diff --git a/CodeFormer/.gitattributes b/CodeFormer/.gitattributes
deleted file mode 100644
index 453e9c0aa1644a4275f0bdd3150bc2494cb19ab7..0000000000000000000000000000000000000000
--- a/CodeFormer/.gitattributes
+++ /dev/null
@@ -1,31 +0,0 @@
-*.7z filter=lfs diff=lfs merge=lfs -text
-*.arrow filter=lfs diff=lfs merge=lfs -text
-*.bin filter=lfs diff=lfs merge=lfs -text
-*.bz2 filter=lfs diff=lfs merge=lfs -text
-*.ftz filter=lfs diff=lfs merge=lfs -text
-*.gz filter=lfs diff=lfs merge=lfs -text
-*.h5 filter=lfs diff=lfs merge=lfs -text
-*.joblib filter=lfs diff=lfs merge=lfs -text
-*.lfs.* filter=lfs diff=lfs merge=lfs -text
-*.model filter=lfs diff=lfs merge=lfs -text
-*.msgpack filter=lfs diff=lfs merge=lfs -text
-*.npy filter=lfs diff=lfs merge=lfs -text
-*.npz filter=lfs diff=lfs merge=lfs -text
-*.onnx filter=lfs diff=lfs merge=lfs -text
-*.ot filter=lfs diff=lfs merge=lfs -text
-*.parquet filter=lfs diff=lfs merge=lfs -text
-*.pickle filter=lfs diff=lfs merge=lfs -text
-*.pkl filter=lfs diff=lfs merge=lfs -text
-*.pb filter=lfs diff=lfs merge=lfs -text
-*.pt filter=lfs diff=lfs merge=lfs -text
-*.pth filter=lfs diff=lfs merge=lfs -text
-*.rar filter=lfs diff=lfs merge=lfs -text
-saved_model/**/* filter=lfs diff=lfs merge=lfs -text
-*.tar.* filter=lfs diff=lfs merge=lfs -text
-*.tflite filter=lfs diff=lfs merge=lfs -text
-*.tgz filter=lfs diff=lfs merge=lfs -text
-*.wasm filter=lfs diff=lfs merge=lfs -text
-*.xz filter=lfs diff=lfs merge=lfs -text
-*.zip filter=lfs diff=lfs merge=lfs -text
-*.zst filter=lfs diff=lfs merge=lfs -text
-*tfevents* filter=lfs diff=lfs merge=lfs -text
\ No newline at end of file
diff --git a/CodeFormer/01.png b/CodeFormer/01.png
deleted file mode 100644
index f2a837cc702e897561cfba707b685dcf0d100a4a..0000000000000000000000000000000000000000
--- a/CodeFormer/01.png
+++ /dev/null
@@ -1,3 +0,0 @@
-version https://git-lfs.github.com/spec/v1
-oid sha256:2828f119e044674f89da002ec3f4453e971e9f712a62d63c4f151d1f91e341ff
-size 683546
diff --git a/CodeFormer/02.jpg b/CodeFormer/02.jpg
deleted file mode 100644
index 71cc09afd0d8d89fffab931a1d385ae3c144a190..0000000000000000000000000000000000000000
--- a/CodeFormer/02.jpg
+++ /dev/null
@@ -1,3 +0,0 @@
-version https://git-lfs.github.com/spec/v1
-oid sha256:13fc7dcaece8d2f26f6895d6ff86a42c643d8c7621d75366a8b4d7467e23e8e2
