]) - self.all_landmarks_5.append(landmark) - self.det_faces.append(bbox[0:5]) - - if len(self.det_faces) == 0: - return 0 - if only_keep_largest: - h, w, _ = self.input_img.shape - self.det_faces, largest_idx = get_largest_face(self.det_faces, h, w) - self.all_landmarks_5 = [self.all_landmarks_5[largest_idx]] - elif only_center_face: - h, w, _ = self.input_img.shape - self.det_faces, center_idx = get_center_face(self.det_faces, h, w) - self.all_landmarks_5 = [self.all_landmarks_5[center_idx]] - - # pad blurry images - if self.pad_blur: - self.pad_input_imgs = [] - for landmarks in self.all_landmarks_5: - # get landmarks - eye_left = landmarks[0, :] - eye_right = landmarks[1, :] - eye_avg = (eye_left + eye_right) * 0.5 - mouth_avg = (landmarks[3, :] + landmarks[4, :]) * 0.5 - eye_to_eye = eye_right - eye_left - eye_to_mouth = mouth_avg - eye_avg - - # Get the oriented crop rectangle - # x: half width of the oriented crop rectangle - x = eye_to_eye - np.flipud(eye_to_mouth) * [-1, 1] - # - np.flipud(eye_to_mouth) * [-1, 1]: rotate 90 clockwise - # norm with the hypotenuse: get the direction - x /= np.hypot(*x) # get the hypotenuse of a right triangle - rect_scale = 1.5 - x *= max(np.hypot(*eye_to_eye) * 2.0 * rect_scale, np.hypot(*eye_to_mouth) * 1.8 * rect_scale) - # y: half height of the oriented crop rectangle - y = np.flipud(x) * [-1, 1] - - # c: center - c = eye_avg + eye_to_mouth * 0.1 - # quad: (left_top, left_bottom, right_bottom, right_top) - quad = np.stack([c - x - y, c - x + y, c + x + y, c + x - y]) - # qsize: side length of the square - qsize = np.hypot(*x) * 2 - border = max(int(np.rint(qsize * 0.1)), 3) - - # get pad - # pad: (width_left, height_top, width_right, height_bottom) - pad = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), int(np.ceil(max(quad[:, 0]))), - int(np.ceil(max(quad[:, 1])))) - pad = [ - max(-pad[0] + border, 1), - max(-pad[1] + border, 1), - max(pad[2] - self.input_img.shape[0] + border, 1), - max(pad[3] - self.input_img.shape[1] + border, 1) - ] - - if max(pad) > 1: - # pad image - pad_img = np.pad(self.input_img, ((pad[1], pad[3]), (pad[0], pad[2]), (0, 0)), 'reflect') - # modify landmark coords - landmarks[:, 0] += pad[0] - landmarks[:, 1] += pad[1] - # blur pad images - h, w, _ = pad_img.shape - y, x, _ = np.ogrid[:h, :w, :1] - mask = np.maximum(1.0 - np.minimum(np.float32(x) / pad[0], - np.float32(w - 1 - x) / pad[2]), - 1.0 - np.minimum(np.float32(y) / pad[1], - np.float32(h - 1 - y) / pad[3])) - blur = int(qsize * blur_ratio) - if blur % 2 == 0: - blur += 1 - blur_img = cv2.boxFilter(pad_img, 0, ksize=(blur, blur)) - # blur_img = cv2.GaussianBlur(pad_img, (blur, blur), 0) - - pad_img = pad_img.astype('float32') - pad_img += (blur_img - pad_img) * np.clip(mask * 3.0 + 1.0, 0.0, 1.0) - pad_img += (np.median(pad_img, axis=(0, 1)) - pad_img) * np.clip(mask, 0.0, 1.0) - pad_img = np.clip(pad_img, 0, 255) # float32, [0, 255] - self.pad_input_imgs.append(pad_img) - else: - self.pad_input_imgs.append(np.copy(self.input_img)) - - return len(self.all_landmarks_5) - - def align_warp_face(self, save_cropped_path=None, border_mode='constant'): - """Align and warp faces with face template. - """ - if self.pad_blur: - assert len(self.pad_input_imgs) == len( - self.all_landmarks_5), f'Mismatched samples: {len(self.pad_input_imgs)} and {len(self.all_landmarks_5)}' - for idx, landmark in enumerate(self.all_landmarks_5): - # use 5 landmarks to get affine matrix - # use cv2.LMEDS method for the equivalence to skimage transform - # ref: https://blog.csdn.net/yichxi/article/details/115827338 - affine_matrix = cv2.estimateAffinePartial2D(landmark, self.face_template, method=cv2.LMEDS)[0] - self.affine_matrices.append(affine_matrix) - # warp and crop faces - if border_mode == 'constant': - border_mode = cv2.BORDER_CONSTANT - elif border_mode == 'reflect101': - border_mode = cv2.BORDER_REFLECT101 - elif border_mode == 'reflect': - border_mode = cv2.BORDER_REFLECT - if self.pad_blur: - input_img = self.pad_input_imgs[idx] - else: - input_img = self.input_img - cropped_face = cv2.warpAffine( - input_img, affine_matrix, self.face_size, borderMode=border_mode, borderValue=(135, 133, 132)) # gray - self.cropped_faces.append(cropped_face) - # save the cropped face - if save_cropped_path is not None: - path = os.path.splitext(save_cropped_path)[0] - save_path = f'{path}_{idx:02d}.{self.save_ext}' - imwrite(cropped_face, save_path) - - def get_inverse_affine(self, save_inverse_affine_path=None): - """Get inverse affine matrix.""" - for idx, affine_matrix in enumerate(self.affine_matrices): - inverse_affine = cv2.invertAffineTransform(affine_matrix) - inverse_affine *= self.upscale_factor - self.inverse_affine_matrices.append(inverse_affine) - # save inverse affine matrices - if save_inverse_affine_path is not None: - path, _ = os.path.splitext(save_inverse_affine_path) - save_path = f'{path}_{idx:02d}.pth' - torch.save(inverse_affine, save_path) - - - def add_restored_face(self, face): - if self.is_gray: - face = bgr2gray(face) # convert img into grayscale - self.restored_faces.append(face) - - - def paste_faces_to_input_image(self, save_path=None, upsample_img=None, draw_box=False, face_upsampler=None): - h, w, _ = self.input_img.shape - h_up, w_up = int(h * self.upscale_factor), int(w * self.upscale_factor) - - if upsample_img is None: - # simply resize the background - # upsample_img = cv2.resize(self.input_img, (w_up, h_up), interpolation=cv2.INTER_LANCZOS4) - upsample_img = cv2.resize(self.input_img, (w_up, h_up), interpolation=cv2.INTER_LINEAR) - else: - upsample_img = cv2.resize(upsample_img, (w_up, h_up), interpolation=cv2.INTER_LANCZOS4) - - assert len(self.restored_faces) == len( - self.inverse_affine_matrices), ('length of restored_faces and affine_matrices are different.') - - inv_mask_borders = [] - for restored_face, inverse_affine in zip(self.restored_faces, self.inverse_affine_matrices): - if face_upsampler is not None: - restored_face = face_upsampler.enhance(restored_face, outscale=self.upscale_factor)[0] - inverse_affine /= self.upscale_factor - inverse_affine[:, 2] *= self.upscale_factor - face_size = (self.face_size[0]*self.upscale_factor, self.face_size[1]*self.upscale_factor) - else: - # Add an offset to inverse affine matrix, for more precise back alignment - if self.upscale_factor > 1: - extra_offset = 0.5 * self.upscale_factor - else: - extra_offset = 0 - inverse_affine[:, 2] += extra_offset - face_size = self.face_size - inv_restored = cv2.warpAffine(restored_face, inverse_affine, (w_up, h_up)) - - # if draw_box or not self.use_parse: # use square parse maps - # mask = np.ones(face_size, dtype=np.float32) - # inv_mask = cv2.warpAffine(mask, inverse_affine, (w_up, h_up)) - # # remove the black borders - # inv_mask_erosion = cv2.erode( - # inv_mask, np.ones((int(2 * self.upscale_factor), int(2 * self.upscale_factor)), np.uint8)) - # pasted_face = inv_mask_erosion[:, :, None] * inv_restored - # total_face_area = np.sum(inv_mask_erosion) # // 3 - # # add border - # if draw_box: - # h, w = face_size - # mask_border = np.ones((h, w, 3), dtype=np.float32) - # border = int(1400/np.sqrt(total_face_area)) - # mask_border[border:h-border, border:w-border,:] = 0 - # inv_mask_border = cv2.warpAffine(mask_border, inverse_affine, (w_up, h_up)) - # inv_mask_borders.append(inv_mask_border) - # if not self.use_parse: - # # compute the fusion edge based on the area of face - # w_edge = int(total_face_area**0.5) // 20 - # erosion_radius = w_edge * 2 - # inv_mask_center = cv2.erode(inv_mask_erosion, np.ones((erosion_radius, erosion_radius), np.uint8)) - # blur_size = w_edge * 2 - # inv_soft_mask = cv2.GaussianBlur(inv_mask_center, (blur_size + 1, blur_size + 1), 0) - # if len(upsample_img.shape) == 2: # upsample_img is gray image - # upsample_img = upsample_img[:, :, None] - # inv_soft_mask = inv_soft_mask[:, :, None] - - # always use square mask - mask = np.ones(face_size, dtype=np.float32) - inv_mask = cv2.warpAffine(mask, inverse_affine, (w_up, h_up)) - # remove the black borders - inv_mask_erosion = cv2.erode( - inv_mask, np.ones((int(2 * self.upscale_factor), int(2 * self.upscale_factor)), np.uint8)) - pasted_face = inv_mask_erosion[:, :, None] * inv_restored - total_face_area = np.sum(inv_mask_erosion) # // 3 - # add border - if draw_box: - h, w = face_size - mask_border = np.ones((h, w, 3), dtype=np.float32) - border = int(1400/np.sqrt(total_face_area)) - mask_border[border:h-border, border:w-border,:] = 0 - inv_mask_border = cv2.warpAffine(mask_border, inverse_affine, (w_up, h_up)) - inv_mask_borders.append(inv_mask_border) - # compute the fusion edge based on the area of face - w_edge = int(total_face_area**0.5) // 20 - erosion_radius = w_edge * 2 - inv_mask_center = cv2.erode(inv_mask_erosion, np.ones((erosion_radius, erosion_radius), np.uint8)) - blur_size = w_edge * 2 - inv_soft_mask = cv2.GaussianBlur(inv_mask_center, (blur_size + 1, blur_size + 1), 0) - if len(upsample_img.shape) == 2: # upsample_img is gray image - upsample_img = upsample_img[:, :, None] - inv_soft_mask = inv_soft_mask[:, :, None] - - # parse mask - if self.use_parse: - # inference - face_input = cv2.resize(restored_face, (512, 512), interpolation=cv2.INTER_LINEAR) - face_input = img2tensor(face_input.astype('float32') / 255., bgr2rgb=True, float32=True) - normalize(face_input, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True) - face_input = torch.unsqueeze(face_input, 0).to(self.device) - with torch.no_grad(): - out = self.face_parse(face_input)[0] - out = out.argmax(dim=1).squeeze().cpu().numpy() - - parse_mask = np.zeros(out.shape) - MASK_COLORMAP = [0, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 0, 255, 0, 0, 0] - for idx, color in enumerate(MASK_COLORMAP): - parse_mask[out == idx] = color - # blur the mask - parse_mask = cv2.GaussianBlur(parse_mask, (101, 101), 11) - parse_mask = cv2.GaussianBlur(parse_mask, (101, 101), 11) - # remove the black borders - thres = 10 - parse_mask[:thres, :] = 0 - parse_mask[-thres:, :] = 0 - parse_mask[:, :thres] = 0 - parse_mask[:, -thres:] = 0 - parse_mask = parse_mask / 255. - - parse_mask = cv2.resize(parse_mask, face_size) - parse_mask = cv2.warpAffine(parse_mask, inverse_affine, (w_up, h_up), flags=3) - inv_soft_parse_mask = parse_mask[:, :, None] - # pasted_face = inv_restored - fuse_mask = (inv_soft_parse_mask 256: # 16-bit image - upsample_img = upsample_img.astype(np.uint16) - else: - upsample_img = upsample_img.astype(np.uint8) - - # draw bounding box - if draw_box: - # upsample_input_img = cv2.resize(input_img, (w_up, h_up)) - img_color = np.ones([*upsample_img.shape], dtype=np.float32) - img_color[:,:,0] = 0 - img_color[:,:,1] = 255 - img_color[:,:,2] = 0 - for inv_mask_border in inv_mask_borders: - upsample_img = inv_mask_border * img_color + (1 - inv_mask_border) * upsample_img - # upsample_input_img = inv_mask_border * img_color + (1 - inv_mask_border) * upsample_input_img - - if save_path is not None: - path = os.path.splitext(save_path)[0] - save_path = f'{path}.{self.save_ext}' - imwrite(upsample_img, save_path) - return upsample_img - - def clean_all(self): - self.all_landmarks_5 = [] - self.restored_faces = [] - self.affine_matrices = [] - self.cropped_faces = [] - self.inverse_affine_matrices = [] - self.det_faces = [] - self.pad_input_imgs = [] \ No newline at end of file diff --git a/CodeFormer/CodeFormer/facelib/utils/face_utils.py b/CodeFormer/CodeFormer/facelib/utils/face_utils.py deleted file mode 100644 index f1474a2a4419b6b62fab8a919ef805b802556464..0000000000000000000000000000000000000000 --- a/CodeFormer/CodeFormer/facelib/utils/face_utils.py +++ /dev/null @@ -1,248 +0,0 @@ -import cv2 -import numpy as np -import torch - - -def compute_increased_bbox(bbox, increase_area, preserve_aspect=True): - left, top, right, bot = bbox - width = right - left - height = bot - top - - if preserve_aspect: - width_increase = max(increase_area, ((1 + 2 * increase_area) * height - width) / (2 * width)) - height_increase = max(increase_area, ((1 + 2 * increase_area) * width - height) / (2 * height)) - else: - width_increase = height_increase = increase_area - left = int(left - width_increase * width) - top = int(top - height_increase * height) - right = int(right + width_increase * width) - bot = int(bot + height_increase * height) - return (left, top, right, bot) - - -def get_valid_bboxes(bboxes, h, w): - left = max(bboxes[0], 0) - top = max(bboxes[1], 0) - right = min(bboxes[2], w) - bottom = min(bboxes[3], h) - return (left, top, right, bottom) - - -def align_crop_face_landmarks(img, - landmarks, - output_size, - transform_size=None, - enable_padding=True, - return_inverse_affine=False, - shrink_ratio=(1, 1)): - """Align and crop face with landmarks. - - The output_size and transform_size are based on width. The height is - adjusted based on shrink_ratio_h/shring_ration_w. - - Modified from: - https://github.com/NVlabs/ffhq-dataset/blob/master/download_ffhq.py - - Args: - img (Numpy array): Input image. - landmarks (Numpy array): 5 or 68 or 98 landmarks. - output_size (int): Output face size. - transform_size (ing): Transform size. Usually the four time of - output_size. - enable_padding (float): Default: True. - shrink_ratio (float | tuple[float] | list[float]): Shring the whole - face for height and width (crop larger area). Default: (1, 1). - - Returns: - (Numpy array): Cropped face. - """ - lm_type = 'retinaface_5' # Options: dlib_5, retinaface_5 - - if isinstance(shrink_ratio, (float, int)): - shrink_ratio = (shrink_ratio, shrink_ratio) - if transform_size is None: - transform_size = output_size * 4 - - # Parse landmarks - lm = np.array(landmarks) - if lm.shape[0] == 5 and lm_type == 'retinaface_5': - eye_left = lm[0] - eye_right = lm[1] - mouth_avg = (lm[3] + lm[4]) * 0.5 - elif lm.shape[0] == 5 and lm_type == 'dlib_5': - lm_eye_left = lm[2:4] - lm_eye_right = lm[0:2] - eye_left = np.mean(lm_eye_left, axis=0) - eye_right = np.mean(lm_eye_right, axis=0) - mouth_avg = lm[4] - elif lm.shape[0] == 68: - lm_eye_left = lm[36:42] - lm_eye_right = lm[42:48] - eye_left = np.mean(lm_eye_left, axis=0) - eye_right = np.mean(lm_eye_right, axis=0) - mouth_avg = (lm[48] + lm[54]) * 0.5 - elif lm.shape[0] == 98: - lm_eye_left = lm[60:68] - lm_eye_right = lm[68:76] - eye_left = np.mean(lm_eye_left, axis=0) - eye_right = np.mean(lm_eye_right, axis=0) - mouth_avg = (lm[76] + lm[82]) * 0.5 - - eye_avg = (eye_left + eye_right) * 0.5 - eye_to_eye = eye_right - eye_left - eye_to_mouth = mouth_avg - eye_avg - - # Get the oriented crop rectangle - # x: half width of the oriented crop rectangle - x = eye_to_eye - np.flipud(eye_to_mouth) * [-1, 1] - # - np.flipud(eye_to_mouth) * [-1, 1]: rotate 90 clockwise - # norm with the hypotenuse: get the direction - x /= np.hypot(*x) # get the hypotenuse of a right triangle - rect_scale = 1 # TODO: you can edit it to get larger rect - x *= max(np.hypot(*eye_to_eye) * 2.0 * rect_scale, np.hypot(*eye_to_mouth) * 1.8 * rect_scale) - # y: half height of the oriented crop rectangle - y = np.flipud(x) * [-1, 1] - - x *= shrink_ratio[1] # width - y *= shrink_ratio[0] # height - - # c: center - c = eye_avg + eye_to_mouth * 0.1 - # quad: (left_top, left_bottom, right_bottom, right_top) - quad = np.stack([c - x - y, c - x + y, c + x + y, c + x - y]) - # qsize: side length of the square - qsize = np.hypot(*x) * 2 - - quad_ori = np.copy(quad) - # Shrink, for large face - # TODO: do we really need shrink - shrink = int(np.floor(qsize / output_size * 0.5)) - if shrink > 1: - h, w = img.shape[0:2] - rsize = (int(np.rint(float(w) / shrink)), int(np.rint(float(h) / shrink))) - img = cv2.resize(img, rsize, interpolation=cv2.INTER_AREA) - quad /= shrink - qsize /= shrink - - # Crop - h, w = img.shape[0:2] - border = max(int(np.rint(qsize * 0.1)), 3) - crop = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), int(np.ceil(max(quad[:, 0]))), - int(np.ceil(max(quad[:, 1])))) - crop = (max(crop[0] - border, 0), max(crop[1] - border, 0), min(crop[2] + border, w), min(crop[3] + border, h)) - if crop[2] - crop[0] < w or crop[3] - crop[1] < h: - img = img[crop[1]:crop[3], crop[0]:crop[2], :] - quad -= crop[0:2] - - # Pad - # pad: (width_left, height_top, width_right, height_bottom) - h, w = img.shape[0:2] - pad = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), int(np.ceil(max(quad[:, 0]))), - int(np.ceil(max(quad[:, 1])))) - pad = (max(-pad[0] + border, 0), max(-pad[1] + border, 0), max(pad[2] - w + border, 0), max(pad[3] - h + border, 0)) - if enable_padding and max(pad) > border - 4: - pad = np.maximum(pad, int(np.rint(qsize * 0.3))) - img = np.pad(img, ((pad[1], pad[3]), (pad[0], pad[2]), (0, 0)), 'reflect') - h, w = img.shape[0:2] - y, x, _ = np.ogrid[:h, :w, :1] - mask = np.maximum(1.0 - np.minimum(np.float32(x) / pad[0], - np.float32(w - 1 - x) / pad[2]), - 1.0 - np.minimum(np.float32(y) / pad[1], - np.float32(h - 1 - y) / pad[3])) - blur = int(qsize * 0.02) - if blur % 2 == 0: - blur += 1 - blur_img = cv2.boxFilter(img, 0, ksize=(blur, blur)) - - img = img.astype('float32') - img += (blur_img - img) * np.clip(mask * 3.0 + 1.0, 0.0, 1.0) - img += (np.median(img, axis=(0, 1)) - img) * np.clip(mask, 0.0, 1.0) - img = np.clip(img, 0, 255) # float32, [0, 255] - quad += pad[:2] - - # Transform use cv2 - h_ratio = shrink_ratio[0] / shrink_ratio[1] - dst_h, dst_w = int(transform_size * h_ratio), transform_size - template = np.array([[0, 