-size 6769
diff --git a/CodeFormer/03.jpg b/CodeFormer/03.jpg
deleted file mode 100644
index 684b4c8976c0b8c0f10ec315ff6759d29f8d9c29..0000000000000000000000000000000000000000
--- a/CodeFormer/03.jpg
+++ /dev/null
@@ -1,3 +0,0 @@
-version https://git-lfs.github.com/spec/v1
-oid sha256:757986993aabee5a0d3bde3d5cd6a0ef3026605a0189ac28ed689256c0b833b9
-size 15482
diff --git a/CodeFormer/04.jpg b/CodeFormer/04.jpg
deleted file mode 100644
index 95d23bd1c6e3c0a8095a7725ceb2ee0aa3442017..0000000000000000000000000000000000000000
--- a/CodeFormer/04.jpg
+++ /dev/null
@@ -1,3 +0,0 @@
-version https://git-lfs.github.com/spec/v1
-oid sha256:2f553ac88964d61edad7bdc65bb9bcecc7c828747a165630d214a5f6de3615d9
-size 365789
diff --git a/CodeFormer/05.jpg b/CodeFormer/05.jpg
deleted file mode 100644
index ea7cd31c1d053986798d547c5634bc0e34a70d48..0000000000000000000000000000000000000000
--- a/CodeFormer/05.jpg
+++ /dev/null
@@ -1,3 +0,0 @@
-version https://git-lfs.github.com/spec/v1
-oid sha256:0342b435bc7b00720788c316a3945fc4d559cc7fc043f698eba722861bc3bf9b
-size 113474
diff --git a/CodeFormer/06.png b/CodeFormer/06.png
deleted file mode 100644
index bace2e7c2a2bbb3a3f2f22c7182c59a26ee8dc55..0000000000000000000000000000000000000000
--- a/CodeFormer/06.png
+++ /dev/null
@@ -1,3 +0,0 @@
-version https://git-lfs.github.com/spec/v1
-oid sha256:7c4637d11916672025d47073247ed61cbfe6537e42552cf8cb7525af0d6ab0a8
-size 172957
diff --git a/CodeFormer/CodeFormer/.gitignore b/CodeFormer/CodeFormer/.gitignore
deleted file mode 100644
index 18b62a49768403d1a155456e487b22491d1554cb..0000000000000000000000000000000000000000
--- a/CodeFormer/CodeFormer/.gitignore
+++ /dev/null
@@ -1,129 +0,0 @@
-.vscode
-
-# ignored files
-version.py
-
-# ignored files with suffix
-*.html
-# *.png
-# *.jpeg
-# *.jpg
-*.pt
-*.gif
-*.pth
-*.dat
-*.zip
-
-# template
-
-# Byte-compiled / optimized / DLL files
-__pycache__/
-*.py[cod]
-*$py.class
-
-# C extensions
-*.so
-
-# Distribution / packaging
-.Python
-build/
-develop-eggs/
-dist/
-downloads/
-eggs/
-.eggs/
-lib/
-lib64/
-parts/
-sdist/
-var/
-wheels/
-*.egg-info/
-.installed.cfg
-*.egg
-MANIFEST
-
-# PyInstaller
-# Usually these files are written by a python script from a template
-# before PyInstaller builds the exe, so as to inject date/other infos into it.