0], [0, dst_h], [dst_w, dst_h], [dst_w, 0]]) - # use cv2.LMEDS method for the equivalence to skimage transform - # ref: https://blog.csdn.net/yichxi/article/details/115827338 - affine_matrix = cv2.estimateAffinePartial2D(quad, template, method=cv2.LMEDS)[0] - cropped_face = cv2.warpAffine( - img, affine_matrix, (dst_w, dst_h), borderMode=cv2.BORDER_CONSTANT, borderValue=(135, 133, 132)) # gray - - if output_size < transform_size: - cropped_face = cv2.resize( - cropped_face, (output_size, int(output_size * h_ratio)), interpolation=cv2.INTER_LINEAR) - - if return_inverse_affine: - dst_h, dst_w = int(output_size * h_ratio), output_size - template = np.array([[0, 0], [0, dst_h], [dst_w, dst_h], [dst_w, 0]]) - # use cv2.LMEDS method for the equivalence to skimage transform - # ref: https://blog.csdn.net/yichxi/article/details/115827338 - affine_matrix = cv2.estimateAffinePartial2D( - quad_ori, np.array([[0, 0], [0, output_size], [dst_w, dst_h], [dst_w, 0]]), method=cv2.LMEDS)[0] - inverse_affine = cv2.invertAffineTransform(affine_matrix) - else: - inverse_affine = None - return cropped_face, inverse_affine - - -def paste_face_back(img, face, inverse_affine): - h, w = img.shape[0:2] - face_h, face_w = face.shape[0:2] - inv_restored = cv2.warpAffine(face, inverse_affine, (w, h)) - mask = np.ones((face_h, face_w, 3), dtype=np.float32) - inv_mask = cv2.warpAffine(mask, inverse_affine, (w, h)) - # remove the black borders - inv_mask_erosion = cv2.erode(inv_mask, np.ones((2, 2), np.uint8)) - inv_restored_remove_border = inv_mask_erosion * inv_restored - total_face_area = np.sum(inv_mask_erosion) // 3 - # compute the fusion edge based on the area of face - w_edge = int(total_face_area**0.5) // 20 - erosion_radius = w_edge * 2 - inv_mask_center = cv2.erode(inv_mask_erosion, np.ones((erosion_radius, erosion_radius), np.uint8)) - blur_size = w_edge * 2 - inv_soft_mask = cv2.GaussianBlur(inv_mask_center, (blur_size + 1, blur_size + 1), 0) - img = inv_soft_mask * inv_restored_remove_border + (1 - inv_soft_mask) * img - # float32, [0, 255] - return img - - -if __name__ == '__main__': - import os - - from facelib.detection import init_detection_model - from facelib.utils.face_restoration_helper import get_largest_face - - img_path = '/home/wxt/datasets/ffhq/ffhq_wild/00009.png' - img_name = os.splitext(os.path.basename(img_path))[0] - - # initialize model - det_net = init_detection_model('retinaface_resnet50', half=False) - img_ori = cv2.imread(img_path) - h, w = img_ori.shape[0:2] - # if larger than 800, scale it - scale = max(h / 800, w / 800) - if scale > 1: - img = cv2.resize(img_ori, (int(w / scale), int(h / scale)), interpolation=cv2.INTER_LINEAR) - - with torch.no_grad(): - bboxes = det_net.detect_faces(img, 0.97) - if scale > 1: - bboxes *= scale # the score is incorrect - bboxes = get_largest_face(bboxes, h, w)[0] - - landmarks = np.array([[bboxes[i], bboxes[i + 1]] for i in range(5, 15, 2)]) - - cropped_face, inverse_affine = align_crop_face_landmarks( - img_ori, - landmarks, - output_size=512, - transform_size=None, - enable_padding=True, - return_inverse_affine=True, - shrink_ratio=(1, 1)) - - cv2.imwrite(f'tmp/{img_name}_cropeed_face.png', cropped_face) - img = paste_face_back(img_ori, cropped_face, inverse_affine) - cv2.imwrite(f'tmp/{img_name}_back.png', img) diff --git a/CodeFormer/CodeFormer/facelib/utils/misc.py b/CodeFormer/CodeFormer/facelib/utils/misc.py deleted file mode 100644 index 52e2c0343f972d5bd5c735c5cfbf8b28bca6dd55..0000000000000000000000000000000000000000 --- a/CodeFormer/CodeFormer/facelib/utils/misc.py +++ /dev/null @@ -1,174 +0,0 @@ -import cv2 -import os -import os.path as osp -import numpy as np -from PIL import Image -import torch -from torch.hub import download_url_to_file, get_dir -from urllib.parse import urlparse -# from basicsr.utils.download_util import download_file_from_google_drive -# import gdown - - -ROOT_DIR = os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) - - -def download_pretrained_models(file_ids, save_path_root): - os.makedirs(save_path_root, exist_ok=True) - - for file_name, file_id in file_ids.items(): - file_url = 'https://drive.google.com/uc?id='+file_id - save_path = osp.abspath(osp.join(save_path_root, file_name)) - if osp.exists(save_path): - user_response = input(f'{file_name} already exist. Do you want to cover it? Y/N\n') - if user_response.lower() == 'y': - print(f'Covering {file_name} to {save_path}') - # gdown.download(file_url, save_path, quiet=False) - # download_file_from_google_drive(file_id, save_path) - elif user_response.lower() == 'n': - print(f'Skipping {file_name}') - else: - raise ValueError('Wrong input. Only accepts Y/N.') - else: - print(f'Downloading {file_name} to {save_path}') - # gdown.download(file_url, save_path, quiet=False) - # download_file_from_google_drive(file_id, save_path) - - -def imwrite(img, file_path, params=None, auto_mkdir=True): - """Write image to file. - - Args: - img (ndarray): Image array to be written. - file_path (str): Image file path. - params (None or list): Same as opencv's :func:`imwrite` interface. - auto_mkdir (bool): If the parent folder of `file_path` does not exist, - whether to create it automatically. - - Returns: - bool: Successful or not. - """ - if auto_mkdir: - dir_name = os.path.abspath(os.path.dirname(file_path)) - os.makedirs(dir_name, exist_ok=True) - return cv2.imwrite(file_path, img, params) - - -def img2tensor(imgs, bgr2rgb=True, float32=True): - """Numpy array to tensor. - - Args: - imgs (list[ndarray] | ndarray): Input images. - bgr2rgb (bool): Whether to change bgr to rgb. - float32 (bool): Whether to change to float32. - - Returns: - list[tensor] | tensor: Tensor images. If returned results only have - one element, just return tensor. - """ - - def _totensor(img, bgr2rgb, float32): - if img.shape[2] == 3 and bgr2rgb: - if img.dtype == 'float64': - img = img.astype('float32') - img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) - img = torch.from_numpy(img.transpose(2, 0, 1)) - if float32: - img = img.float() - return img - - if isinstance(imgs, list): - return [_totensor(img, bgr2rgb, float32) for img in imgs] - else: - return _totensor(imgs, bgr2rgb, float32) - - -def load_file_from_url(url, model_dir=None, progress=True, file_name=None): - """Ref:https://github.com/1adrianb/face-alignment/blob/master/face_alignment/utils.py - """ - if model_dir is None: - hub_dir = get_dir() - model_dir = os.path.join(hub_dir, 'checkpoints') - - os.makedirs(os.path.join(ROOT_DIR, model_dir), exist_ok=True) - - parts = urlparse(url) - filename = os.path.basename(parts.path) - if file_name is not None: - filename = file_name - cached_file = os.path.abspath(os.path.join(ROOT_DIR, model_dir, filename)) - if not os.path.exists(cached_file): - print(f'Downloading: "{url}" to {cached_file}\n') - download_url_to_file(url, cached_file, hash_prefix=None, progress=progress) - return cached_file - - -def scandir(dir_path, suffix=None, recursive=False, full_path=False): - """Scan a directory to find the interested files. - Args: - dir_path (str): Path of the directory. - suffix (str | tuple(str), optional): File suffix that we are - interested in. Default: None. - recursive (bool, optional): If set to True, recursively scan the - directory. Default: False. - full_path (bool, optional): If set to True, include the dir_path. - Default: False. - Returns: - A generator for all the interested files with relative paths. - """ - - if (suffix is not None) and not isinstance(suffix, (str, tuple)): - raise TypeError('"suffix" must be a string or tuple of strings') - - root = dir_path - - def _scandir(dir_path, suffix, recursive): - for entry in os.scandir(dir_path): - if not entry.name.startswith('.') and entry.is_file(): - if full_path: - return_path = entry.path - else: - return_path = osp.relpath(entry.path, root) - - if suffix is None: - yield return_path - elif return_path.endswith(suffix): - yield return_path - else: - if recursive: - yield from _scandir(entry.path, suffix=suffix, recursive=recursive) - else: - continue - - return _scandir(dir_path, suffix=suffix, recursive=recursive) - - -def is_gray(img, threshold=10): - img = Image.fromarray(img) - if len(img.getbands()) == 1: - return True - img1 = np.asarray(img.getchannel(channel=0), dtype=np.int16) - img2 = np.asarray(img.getchannel(channel=1), dtype=np.int16) - img3 = np.asarray(img.getchannel(channel=2), dtype=np.int16) - diff1 = (img1 - img2).var() - diff2 = (img2 - img3).var() - diff3 = (img3 - img1).var() - diff_sum = (diff1 + diff2 + diff3) / 3.0 - if diff_sum <= threshold: - return True - else: - return False - -def rgb2gray(img, out_channel=3): - r, g, b = img[:,:,0], img[:,:,1], img[:,:,2] - gray = 0.2989 * r + 