-*.manifest
-*.spec
-
-# Installer logs
-pip-log.txt
-pip-delete-this-directory.txt
-
-# Unit test / coverage reports
-htmlcov/
-.tox/
-.coverage
-.coverage.*
-.cache
-nosetests.xml
-coverage.xml
-*.cover
-.hypothesis/
-.pytest_cache/
-
-# Translations
-*.mo
-*.pot
-
-# Django stuff:
-*.log
-local_settings.py
-db.sqlite3
-
-# Flask stuff:
-instance/
-.webassets-cache
-
-# Scrapy stuff:
-.scrapy
-
-# Sphinx documentation
-docs/_build/
-
-# PyBuilder
-target/
-
-# Jupyter Notebook
-.ipynb_checkpoints
-
-# pyenv
-.python-version
-
-# celery beat schedule file
-celerybeat-schedule
-
-# SageMath parsed files
-*.sage.py
-
-# Environments
-.env
-.venv
-env/
-venv/
-ENV/
-env.bak/
-venv.bak/
-
-# Spyder project settings
-.spyderproject
-.spyproject
-
-# Rope project settings
-.ropeproject
-
-# mkdocs documentation
-/site
-
-# mypy
-.mypy_cache/
-
-# project
-results/
-dlib/
-*.pth
-*_old*
-
diff --git a/CodeFormer/CodeFormer/README.md b/CodeFormer/CodeFormer/README.md
deleted file mode 100644
index 65810cdf4ce36d8ba152de80df00fa4c8802ee81..0000000000000000000000000000000000000000
--- a/CodeFormer/CodeFormer/README.md
+++ /dev/null
@@ -1,123 +0,0 @@
-
-
-
-
-## Towards Robust Blind Face Restoration with Codebook Lookup Transformer
-
-[Paper](https://arxiv.org/abs/2206.11253) | [Project Page](https://shangchenzhou.com/projects/CodeFormer/) | [Video](https://youtu.be/d3VDpkXlueI)
-
-
-
[](https://replicate.com/sczhou/codeformer) 
-
-[Shangchen Zhou](https://shangchenzhou.com/), [Kelvin C.K. Chan](https://ckkelvinchan.github.io/), [Chongyi Li](https://li-chongyi.github.io/), [Chen Change Loy](https://www.mmlab-ntu.com/person/ccloy/)
-
-S-Lab, Nanyang Technological University
-
-
-
-
-:star: If CodeFormer is helpful to your images or projects, please help star this repo. Thanks! :hugs:
-
-### Update
-
-- **2022.09.09**: Integrated to :rocket: [Replicate](https://replicate.com/). Try out online demo! [](https://replicate.com/sczhou/codeformer)
-- **2022.09.04**: Add face upsampling `--face_upsample` for high-resolution AI-created face enhancement.
-- **2022.08.23**: Some modifications on face detection and fusion for better AI-created face enhancement.
-- **2022.08.07**: Integrate [Real-ESRGAN](https://github.com/xinntao/Real-ESRGAN) to support background image enhancement.
-- **2022.07.29**: Integrate new face detectors of `['RetinaFace'(default), 'YOLOv5']`.
-- **2022.07.17**: Add Colab demo of CodeFormer.
-- **2022.07.16**: Release inference code for face restoration. :blush:
-- **2022.06.21**: This repo is created.
-
-### TODO
-- [ ] Add checkpoint for face inpainting
-- [ ] Add training code and config files
-- [x] ~~Add background image enhancement~~
-
-#### Face Restoration
-
-
-
-
-#### Face Color Enhancement and Restoration
-
-
-
-#### Face Inpainting
-
-
-
-
-
-### Dependencies and Installation
-
-- Pytorch >= 1.7.1
-- CUDA >= 10.1
-- Other required packages in `requirements.txt`
-```
-# git clone this repository
-git clone https://github.com/sczhou/CodeFormer
-cd CodeFormer
-
-# create new anaconda env
-conda create -n codeformer python=3.8 -y
-conda activate codeformer
-
-# install python dependencies
-pip3 install -r requirements.txt
-python basicsr/setup.py develop
-```
-
-
-### Quick Inference
-
-##### Download Pre-trained Models:
-Download the facelib pretrained models from [[Google Drive](https://drive.google.com/drive/folders/1b_3qwrzY_kTQh0-SnBoGBgOrJ_PLZSKm?usp=sharing) | [OneDrive](https://entuedu-my.sharepoint.com/:f:/g/personal/s200094_e_ntu_edu_sg/EvDxR7FcAbZMp_MA9ouq7aQB8XTppMb3-T0uGZ_2anI2mg?e=DXsJFo)] to the `weights/facelib` folder. You can manually download the pretrained models OR download by runing the following command.
-```
-python scripts/download_pretrained_models.py facelib
-```
-
-Download the CodeFormer pretrained models from [[Google Drive](https://drive.google.com/drive/folders/1CNNByjHDFt0b95q54yMVp6Ifo5iuU6QS?usp=sharing) | [OneDrive](https://entuedu-my.sharepoint.com/:f:/g/personal/s200094_e_ntu_edu_sg/EoKFj4wo8cdIn2-TY2IV6CYBhZ0pIG4kUOeHdPR_A5nlbg?e=AO8UN9)] to the `weights/CodeFormer` folder. You can manually download the pretrained models OR download by runing the following command.