0.5870 * g + 0.1140 * b - if out_channel == 3: - gray = gray[:,:,np.newaxis].repeat(3, axis=2) - return gray - -def bgr2gray(img, out_channel=3): - b, g, r = img[:,:,0], img[:,:,1], img[:,:,2] - gray = 0.2989 * r + 0.5870 * g + 0.1140 * b - if out_channel == 3: - gray = gray[:,:,np.newaxis].repeat(3, axis=2) - return gray diff --git a/CodeFormer/CodeFormer/inference_codeformer.py b/CodeFormer/CodeFormer/inference_codeformer.py deleted file mode 100644 index fdfe8b301cc7c20c2fb653618e379d243603a108..0000000000000000000000000000000000000000 --- a/CodeFormer/CodeFormer/inference_codeformer.py +++ /dev/null @@ -1,189 +0,0 @@ -# Modified by Shangchen Zhou from: https://github.com/TencentARC/GFPGAN/blob/master/inference_gfpgan.py -import os -import cv2 -import argparse -import glob -import torch -from torchvision.transforms.functional import normalize -from basicsr.utils import imwrite, img2tensor, tensor2img -from basicsr.utils.download_util import load_file_from_url -from facelib.utils.face_restoration_helper import FaceRestoreHelper -import torch.nn.functional as F - -from basicsr.utils.registry import ARCH_REGISTRY - -pretrain_model_url = { - 'restoration': 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/codeformer.pth', -} - -def set_realesrgan(): - if not torch.cuda.is_available(): # CPU - import warnings - warnings.warn('The unoptimized RealESRGAN is slow on CPU. We do not use it. ' - 'If you really want to use it, please modify the corresponding codes.', - category=RuntimeWarning) - bg_upsampler = None - else: - from basicsr.archs.rrdbnet_arch import RRDBNet - from basicsr.utils.realesrgan_utils import RealESRGANer - model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=2) - bg_upsampler = RealESRGANer( - scale=2, - model_path='https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.1/RealESRGAN_x2plus.pth', - model=model, - tile=args.bg_tile, - tile_pad=40, - pre_pad=0, - half=True) # need to set False in CPU mode - return bg_upsampler - -if __name__ == '__main__': - device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') - parser = argparse.ArgumentParser() - - parser.add_argument('--w', type=float, default=0.5, help='Balance the quality and fidelity') - parser.add_argument('--upscale', type=int, default=2, help='The final upsampling scale of the image. Default: 2') - parser.add_argument('--test_path', type=str, default='./inputs/cropped_faces') - parser.add_argument('--has_aligned', action='store_true', help='Input are cropped and aligned faces') - parser.add_argument('--only_center_face', action='store_true', help='Only restore the center face') - # large det_model: 'YOLOv5l', 'retinaface_resnet50' - # small det_model: 'YOLOv5n', 'retinaface_mobile0.25' - parser.add_argument('--detection_model', type=str, default='retinaface_resnet50') - parser.add_argument('--draw_box', action='store_true') - parser.add_argument('--bg_upsampler', type=str, default='None', help='background upsampler. Optional: realesrgan') - parser.add_argument('--face_upsample', action='store_true', help='face upsampler after enhancement.') - parser.add_argument('--bg_tile', type=int, default=400, help='Tile size for background sampler. Default: 400') - - args = parser.parse_args() - - # ------------------------ input & output ------------------------ - if args.test_path.endswith('/'): # solve when path ends with / - args.test_path = args.test_path[:-1] - - w = args.w - result_root = f'results/{os.path.basename(args.test_path)}_{w}' - - # ------------------ set up background upsampler ------------------ - if args.bg_upsampler == 'realesrgan': - bg_upsampler = set_realesrgan() - else: - bg_upsampler = None - - # ------------------ set up face upsampler ------------------ - if args.face_upsample: - if bg_upsampler is not None: - face_upsampler = bg_upsampler - else: - face_upsampler = set_realesrgan() - else: - face_upsampler = None - - # ------------------ set up CodeFormer restorer ------------------- - net = ARCH_REGISTRY.get('CodeFormer')(dim_embd=512, codebook_size=1024, n_head=8, n_layers=9, - connect_list=['32', '64', '128', '256']).to(device) - - # ckpt_path = 'weights/CodeFormer/codeformer.pth' - ckpt_path = load_file_from_url(url=pretrain_model_url['restoration'], - model_dir='weights/CodeFormer', progress=True, file_name=None) - checkpoint = torch.load(ckpt_path)['params_ema'] - net.load_state_dict(checkpoint) - net.eval() - - # ------------------ set up FaceRestoreHelper ------------------- - # large det_model: 'YOLOv5l', 'retinaface_resnet50' - # small det_model: 'YOLOv5n', 'retinaface_mobile0.25' - if not args.has_aligned: - print(f'Face detection model: {args.detection_model}') - if bg_upsampler is not None: - print(f'Background upsampling: True, Face upsampling: {args.face_upsample}') - else: - print(f'Background upsampling: False, Face upsampling: {args.face_upsample}') - - face_helper = FaceRestoreHelper( - args.upscale, - face_size=512, - crop_ratio=(1, 1), - det_model = args.detection_model, - save_ext='png', - use_parse=True, - device=device) - - # -------------------- start to processing --------------------- - # scan all the jpg and png images - for img_path in sorted(glob.glob(os.path.join(args.test_path, '*.[jp][pn]g'))): - # clean all the intermediate results to process the next image - face_helper.clean_all() - - img_name = os.path.basename(img_path) - print(f'Processing: {img_name}') - basename, ext = os.path.splitext(img_name) - img = cv2.imread(img_path, cv2.IMREAD_COLOR) - - if args.has_aligned: - # the input faces are already cropped and aligned - img = cv2.resize(img, (512, 512), interpolation=cv2.INTER_LINEAR) - face_helper.cropped_faces = [img] - else: - face_helper.read_image(img) - # get face landmarks for each face - num_det_faces = face_helper.get_face_landmarks_5( - only_center_face=args.only_center_face, resize=640, eye_dist_threshold=5) - print(f'\tdetect {num_det_faces} faces') - # align and warp each face - face_helper.align_warp_face() - - # face restoration for each cropped face - for idx, cropped_face in enumerate(face_helper.cropped_faces): - # prepare data - cropped_face_t = img2tensor(cropped_face / 255., bgr2rgb=True, float32=True) - normalize(cropped_face_t, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True) - cropped_face_t = cropped_face_t.unsqueeze(0).to(device) - - try: - with torch.no_grad(): - output = net(cropped_face_t, w=w, adain=True)[0] - restored_face = tensor2img(output, rgb2bgr=True, min_max=(-1, 1)) - del output - torch.cuda.empty_cache() - except Exception as error: - print(f'\tFailed inference for CodeFormer: {error}') - restored_face = tensor2img(cropped_face_t, rgb2bgr=True, min_max=(-1, 1)) - - restored_face = restored_face.astype('uint8') - face_helper.add_restored_face(restored_face) - - # paste_back - if not args.has_aligned: - # upsample the background - if bg_upsampler is not None: - # Now only support RealESRGAN for upsampling background - bg_img = bg_upsampler.enhance(img, outscale=args.upscale)[0] - else: - bg_img = None - face_helper.get_inverse_affine(None) - # paste each restored face to the input image - if args.face_upsample and face_upsampler is not None: - restored_img = face_helper.paste_faces_to_input_image(upsample_img=bg_img, draw_box=args.draw_box, face_upsampler=face_upsampler) - else: - restored_img = face_helper.paste_faces_to_input_image(upsample_img=bg_img, draw_box=args.draw_box) - - # save faces - for idx, (cropped_face, restored_face) in enumerate(zip(face_helper.cropped_faces, face_helper.restored_faces)): - # save cropped face - if not args.has_aligned: - save_crop_path = os.path.join(result_root, 'cropped_faces', f'{basename}_{idx:02d}.png') - imwrite(cropped_face, save_crop_path) - # save restored face - if args.has_aligned: - save_face_name = f'{basename}.png' - else: - save_face_name = f'{basename}_{idx:02d}.png' - save_restore_path = os.path.join(result_root, 'restored_faces', save_face_name) - imwrite(restored_face, save_restore_path) - - # save restored img - if not args.has_aligned and restored_img is not None: - save_restore_path = os.path.join(result_root, 'final_results', f'{basename}.png') - imwrite(restored_img, save_restore_path) - - print(f'\nAll results are saved in {result_root}') diff --git a/CodeFormer/CodeFormer/requirements.txt b/CodeFormer/CodeFormer/requirements.txt deleted file mode 100644 index f97dfde85ebe83708fc1f6f7234a0ef69f18bde5..0000000000000000000000000000000000000000 --- a/CodeFormer/CodeFormer/requirements.txt +++ /dev/null @@ -1,20 +0,0 @@ -addict -future -lmdb -numpy -opencv-python -Pillow -pyyaml -requests -scikit-image -scipy -tb-nightly -torch>=1.7.1 -torchvision -tqdm -yapf -lpips -gdown # supports downloading the large file from Google Drive -# cmake -# dlib -# conda install -c conda-forge dlib \ No newline at end of file diff --git a/CodeFormer/CodeFormer/scripts/crop_align_face.py b/CodeFormer/CodeFormer/scripts/crop_align_face.py deleted file mode 100644 index 31e66266ac0e5f818fa18b6409993151086bbc8b..0000000000000000000000000000000000000000 --- a/CodeFormer/CodeFormer/scripts/crop_align_face.py +++ /dev/null @@ -1,192 +0,0 @@ -""" -brief: face alignment with FFHQ method (https://github.com/NVlabs/ffhq-dataset) -author: lzhbrian (https://lzhbrian.me) -link: https://gist.github.com/lzhbrian/bde87ab23b499dd02ba4f588258f57d5 -date: 2020.1.5 -note: code is heavily borrowed from - https://github.com/NVlabs/ffhq-dataset - http://dlib.net/face_landmark_detection.py.html -requirements: - conda install Pillow numpy scipy - conda install -c conda-forge dlib - # download face landmark model from: - # http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2 -""" - -import cv2 -import dlib -import glob -import numpy as np -import os -import PIL -import PIL.Image -import scipy -import scipy.ndimage -import sys -import argparse - -# download model from: http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2 -predictor = dlib.shape_predictor('weights/dlib/shape_predictor_68_face_landmarks-fbdc2cb8.dat') - - -def get_landmark(filepath, only_keep_largest=True): - """get landmark with dlib - :return: np.array shape=(68, 2) - """ - detector = dlib.get_frontal_face_detector() - - img = dlib.load_rgb_image(filepath) - dets = detector(img, 1) - - # Shangchen modified - print("Number of faces detected: {}".format(len(dets))) - if only_keep_largest: - print('Detect several faces and only keep the largest.') - face_areas = [] - for k, d in enumerate(dets): - face_area = (d.right() - d.left()) * (d.bottom() - d.top()) - face_areas.append(face_area) - - largest_idx = face_areas.index(max(face_areas)) - d = dets[largest_idx] - shape = predictor(img, d) - print("Part 0: {}, Part 1: {} ...".format( - shape.part(0), shape.part(1))) - else: - for k, d in enumerate(dets): - print("Detection {}: Left: {} Top: {} Right: {} Bottom: {}".format( - k, d.left(), d.top(), d.right(), d.bottom())) - # Get the landmarks/parts for the face in box d. - shape = predictor(img, d) - print("Part 0: {}, Part 1: {} ...".format( - shape.part(0), shape.part(1))) - - t = list(shape.parts()) - a = [] - for tt in t: - a.append([tt.x, tt.y]) - lm = np.array(a) - # lm is a shape=(68,2) np.array - return lm - -def align_face(filepath, out_path): - """ - :param filepath: str - :return: PIL Image - """ - try: - lm = get_landmark(filepath) - except: - print('No landmark ...') - return - - lm_chin = lm[0:17] # left-right - lm_eyebrow_left = lm[17:22] # left-right - lm_eyebrow_right = lm[22:27] # left-right - lm_nose = lm[27:31] # top-down - lm_nostrils = lm[31:36] # top-down - lm_eye_left = lm[36:42] # left-clockwise - lm_eye_right = lm[42:48] # left-clockwise - lm_mouth_outer = lm[48:60] # left-clockwise - lm_mouth_inner = lm[60:68] # left-clockwise - - # Calculate auxiliary vectors. - eye_left = np.mean(lm_eye_left, axis=0) - eye_right = np.mean(lm_eye_right, axis=0) - eye_avg = (eye_left + eye_right) * 0.5 - eye_to_eye = eye_right - eye_left - mouth_left = lm_mouth_outer[0] - mouth_right = lm_mouth_outer[6] - mouth_avg = (mouth_left + mouth_right) * 0.5 - eye_to_mouth = mouth_avg - eye_avg - - # Choose oriented crop rectangle. - x = eye_to_eye - np.flipud(eye_to_mouth) * [-1, 1] - x /= np.hypot(*x) - x *= max(np.hypot(*eye_to_eye) * 2.0, np.hypot(*eye_to_mouth) * 1.8) - y = np.flipud(x) * [-1, 1] - c = eye_avg + eye_to_mouth * 0.1 - quad = np.stack([c - x - y, c - x + y, c + x + y, c + x - y]) - qsize = np.hypot(*x) * 2 - - # read image - img = PIL.Image.open(filepath) - - output_size = 512 - transform_size = 4096 - enable_padding = False - - # Shrink. - shrink = int(np.floor(qsize / output_size * 0.5)) - if shrink > 1: - rsize = (int(np.rint(float(img.size[0]) / shrink)), - int(np.rint(float(img.size[1]) / shrink))) - img = img.resize(rsize, PIL.Image.ANTIALIAS) - quad /= shrink - qsize /= shrink - - # Crop. - border = max(int(np.rint(qsize * 0.1)), 3) - crop = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), - int(np.ceil(max(quad[:, 0]))), int(np.ceil(max(quad[:, 1])))) - crop = (max(crop[0] - border, 0), max(crop[1] - border, 0), - min(crop[2] + border, - img.size[0]), min(crop[3] + border, img.size[1])) - if crop[2] - crop[0] < img.size[0] or crop[3] - crop[1] < img.size[1]: - img = img.crop(crop) - quad -= crop[0:2] - - # Pad. - pad = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), - int(np.ceil(max(quad[:, 0]))), int(np.ceil(max(quad[:, 1])))) - pad = (max(-pad[0] + border, - 0), max(-pad[1] + border, - 0), max(pad[2] - img.size[0] + border, - 0), max(pad[3] - img.size[1] + border, 0)) - if enable_padding and max(pad) > border - 4: - pad = np.maximum(pad, int(np.rint(qsize * 0.3))) - img = np.pad( - np.float32(img), ((pad[1], pad[3]), (pad[0], pad[2]), (0, 0)), - 'reflect') - h, w, _ = img.shape - y, x, _ = np.ogrid[:h, :w, :1] - mask = np.maximum( - 1.0 - - np.minimum(np.float32(x) / pad[0], - np.float32(w - 1 - x) / pad[2]), 1.0 - - np.minimum(np.float32(y) / pad[1], - np.float32(h - 1 - y) / pad[3])) - blur = qsize * 0.02 - img += (scipy.ndimage.gaussian_filter(img, [blur, blur, 0]) - - img) * np.clip(mask * 3.0 + 1.0, 0.0, 1.0) - img += (np.median(img, axis=(0, 1)) - img) * np.clip(mask, 0.0, 1.0) - img = PIL.Image.fromarray( - np.uint8(np.clip(np.rint(img), 0, 255)), 'RGB') - quad += pad[:2] - - img = img.transform((transform_size, transform_size), PIL.Image.QUAD, - (quad + 0.5).flatten(), PIL.Image.BILINEAR) - - if output_size < transform_size: - img = img.resize((output_size, output_size), PIL.Image.ANTIALIAS) - - # Save aligned image. - print('saveing: ', out_path) - img.save(out_path) - - return img, np.max(quad[:, 0]) - np.min(quad[:, 0]) - - -if __name__ == '__main__': - parser = argparse.ArgumentParser() - parser.add_argument('--in_dir', type=str, default='./inputs/whole_imgs') - parser.add_argument('--out_dir', type=str, default='./inputs/cropped_faces') - args = parser.parse_args() - - img_list = sorted(glob.glob(f'{args.in_dir}/*.png')) - img_list = sorted(img_list) - - for in_path in img_list: - out_path = os.path.join(args.out_dir, in_path.split("/")[-1]) - out_path = out_path.replace('.jpg', '.png') - size_ = align_face(in_path, out_path) \ No newline at end of file diff --git a/CodeFormer/CodeFormer/scripts/download_pretrained_models.py b/CodeFormer/CodeFormer/scripts/download_pretrained_models.py deleted file mode 100644 index daa6e8ca14ea91c89a318e85d9f182eb7d1bf025..0000000000000000000000000000000000000000 --- a/CodeFormer/CodeFormer/scripts/download_pretrained_models.py +++ /dev/null @@ -1,40 +0,0 @@ -import argparse -import os -from os import path as osp - -from basicsr.utils.download_util import load_file_from_url - - -def download_pretrained_models(method, file_urls): - save_path_root = f'./weights/{method}' - os.makedirs(save_path_root, exist_ok=True) - - for file_name, file_url in file_urls.items(): - save_path = load_file_from_url(url=file_url, model_dir=save_path_root, progress=True, file_name=file_name) - - -if __name__ == '__main__': - parser = argparse.ArgumentParser() - - parser.add_argument( - 'method', - type=str, - help=("Options: 'CodeFormer' 'facelib'. Set to 'all' to download all the models.")) - args = parser.parse_args() - - file_urls = { - 'CodeFormer': { - 'codeformer.pth': 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/codeformer.pth' - }, - 'facelib': { - # 'yolov5l-face.pth': 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/yolov5l-face.pth', - 'detection_Resnet50_Final.pth': 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/detection_Resnet50_Final.pth', - 'parsing_parsenet.pth': 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/parsing_parsenet.pth' - } - } - - if args.method == 'all': - for method in file_urls.keys(): - download_pretrained_models(method, file_urls[method]) - else: - download_pretrained_models(args.method, file_urls[args.method]) \ No newline at end of file diff --git a/CodeFormer/CodeFormer/scripts/download_pretrained_models_from_gdrive.py b/CodeFormer/CodeFormer/scripts/download_pretrained_models_from_gdrive.py deleted file mode 100644 index 7df5be6fc260394ee9bbd0a7ae377e2ca657fe83..0000000000000000000000000000000000000000 --- a/CodeFormer/CodeFormer/scripts/download_pretrained_models_from_gdrive.py +++ /dev/null @@ -1,60 +0,0 @@ -import argparse -import os -from os import path as osp - -# from basicsr.utils.download_util import download_file_from_google_drive -import gdown - - -def download_pretrained_models(method, file_ids): - save_path_root = f'./weights/{method}' - os.makedirs(save_path_root, exist_ok=True) - - for file_name, file_id in file_ids.items(): - file_url = 'https://drive.google.com/uc?id='+file_id - save_path = osp.abspath(osp.join(save_path_root, file_name)) - if osp.exists(save_path): - user_response = input(f'{file_name} already exist. Do you want to cover it? Y/N\n') - if user_response.lower() == 'y': - print(f'Covering {file_name} to {save_path}') - gdown.download(file_url, save_path, quiet=False) - # download_file_from_google_drive(file_id, save_path) - elif user_response.lower() == 'n': - print(f'Skipping {file_name}') - else: - raise ValueError('Wrong input. Only accepts Y/N.') - else: - print(f'Downloading {file_name} to {save_path}') - gdown.download(file_url, save_path, quiet=False) - # download_file_from_google_drive(file_id, save_path) - -if __name__ == '__main__': - parser = argparse.ArgumentParser() - - parser.add_argument( - 'method', - type=str, - help=("Options: 'CodeFormer' 'facelib'. Set to 'all' to download all the models.")) - args = parser.parse_args() - - # file name: file id - # 'dlib': { - # 'mmod_human_face_detector-4cb19393.dat': '1qD-OqY8M6j4PWUP_FtqfwUPFPRMu6ubX', - # 'shape_predictor_5_face_landmarks-c4b1e980.dat': '1vF3WBUApw4662v9Pw6wke3uk1qxnmLdg', - # 'shape_predictor_68_face_landmarks-fbdc2cb8.dat': '1tJyIVdCHaU6IDMDx86BZCxLGZfsWB8yq' - # } - file_ids = { - 'CodeFormer': { - 'codeformer.pth': '1v_E_vZvP-dQPF55Kc5SRCjaKTQXDz-JB' - }, - 'facelib': { - 'yolov5l-face.pth': '131578zMA6B2x8VQHyHfa6GEPtulMCNzV', - 'parsing_parsenet.pth': '16pkohyZZ8ViHGBk3QtVqxLZKzdo466bK' - } - } - - if args.method == 'all': - for method in file_ids.keys(): - download_pretrained_models(method, file_ids[method]) - else: - download_pretrained_models(args.method, file_ids[args.method]) \ No newline at end of file diff --git a/CodeFormer/CodeFormer/weights/CodeFormer/codeformer.pth b/CodeFormer/CodeFormer/weights/CodeFormer/codeformer.pth deleted file mode 100644 index edd450da13c5ff890f70d726c992af569813f6af..0000000000000000000000000000000000000000 --- a/CodeFormer/CodeFormer/weights/CodeFormer/codeformer.pth +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1009e537e0c2a07d4cabce6355f53cb66767cd4b4297ec7a4a64ca4b8a5684b7 -size 376637898 diff --git a/CodeFormer/CodeFormer/weights/README.md b/CodeFormer/CodeFormer/weights/README.md deleted file mode 100644 index 67ad334bd672eeb9f82813cd54e8885331bbb2f2..0000000000000000000000000000000000000000 --- a/CodeFormer/CodeFormer/weights/README.md +++ /dev/null @@ -1,3 +0,0 @@ -# Weights - -Put the downloaded pre-trained models to this folder. \ No newline at end of file diff --git a/CodeFormer/CodeFormer/weights/facelib/detection_Resnet50_Final.pth b/CodeFormer/CodeFormer/weights/facelib/detection_Resnet50_Final.pth deleted file mode 100644 index 16546738ce0a00a9fd47585e0fc52744d31cc117..0000000000000000000000000000000000000000 --- a/CodeFormer/CodeFormer/weights/facelib/detection_Resnet50_Final.pth +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6d1de9c2944f2ccddca5f5e010ea5ae64a39845a86311af6fdf30841b0a5a16d -size 109497761 diff --git a/CodeFormer/CodeFormer/weights/facelib/parsing_parsenet.pth b/CodeFormer/CodeFormer/weights/facelib/parsing_parsenet.pth deleted file mode 100644 index 1ac2efc50360a79c9905dbac57d9d99cbfbe863c..0000000000000000000000000000000000000000 --- a/CodeFormer/CodeFormer/weights/facelib/parsing_parsenet.pth +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3d558d8d0e42c20224f13cf5a29c79eba2d59913419f945545d8cf7b72920de2 -size 85331193 diff --git a/CodeFormer/CodeFormer/weights/realesrgan/RealESRGAN_x2plus.pth b/CodeFormer/CodeFormer/weights/realesrgan/RealESRGAN_x2plus.pth deleted file mode 100644 index 77cc0ef1e8d238fa5cfb409cda2e619a9459ddc9..0000000000000000000000000000000000000000 --- a/CodeFormer/CodeFormer/weights/realesrgan/RealESRGAN_x2plus.pth +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:49fafd45f8fd7aa8d31ab2a22d14d91b536c34494a5cfe31eb5d89c2fa266abb -size 67061725 diff --git a/CodeFormer/README.md b/CodeFormer/README.md deleted file mode 100644 index d7ab51b64598867642cbfd674f9f367d69b40f8e..0000000000000000000000000000000000000000 --- a/CodeFormer/README.md +++ /dev/null @@ -1,12 +0,0 @@ ---- -title: CodeFormer -emoji: 🐼 -colorFrom: blue -colorTo: green -sdk: gradio -sdk_version: 3.37.0 -app_file: app.py -pinned: false ---- - -Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference diff --git a/CodeFormer/app.py b/CodeFormer/app.py deleted file mode 100644 index fdeeed998c950f4d162592f64d1b07223bfb84a3..0000000000000000000000000000000000000000 --- a/CodeFormer/app.py +++ /dev/null @@ -1,304 +0,0 @@ -""" -This file is used for deploying hugging face demo: -https://huggingface.co/spaces/sczhou/CodeFormer -""" - -import sys -sys.path.append('CodeFormer') -import os -import cv2 -import torch -import torch.nn.functional as F -import gradio as gr - -from torchvision.transforms.functional import normalize - -from basicsr.utils import imwrite, img2tensor, tensor2img -from basicsr.utils.download_util import load_file_from_url -from facelib.utils.face_restoration_helper import FaceRestoreHelper -from facelib.utils.misc import is_gray -from basicsr.archs.rrdbnet_arch import RRDBNet -from basicsr.utils.realesrgan_utils import RealESRGANer - -from basicsr.utils.registry import ARCH_REGISTRY - - -os.system("pip freeze") - -pretrain_model_url = { - 'codeformer': 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/codeformer.pth', - 'detection': 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/detection_Resnet50_Final.pth', - 'parsing': 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/parsing_parsenet.pth', - 'realesrgan': 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/RealESRGAN_x2plus.pth' -} -# download weights -if not os.path.exists('CodeFormer/weights/CodeFormer/codeformer.pth'): - load_file_from_url(url=pretrain_model_url['codeformer'], model_dir='CodeFormer/weights/CodeFormer', progress=True, file_name=None) -if not os.path.exists('CodeFormer/weights/facelib/detection_Resnet50_Final.pth'): - load_file_from_url(url=pretrain_model_url['detection'], model_dir='CodeFormer/weights/facelib', progress=True, file_name=None) -if not os.path.exists('CodeFormer/weights/facelib/parsing_parsenet.pth'): - load_file_from_url(url=pretrain_model_url['parsing'], model_dir='CodeFormer/weights/facelib', progress=True, file_name=None) -if not os.path.exists('CodeFormer/weights/realesrgan/RealESRGAN_x2plus.pth'): - load_file_from_url(url=pretrain_model_url['realesrgan'], model_dir='CodeFormer/weights/realesrgan', progress=True, file_name=None) - -# download images -torch.hub.download_url_to_file( - 'https://replicate.com/api/models/sczhou/codeformer/files/fa3fe3d1-76b0-4ca8-ac0d-0a925cb0ff54/06.png', - '01.png') -torch.hub.download_url_to_file( - 'https://replicate.com/api/models/sczhou/codeformer/files/a1daba8e-af14-4b00-86a4-69cec9619b53/04.jpg', - '02.jpg') -torch.hub.download_url_to_file( - 'https://replicate.com/api/models/sczhou/codeformer/files/542d64f9-1712-4de7-85f7-3863009a7c3d/03.jpg', - '03.jpg') -torch.hub.download_url_to_file( - 'https://replicate.com/api/models/sczhou/codeformer/files/a11098b0-a18a-4c02-a19a-9a7045d68426/010.jpg', - '04.jpg') -torch.hub.download_url_to_file( - 'https://replicate.com/api/models/sczhou/codeformer/files/7cf19c2c-e0cf-4712-9af8-cf5bdbb8d0ee/012.jpg', - '05.jpg') -torch.hub.download_url_to_file( - 'https://raw.githubusercontent.com/sczhou/CodeFormer/master/inputs/cropped_faces/0729.png', - '06.png') - -def imread(img_path): - img = cv2.imread(img_path) - img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) - return img - -# set enhancer with RealESRGAN -def set_realesrgan(): - half = True if torch.cuda.is_available() else False - model = RRDBNet( - num_in_ch=3, - num_out_ch=3, - num_feat=64, - num_block=23, - num_grow_ch=32, - scale=2, - ) - upsampler = RealESRGANer( - scale=2, - model_path="CodeFormer/weights/realesrgan/RealESRGAN_x2plus.pth", - model=model, - tile=400, - tile_pad=40, - pre_pad=0, - half=half, - ) - return upsampler - -upsampler = set_realesrgan() -device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') -codeformer_net = ARCH_REGISTRY.get("CodeFormer")( - dim_embd=512, - codebook_size=1024, - n_head=8, - n_layers=9, - connect_list=["32", "64", "128", "256"], -).to(device) -ckpt_path = "CodeFormer/weights/CodeFormer/codeformer.pth" -checkpoint = torch.load(ckpt_path)["params_ema"] -codeformer_net.load_state_dict(checkpoint) -codeformer_net.eval() - -os.makedirs('output', exist_ok=True) - -def inference(image, face_align, background_enhance, face_upsample, upscale, codeformer_fidelity): - """Run a single