-```
-python scripts/download_pretrained_models.py CodeFormer
-```
-
-##### Prepare Testing Data:
-You can put the testing images in the `inputs/TestWhole` folder. If you would like to test on cropped and aligned faces, you can put them in the `inputs/cropped_faces` folder.
-
-
-##### Testing on Face Restoration:
-```
-# For cropped and aligned faces
-python inference_codeformer.py --w 0.5 --has_aligned --test_path [input folder]
-
-# For the whole images
-# Add '--bg_upsampler realesrgan' to enhance the background regions with Real-ESRGAN
-# Add '--face_upsample' to further upsample restorated face with Real-ESRGAN
-python inference_codeformer.py --w 0.7 --test_path [input folder]
-```
-
-NOTE that *w* is in [0, 1]. Generally, smaller *w* tends to produce a higher-quality result, while larger *w* yields a higher-fidelity result.
-
-The results will be saved in the `results` folder.
-
-### Citation
-If our work is useful for your research, please consider citing:
-
- @article{zhou2022codeformer,
- author = {Zhou, Shangchen and Chan, Kelvin C.K. and Li, Chongyi and Loy, Chen Change},
- title = {Towards Robust Blind Face Restoration with Codebook Lookup TransFormer},
- journal = {arXiv preprint arXiv:2206.11253},
- year = {2022}
- }
-
-### License
-
-
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
-
-### Acknowledgement
-
-This project is based on [BasicSR](https://github.com/XPixelGroup/BasicSR). We also borrow some codes from [Unleashing Transformers](https://github.com/samb-t/unleashing-transformers), [YOLOv5-face](https://github.com/deepcam-cn/yolov5-face), and [FaceXLib](https://github.com/xinntao/facexlib). Thanks for their awesome works.
-
-### Contact
-If you have any question, please feel free to reach me out at `shangchenzhou@gmail.com`.
\ No newline at end of file
diff --git a/CodeFormer/CodeFormer/assets/CodeFormer_logo.png b/CodeFormer/CodeFormer/assets/CodeFormer_logo.png
deleted file mode 100644
index 4cce53bd4945d43aef405f40279c184511a67f07..0000000000000000000000000000000000000000
--- a/CodeFormer/CodeFormer/assets/CodeFormer_logo.png
+++ /dev/null
@@ -1,3 +0,0 @@
-version https://git-lfs.github.com/spec/v1
-oid sha256:9f47e6d67d4aabffe5f3794d9e46c301b953f59c3328dd7dcafd94ccb615d29c
-size 5259
diff --git a/CodeFormer/CodeFormer/assets/color_enhancement_result1.png b/CodeFormer/CodeFormer/assets/color_enhancement_result1.png
deleted file mode 100644
index 9ffb42b76445130cad0f67754a0e41cdfe40f689..0000000000000000000000000000000000000000
--- a/CodeFormer/CodeFormer/assets/color_enhancement_result1.png
+++ /dev/null
@@ -1,3 +0,0 @@
-version https://git-lfs.github.com/spec/v1
-oid sha256:0e5fd836661f974b8f691d2a779d15b0f1419ffc6be1e57ce864b9c3562754a2
-size 684585
diff --git a/CodeFormer/CodeFormer/assets/color_enhancement_result2.png b/CodeFormer/CodeFormer/assets/color_enhancement_result2.png
deleted file mode 100644
index 4fe33ea5edab942e3b40f1540ee334ce45a6d537..0000000000000000000000000000000000000000
--- a/CodeFormer/CodeFormer/assets/color_enhancement_result2.png
+++ /dev/null
@@ -1,3 +0,0 @@
-version https://git-lfs.github.com/spec/v1
-oid sha256:7b7d0166964c1752083ffc3a8bf247b70e8509cda66ca75c61f70f6800a268c8