prediction on the model""" - try: # global try - # take the default setting for the demo - only_center_face = False - draw_box = False - detection_model = "retinaface_resnet50" - - print('Inp:', image, background_enhance, face_upsample, upscale, codeformer_fidelity) - face_align = face_align if face_align is not None else True - background_enhance = background_enhance if background_enhance is not None else True - face_upsample = face_upsample if face_upsample is not None else True - upscale = upscale if (upscale is not None and upscale > 0) else 2 - - has_aligned = not face_align - upscale = 1 if has_aligned else upscale - - img = cv2.imread(str(image), cv2.IMREAD_COLOR) - print('\timage size:', img.shape) - - upscale = int(upscale) # convert type to int - if upscale > 4: # avoid memory exceeded due to too large upscale - upscale = 4 - if upscale > 2 and max(img.shape[:2])>1000: # avoid memory exceeded due to too large img resolution - upscale = 2 - if max(img.shape[:2]) > 1500: # avoid memory exceeded due to too large img resolution - upscale = 1 - background_enhance = False - face_upsample = False - - face_helper = FaceRestoreHelper( - upscale, - face_size=512, - crop_ratio=(1, 1), - det_model=detection_model, - save_ext="png", - use_parse=True, - device=device, - ) - bg_upsampler = upsampler if background_enhance else None - face_upsampler = upsampler if face_upsample else None - - if has_aligned: - # the input faces are already cropped and aligned - img = cv2.resize(img, (512, 512), interpolation=cv2.INTER_LINEAR) - face_helper.is_gray = is_gray(img, threshold=5) - if face_helper.is_gray: - print('\tgrayscale input: True') - face_helper.cropped_faces = [img] - else: - face_helper.read_image(img) - # get face landmarks for each face - num_det_faces = face_helper.get_face_landmarks_5( - only_center_face=only_center_face, resize=640, eye_dist_threshold=5 - ) - print(f'\tdetect {num_det_faces} faces') - # align and warp each face - face_helper.align_warp_face() - - # face restoration for each cropped face - for idx, cropped_face in enumerate(face_helper.cropped_faces): - # prepare data - cropped_face_t = img2tensor( - cropped_face / 255.0, bgr2rgb=True, float32=True - ) - normalize(cropped_face_t, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True) - cropped_face_t = cropped_face_t.unsqueeze(0).to(device) - - try: - with torch.no_grad(): - output = codeformer_net( - cropped_face_t, w=codeformer_fidelity, adain=True - )[0] - restored_face = tensor2img(output, rgb2bgr=True, min_max=(-1, 1)) - del output - torch.cuda.empty_cache() - except RuntimeError as error: - print(f"Failed inference for CodeFormer: {error}") - restored_face = tensor2img( - cropped_face_t, rgb2bgr=True, min_max=(-1, 1) - ) - - restored_face = restored_face.astype("uint8") - face_helper.add_restored_face(restored_face) - - # paste_back - if not has_aligned: - # upsample the background - if bg_upsampler is not None: - # Now only support RealESRGAN for upsampling background - bg_img = bg_upsampler.enhance(img, outscale=upscale)[0] - else: - bg_img = None - face_helper.get_inverse_affine(None) - # paste each restored face to the input image - if face_upsample and face_upsampler is not None: - restored_img = face_helper.paste_faces_to_input_image( - upsample_img=bg_img, - draw_box=draw_box, - face_upsampler=face_upsampler, - ) - else: - restored_img = face_helper.paste_faces_to_input_image( - upsample_img=bg_img, draw_box=draw_box - ) - else: - restored_img = restored_face - - # save restored img - save_path = f'output/out.png' - imwrite(restored_img, str(save_path)) - - restored_img = cv2.cvtColor(restored_img, cv2.COLOR_BGR2RGB) - return restored_img - except Exception as error: - print('Global exception', error) - return None, None - - -title = "CodeFormer: Robust Face Restoration and Enhancement Network" - -description = r"""
CodeFormer logo
-
-Official Gradio demo for Towards Robust Blind Face Restoration with Codebook Lookup Transformer (NeurIPS 2022)
-🔥 CodeFormer is a robust face restoration algorithm for old photos or AI-generated faces.
-🤗 Try CodeFormer for improved stable-diffusion generation!
-""" - -article = r""" -If CodeFormer is helpful, please help to ⭐ the Github Repo. Thanks! -[![GitHub Stars](https://img.shields.io/github/stars/sczhou/CodeFormer?style=social)](https://github.com/sczhou/CodeFormer) - ---- - -📝 **Citation** - -If our work is useful for your research, please consider citing: -```bibtex -@inproceedings{zhou2022codeformer, - author = {Zhou, Shangchen and Chan, Kelvin C.K. and Li, Chongyi and Loy, Chen Change}, - title = {Towards Robust Blind Face Restoration with Codebook Lookup TransFormer}, - booktitle = {NeurIPS}, - year = {2022} -} -``` - -📋 **License** - -This project is licensed under S-Lab License 1.0. -Redistribution and use for non-commercial purposes should follow this license. - -📧 **Contact** - -If you have any questions, please feel free to reach me out at shangchenzhou@gmail.com. - -🤗 **Find Me:** - - - - - - - -
Github FollowTwitter Follow
- -
visitors
-""" - -demo = gr.Interface( - inference, [ - gr.Image(type="filepath", label="Input"), - gr.Checkbox(value=True, label="Pre_Face_Align"), - gr.Checkbox(value=True, label="Background_Enhance"), - gr.Checkbox(value=True, label="Face_Upsample"), - gr.Number(value=2, label="Rescaling_Factor (up to 4)"), - gr.Slider(0, 1, value=0.5, step=0.01, label='Codeformer_Fidelity (0 for better quality, 1 for better identity)') - ], [ - gr.Image(type="numpy", label="Output").style(height='auto') - ], - title=title, - description=description, - article=article, - examples=[ - ['01.png', True, True, True, 2, 0.7], - ['02.jpg', True, True, True, 2, 0.7], - ['03.jpg', True, True, True, 2, 0.7], - ['04.jpg', True, True, True, 2, 0.1], - ['05.jpg', True, True, True, 2, 0.1], - ['06.png', False, True, True, 1, 0.5] - ]) - -DEBUG = os.getenv('DEBUG') == '1' -demo.queue(api_open=False, concurrency_count=2, max_size=10) -demo.launch(debug=DEBUG,share=True) \ No newline at end of file diff --git a/CodeFormer/app_2.py b/CodeFormer/app_2.py deleted file mode 100644 index 72411526ce70e2b3246caa7c4e49825ab6b6c7d6..0000000000000000000000000000000000000000 --- a/CodeFormer/app_2.py +++ /dev/null @@ -1,306 +0,0 @@ -""" -This file is used for deploying hugging face demo: -https://huggingface.co/spaces/sczhou/CodeFormer -""" - -import sys -sys.path.append('CodeFormer') -import os -import cv2 -import torch -import torch.nn.functional as F -import gradio as gr -from itertools import chain - -from torchvision.transforms.functional import normalize - -from basicsr.utils import imwrite, img2tensor, tensor2img -from basicsr.utils.download_util import load_file_from_url -from facelib.utils.face_restoration_helper import FaceRestoreHelper -from facelib.utils.misc import is_gray -from basicsr.archs.rrdbnet_arch import RRDBNet -from basicsr.utils.realesrgan_utils import RealESRGANer - -from basicsr.utils.registry import ARCH_REGISTRY - - -os.system("pip freeze") - -pretrain_model_url = { - 'codeformer': 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/codeformer.pth', - 'detection': 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/detection_Resnet50_Final.pth', - 'parsing': 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/parsing_parsenet.pth', - 'realesrgan': 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/RealESRGAN_x2plus.pth' -} -# download weights -if not os.path.exists('CodeFormer/weights/CodeFormer/codeformer.pth'): - load_file_from_url(url=pretrain_model_url['codeformer'], model_dir='CodeFormer/weights/CodeFormer', progress=True, file_name=None) -if not os.path.exists('CodeFormer/weights/facelib/detection_Resnet50_Final.pth'): - load_file_from_url(url=pretrain_model_url['detection'], model_dir='CodeFormer/weights/facelib', progress=True, file_name=None) -if not os.path.exists('CodeFormer/weights/facelib/parsing_parsenet.pth'): - load_file_from_url(url=pretrain_model_url['parsing'], model_dir='CodeFormer/weights/facelib', progress=True, file_name=None) -if not os.path.exists('CodeFormer/weights/realesrgan/RealESRGAN_x2plus.pth'): - load_file_from_url(url=pretrain_model_url['realesrgan'], model_dir='CodeFormer/weights/realesrgan', progress=True, file_name=None) - -# download images -torch.hub.download_url_to_file( - 'https://replicate.com/api/models/sczhou/codeformer/files/fa3fe3d1-76b0-4ca8-ac0d-0a925cb0ff54/06.png', - '01.png') -torch.hub.download_url_to_file( - 'https://replicate.com/api/models/sczhou/codeformer/files/a1daba8e-af14-4b00-86a4-69cec9619b53/04.jpg', - '02.jpg') -torch.hub.download_url_to_file( - 'https://replicate.com/api/models/sczhou/codeformer/files/542d64f9-1712-4de7-85f7-3863009a7c3d/03.jpg', - '03.jpg') -torch.hub.download_url_to_file( - 