-size 515164
diff --git a/CodeFormer/CodeFormer/assets/inpainting_result1.png b/CodeFormer/CodeFormer/assets/inpainting_result1.png
deleted file mode 100644
index b07b2b61a5d275ccdd6524f0c6150f365783823a..0000000000000000000000000000000000000000
--- a/CodeFormer/CodeFormer/assets/inpainting_result1.png
+++ /dev/null
@@ -1,3 +0,0 @@
-version https://git-lfs.github.com/spec/v1
-oid sha256:e3fd793921f1916e442b36664b21c1fa7cbac7d8206990b44c682eca891d0618
-size 687066
diff --git a/CodeFormer/CodeFormer/assets/inpainting_result2.png b/CodeFormer/CodeFormer/assets/inpainting_result2.png
deleted file mode 100644
index 6ffdb8f039f6b4dd6f72afcaf20265ea636e8f5b..0000000000000000000000000000000000000000
--- a/CodeFormer/CodeFormer/assets/inpainting_result2.png
+++ /dev/null
@@ -1,3 +0,0 @@
-version https://git-lfs.github.com/spec/v1
-oid sha256:7354e20981cfa84fd4b63ddb9b312ceedabdedc47da3e0dd2967096af6440534
-size 766951
diff --git a/CodeFormer/CodeFormer/assets/network.jpg b/CodeFormer/CodeFormer/assets/network.jpg
deleted file mode 100644
index 3e9f35c634f6de930c717808344c67d6d9894afe..0000000000000000000000000000000000000000
--- a/CodeFormer/CodeFormer/assets/network.jpg
+++ /dev/null
@@ -1,3 +0,0 @@
-version https://git-lfs.github.com/spec/v1
-oid sha256:81903e45d27c7078a04dec0c5666be8c54c2c4313a65715240dc5c8639b22d19
-size 238250
diff --git a/CodeFormer/CodeFormer/assets/restoration_result1.png b/CodeFormer/CodeFormer/assets/restoration_result1.png
deleted file mode 100644
index a6b9beeea52f378f5b9c05c2e3ac73c0c4ba1c49..0000000000000000000000000000000000000000
--- a/CodeFormer/CodeFormer/assets/restoration_result1.png
+++ /dev/null
@@ -1,3 +0,0 @@
-version https://git-lfs.github.com/spec/v1
-oid sha256:4ee9b266878328066d33af365f2434633988d69ccabb34a98997d19944e90e4a
-size 830702
diff --git a/CodeFormer/CodeFormer/assets/restoration_result2.png b/CodeFormer/CodeFormer/assets/restoration_result2.png
deleted file mode 100644
index 6e34f1df2fb92426beccc4813b71e69a2f8c9e79..0000000000000000000000000000000000000000
--- a/CodeFormer/CodeFormer/assets/restoration_result2.png
+++ /dev/null
@@ -1,3 +0,0 @@
-version https://git-lfs.github.com/spec/v1
-oid sha256:716b3ba5fc642e0bef4648093ac346fd90878bcf6fbeb6d1f685ce682557b3c7
-size 824234
diff --git a/CodeFormer/CodeFormer/assets/restoration_result3.png b/CodeFormer/CodeFormer/assets/restoration_result3.png
deleted file mode 100644
index a25619facae4c9891758d3a513676c4c4b9b2eca..0000000000000000000000000000000000000000
--- a/CodeFormer/CodeFormer/assets/restoration_result3.png
+++ /dev/null
@@ -1,3 +0,0 @@
-version https://git-lfs.github.com/spec/v1
-oid sha256:05ff467e78b5412870d825fb17eec8ed4230d8e2bb546c554bf93eb8a06a6a27
-size 752469
diff --git a/CodeFormer/CodeFormer/assets/restoration_result4.png b/CodeFormer/CodeFormer/assets/restoration_result4.png
deleted file mode 100644
index 02f7e710fe9a90cf5edebd8cf5127feca06ae196..0000000000000000000000000000000000000000
--- a/CodeFormer/CodeFormer/assets/restoration_result4.png
+++ /dev/null
@@ -1,3 +0,0 @@
-version https://git-lfs.github.com/spec/v1
-oid sha256:4fd54cfbb531e4be7a1476fd4d238aea20c05522e7c098a892b47191cc4ce4cb