'https://replicate.com/api/models/sczhou/codeformer/files/a11098b0-a18a-4c02-a19a-9a7045d68426/010.jpg', - '04.jpg') -torch.hub.download_url_to_file( - 'https://replicate.com/api/models/sczhou/codeformer/files/7cf19c2c-e0cf-4712-9af8-cf5bdbb8d0ee/012.jpg', - '05.jpg') - -def imread(img_path): - img = cv2.imread(img_path) - img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) - return img - -# set enhancer with RealESRGAN -def set_realesrgan(): - half = True if torch.cuda.is_available() else False - model = RRDBNet( - num_in_ch=3, - num_out_ch=3, - num_feat=64, - num_block=23, - num_grow_ch=32, - scale=2, - ) - upsampler = RealESRGANer( - scale=2, - model_path="CodeFormer/weights/realesrgan/RealESRGAN_x2plus.pth", - model=model, - tile=400, - tile_pad=40, - pre_pad=0, - half=half, - ) - return upsampler - -upsampler = set_realesrgan() -device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') -codeformer_net = ARCH_REGISTRY.get("CodeFormer")( - dim_embd=512, - codebook_size=1024, - n_head=8, - n_layers=9, - connect_list=["32", "64", "128", "256"], -).to(device) -ckpt_path = "CodeFormer/weights/CodeFormer/codeformer.pth" -checkpoint = torch.load(ckpt_path)["params_ema"] -codeformer_net.load_state_dict(checkpoint) -codeformer_net.eval() - -os.makedirs('output', exist_ok=True) - -def inference(image, background_enhance, face_upsample, upscale, codeformer_fidelity): - """Run a single prediction on the model""" - try: # global try - # take the default setting for the demo - has_aligned = False - only_center_face = False - draw_box = False - detection_model = "retinaface_resnet50" - print('Inp:', image, background_enhance, face_upsample, upscale, codeformer_fidelity) - - if background_enhance is None: background_enhance = True - if face_upsample is None: face_upsample = True - if upscale is None: upscale = 2 - - img = cv2.imread(str(image), cv2.IMREAD_COLOR) - print('\timage size:', img.shape) - - upscale = int(upscale) # convert type to int - if upscale > 4: # avoid memory exceeded due to too large upscale - upscale = 4 - if upscale > 2 and max(img.shape[:2])>1000: # avoid memory exceeded due to too large img resolution - upscale = 2 - if max(img.shape[:2]) > 1500: # avoid memory exceeded due to too large img resolution - upscale = 1 - background_enhance = False - face_upsample = False - - face_helper = FaceRestoreHelper( - upscale, - face_size=512, - crop_ratio=(1, 1), - det_model=detection_model, - save_ext="png", - use_parse=True, - device=device, - ) - bg_upsampler = upsampler if background_enhance else None - face_upsampler = upsampler if face_upsample else None - - if has_aligned: - # the input faces are already cropped and aligned - img = cv2.resize(img, (512, 512), interpolation=cv2.INTER_LINEAR) - face_helper.is_gray = is_gray(img, threshold=5) - if face_helper.is_gray: - print('\tgrayscale input: True') - face_helper.cropped_faces = [img] - else: - face_helper.read_image(img) - # get face landmarks for each face - num_det_faces = face_helper.get_face_landmarks_5( - only_center_face=only_center_face, resize=640, eye_dist_threshold=5 - ) - print(f'\tdetect {num_det_faces} faces') - # align and warp each face - face_helper.align_warp_face() - - # face restoration for each cropped face - for idx, cropped_face in enumerate(face_helper.cropped_faces): - # prepare data - cropped_face_t = img2tensor( - cropped_face / 255.0, bgr2rgb=True, float32=True - ) - normalize(cropped_face_t, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True) - cropped_face_t = cropped_face_t.unsqueeze(0).to(device) - - try: - with torch.no_grad(): - output = codeformer_net( - cropped_face_t, w=codeformer_fidelity, adain=True - )[0] - restored_face = tensor2img(output, rgb2bgr=True, min_max=(-1, 1)) - del output - torch.cuda.empty_cache() - except RuntimeError as error: - print(f"Failed inference for CodeFormer: {error}") - restored_face = tensor2img( - cropped_face_t, rgb2bgr=True, min_max=(-1, 1) - ) - - restored_face = restored_face.astype("uint8") - face_helper.add_restored_face(restored_face) - - # paste_back - if not has_aligned: - # upsample the background - if bg_upsampler is not None: - # Now only support RealESRGAN for upsampling background - bg_img = bg_upsampler.enhance(img, outscale=upscale)[0] - else: - bg_img = None - face_helper.get_inverse_affine(None) - # paste each restored face to the input image - if face_upsample and face_upsampler is not None: - restored_img = face_helper.paste_faces_to_input_image( - upsample_img=bg_img, - draw_box=draw_box, - face_upsampler=face_upsampler, - ) - else: - restored_img = face_helper.paste_faces_to_input_image( - upsample_img=bg_img, draw_box=draw_box - ) - - # save restored img - save_path = f'output/out.png' - imwrite(restored_img, str(save_path)) - - restored_img = cv2.cvtColor(restored_img, cv2.COLOR_BGR2RGB) - return restored_img - except Exception as error: - print('Global exception', error) - return None, None - - -title = "CodeFormer: Robust Face Restoration and Enhancement Network" - -description = r"""
CodeFormer logo
-
-Official Gradio demo for Towards Robust Blind Face Restoration with Codebook Lookup Transformer (NeurIPS 2022)
-🔥 CodeFormer is a robust face restoration algorithm for old photos or AI-generated faces.
-🤗 Try CodeFormer for improved stable-diffusion generation!
-""" - -article = r""" -If CodeFormer is helpful, please help to ⭐ the Github Repo. Thanks! -[![GitHub Stars](https://img.shields.io/github/stars/sczhou/CodeFormer?style=social)](https://github.com/sczhou/CodeFormer) - ---- - -📝 **Citation** - -If our work is useful for your research, please consider citing: -```bibtex -@inproceedings{zhou2022codeformer, - author = {Zhou, Shangchen and Chan, Kelvin C.K. and Li, Chongyi and Loy, Chen Change}, - title = {Towards Robust Blind Face Restoration with Codebook Lookup TransFormer}, - booktitle = {NeurIPS}, - year = {2022} -} -``` - -📋 **License** - -This project is licensed under S-Lab License 1.0. -Redistribution and use for non-commercial purposes should follow this license. - -📧 **Contact** - -If you have any questions, please feel free to reach me out at shangchenzhou@gmail.com. - -🤗 **Find Me:** - - - - - - - -
Github FollowTwitter Follow
- -
visitors
-""" - -with gr.Blocks() as demo: - gr.Markdown(title) - gr.Markdown(description) - with gr.Box(): - with gr.Column(): - input_img = gr.Image(type="filepath", label="Input") - background_enhance = gr.Checkbox(value=True, label="Background_Enhance") - face_enhance = gr.Checkbox(value=True, label="Face_Upsample") - upscale_factor = gr.Number(value=2, label="Rescaling_Factor (up to 4)") - codeformer_fidelity = gr.Slider(0, 1, value=0.5, step=0.01, label='Codeformer_Fidelity (0 for better quality, 1 for better identity)') - submit = gr.Button('Enhance Image') - with gr.Column(): - output_img = gr.Image(type="numpy", label="Output").style(height='auto') - - inps = [input_img, background_enhance, face_enhance, upscale_factor, codeformer_fidelity] - submit.click(fn=inference, inputs=inps, outputs=[output_img]) - - ex = gr.Examples([ - ['01.png', True, True, 2, 0.7], - ['02.jpg', True, True, 2, 0.7], - ['03.jpg', True, True, 2, 0.7], - ['04.jpg', True, True, 2, 0.1], - ['05.jpg', True, True, 2, 0.1] - ], - fn=inference, - inputs=inps, - outputs=[output_img], - cache_examples=True) - - gr.Markdown(article) - - -DEBUG = os.getenv('DEBUG') == '1' -demo.queue(api_open=False, concurrency_count=2, max_size=10) -demo.launch(debug=DEBUG) \ No newline at end of file diff --git a/CodeFormer/output/out.png b/CodeFormer/output/out.png deleted file mode 100644 index e0ed30ca9c8cffff4a8675a51c516341e03ef655..0000000000000000000000000000000000000000 --- a/CodeFormer/output/out.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:64cc473354177dd8a188c765fb94cad4a3767122e0efe3ba8414bbf06cbb5151 -size 6077803 diff --git a/CodeFormer/packages.txt b/CodeFormer/packages.txt deleted file mode 100644 index 4649f711d1c528342fa2dc4bd39ab6730af6dbde..0000000000000000000000000000000000000000 --- a/CodeFormer/packages.txt +++ /dev/null @@ -1,3 +0,0 @@ -ffmpeg -libsm6 -libxext6 \ No newline at end of file diff --git a/CodeFormer/requirements.txt b/CodeFormer/requirements.txt deleted file mode 100644 index f97dfde85ebe83708fc1f6f7234a0ef69f18bde5..0000000000000000000000000000000000000000 --- a/CodeFormer/requirements.txt +++ /dev/null @@ -1,20 +0,0 @@ -addict -future -lmdb -numpy -opencv-python -Pillow -pyyaml -requests -scikit-image -scipy -tb-nightly -torch>=1.7.1 -torchvision -tqdm -yapf -lpips -gdown # supports downloading the large file from Google Drive -# cmake -# dlib -# conda install -c conda-forge dlib \ No newline at end of file