-size 697265
diff --git a/CodeFormer/CodeFormer/basicsr/VERSION b/CodeFormer/CodeFormer/basicsr/VERSION
deleted file mode 100644
index 1892b926767774e9ba91f1e584fa71b4c56abb69..0000000000000000000000000000000000000000
--- a/CodeFormer/CodeFormer/basicsr/VERSION
+++ /dev/null
@@ -1 +0,0 @@
-1.3.2
diff --git a/CodeFormer/CodeFormer/basicsr/__init__.py b/CodeFormer/CodeFormer/basicsr/__init__.py
deleted file mode 100644
index c7ffcccd7fc0f33b59d99d73d0436d60e561b0fc..0000000000000000000000000000000000000000
--- a/CodeFormer/CodeFormer/basicsr/__init__.py
+++ /dev/null
@@ -1,11 +0,0 @@
-# https://github.com/xinntao/BasicSR
-# flake8: noqa
-from .archs import *
-from .data import *
-from .losses import *
-from .metrics import *
-from .models import *
-from .ops import *
-from .train import *
-from .utils import *
-from .version import __gitsha__, __version__
diff --git a/CodeFormer/CodeFormer/basicsr/__pycache__/__init__.cpython-310.pyc b/CodeFormer/CodeFormer/basicsr/__pycache__/__init__.cpython-310.pyc
deleted file mode 100644
index 3d5fa279a549e73007bc3117a9764ffb2a0ce689..0000000000000000000000000000000000000000
Binary files a/CodeFormer/CodeFormer/basicsr/__pycache__/__init__.cpython-310.pyc and /dev/null differ
diff --git a/CodeFormer/CodeFormer/basicsr/__pycache__/train.cpython-310.pyc b/CodeFormer/CodeFormer/basicsr/__pycache__/train.cpython-310.pyc
deleted file mode 100644
index 62905e9f910de94695999c19d6afea363c973d56..0000000000000000000000000000000000000000
Binary files a/CodeFormer/CodeFormer/basicsr/__pycache__/train.cpython-310.pyc and /dev/null differ
diff --git a/CodeFormer/CodeFormer/basicsr/__pycache__/version.cpython-310.pyc b/CodeFormer/CodeFormer/basicsr/__pycache__/version.cpython-310.pyc
deleted file mode 100644
index 1c94ae66b61252df70b332bce092c736f3883474..0000000000000000000000000000000000000000
Binary files a/CodeFormer/CodeFormer/basicsr/__pycache__/version.cpython-310.pyc and /dev/null differ
diff --git a/CodeFormer/CodeFormer/basicsr/archs/__init__.py b/CodeFormer/CodeFormer/basicsr/archs/__init__.py
deleted file mode 100644
index cfb1e4d7bb221c429082bd389d9140e5b1cc07b0..0000000000000000000000000000000000000000
--- a/CodeFormer/CodeFormer/basicsr/archs/__init__.py
+++ /dev/null
@@ -1,25 +0,0 @@
-import importlib
-from copy import deepcopy
-from os import path as osp
-
-from basicsr.utils import get_root_logger, scandir
-from basicsr.utils.registry import ARCH_REGISTRY
-
-__all__ = ['build_network']
-
-# automatically scan and import arch modules for registry
-# scan all the files under the 'archs' folder and collect files ending with
-# '_arch.py'
-arch_folder = osp.dirname(osp.abspath(__file__))
-arch_filenames = [osp.splitext(osp.basename(v))[0] for v in scandir(arch_folder) if v.endswith('_arch.py')]
-# import all the arch modules
-_arch_modules = [importlib.import_module(f'basicsr.archs.{file_name}') for file_name in arch_filenames]
-
-
-def build_network(opt):
- opt = deepcopy(opt)
- network_type = opt.pop('type')
- net = ARCH_REGISTRY.get(network_type)(**opt)
- logger = get_root_logger()
- logger.info(f'Network [{net.__class__.__name__}] is created.')
- return net
diff --git a/CodeFormer/CodeFormer/basicsr/archs/__pycache__/__init__.cpython-310.pyc b/CodeFormer/CodeFormer/basicsr/archs/__pycache__/__init__.cpython-310.pyc
deleted file mode 100644
index 6b843e319a9be31e7e1365316034c99f53f3c5c3..0000000000000000000000000000000000000000
Binary files a/CodeFormer/CodeFormer/basicsr/archs/__pycache__/__init__.cpython-310.pyc and /dev/null differ
diff --git a/CodeFormer/CodeFormer/basicsr/archs/__pycache__/arcface_arch.cpython-310.pyc b/CodeFormer/CodeFormer/basicsr/archs/__pycache__/arcface_arch.cpython-310.pyc
deleted file mode 100644
index 0d09e52285fbc4606d86097934a9f16c12999f23..0000000000000000000000000000000000000000
Binary files a/CodeFormer/CodeFormer/basicsr/archs/__pycache__/arcface_arch.cpython-310.pyc and /dev/null differ
diff --git a/CodeFormer/CodeFormer/basicsr/archs/__pycache__/arch_util.cpython-310.pyc b/CodeFormer/CodeFormer/basicsr/archs/__pycache__/arch_util.cpython-310.pyc
deleted file mode 100644
index 0cfd49f2ca069e34581b93924277137ac58a1863..0000000000000000000000000000000000000000
Binary files a/CodeFormer/CodeFormer/basicsr/archs/__pycache__/arch_util.cpython-310.pyc and /dev/null differ
diff --git a/CodeFormer/CodeFormer/basicsr/archs/__pycache__/codeformer_arch.cpython-310.pyc b/CodeFormer/CodeFormer/basicsr/archs/__pycache__/codeformer_arch.cpython-310.pyc
deleted file mode 100644
index 183ffda4b59d9b4b6cdef69e56a6e15724d56e50..0000000000000000000000000000000000000000
Binary files a/CodeFormer/CodeFormer/basicsr/archs/__pycache__/codeformer_arch.cpython-310.pyc and /dev/null differ
diff --git a/CodeFormer/CodeFormer/basicsr/archs/__pycache__/rrdbnet_arch.cpython-310.pyc b/CodeFormer/CodeFormer/basicsr/archs/__pycache__/rrdbnet_arch.cpython-310.pyc
deleted file mode 100644
index 86769689ad9c900e9ddf50a1d5a2810ddb1412d7..0000000000000000000000000000000000000000
Binary files a/CodeFormer/CodeFormer/basicsr/archs/__pycache__/rrdbnet_arch.cpython-310.pyc and /dev/null differ
diff --git a/CodeFormer/CodeFormer/basicsr/archs/__pycache__/vgg_arch.cpython-310.pyc b/CodeFormer/CodeFormer/basicsr/archs/__pycache__/vgg_arch.cpython-310.pyc
deleted file mode 100644
index db927908aa0aafb180041d4d5dd5550e27f582a7..0000000000000000000000000000000000000000
Binary files a/CodeFormer/CodeFormer/basicsr/archs/__pycache__/vgg_arch.cpython-310.pyc and /dev/null differ
diff --git a/CodeFormer/CodeFormer/basicsr/archs/__pycache__/vqgan_arch.cpython-310.pyc b/CodeFormer/CodeFormer/basicsr/archs/__pycache__/vqgan_arch.cpython-310.pyc
deleted file mode 100644
index 1a15758a461cb8f7da2782a393f142d8ba636aa9..0000000000000000000000000000000000000000
Binary files a/CodeFormer/CodeFormer/basicsr/archs/__pycache__/vqgan_arch.cpython-310.pyc and /dev/null differ
diff --git a/CodeFormer/CodeFormer/basicsr/archs/arcface_arch.py b/CodeFormer/CodeFormer/basicsr/archs/arcface_arch.py
deleted file mode 100644
index fe5afb7bd2b359e0c2b7efdf628ab10b63964d87..0000000000000000000000000000000000000000
--- a/CodeFormer/CodeFormer/basicsr/archs/arcface_arch.py
+++ /dev/null
@@ -1,245 +0,0 @@
-import torch.nn as nn
-from basicsr.utils.registry import ARCH_REGISTRY
-
-
-def conv3x3(inplanes, outplanes, stride=1):
- """A simple wrapper for 3x3 convolution with padding.
-
- Args:
- inplanes (int): Channel number of inputs.
- outplanes (int): Channel number of outputs.
- stride (int): Stride in convolution. Default: 1.
- """
- return nn.Conv2d(inplanes, outplanes, kernel_size=3, stride=stride, padding=1, bias=False)
-
-
-class BasicBlock(nn.Module):
- """Basic residual block used in the ResNetArcFace architecture.
-
- Args:
- inplanes (int): Channel number of inputs.
- planes (int): Channel number of outputs.
- stride (int): Stride in convolution. Default: 1.
- downsample (nn.Module): The downsample module. Default: None.
- """
- expansion = 1 # output channel expansion ratio
-
- def __init__(self, inplanes, planes, stride=1, downsample=None):
- super(BasicBlock, self).__init__()
- self.conv1 = conv3x3(inplanes, planes, stride)
- self.bn1 = nn.BatchNorm2d(planes)
- self.relu = nn.ReLU(inplace=True)
- self.conv2 = conv3x3(planes, planes)
- self.bn2 = nn.BatchNorm2d(planes)
- self.downsample = downsample
- self.stride = stride
-
- def forward(self, x):
- residual = x
-
- out = self.conv1(x)
- out = self.bn1(out)
- out = self.relu(out)
-
- out = self.conv2(out)
- out = self.bn2(out)
-
- if self.downsample is not None:
- residual = self.downsample(x)
-
- out += residual
- out = self.relu(out)
-
- return out
-
-
-class IRBlock(nn.Module):
- """Improved residual block (IR Block) used in the ResNetArcFace architecture.
-
- Args:
- inplanes (int): Channel number of inputs.
- planes (int): Channel number of outputs.
- stride (int): Stride in convolution. Default: 1.
- downsample (nn.Module): The downsample module. Default: None.
- use_se (bool): Whether use the SEBlock (squeeze and excitation block). Default: True.
- """
- expansion = 1 # output channel expansion ratio
-
- def __init__(self, inplanes, planes, stride=1, downsample=None, use_se=True):
- super(IRBlock, self).__init__()
- self.bn0 = nn.BatchNorm2d(inplanes)
- self.conv1 = conv3x3(inplanes, inplanes)
- self.bn1 = nn.BatchNorm2d(inplanes)
- self.prelu = nn.PReLU()
- self.conv2 = conv3x3(inplanes, planes, stride)
- self.bn2 = nn.BatchNorm2d(planes)
- self.downsample = downsample
- self.stride = stride
- self.use_se = use_se
- if self.use_se:
- self.se = SEBlock(planes)
-
- def forward(self, x):
- residual = x
- out = self.bn0(x)
- out = self.conv1(out)
- out = self.bn1(out)
- out = self.prelu(out)
-
- out = self.conv2(out)
- out = self.bn2(out)
- if self.use_se:
- out = self.se(out)
-
- if self.downsample is not None:
- residual = self.downsample(x)
-
- out += residual
- out = self.prelu(out)
-
- return out
-
-
-class Bottleneck(nn.Module):
- """Bottleneck block used in the ResNetArcFace architecture.
-
- Args:
- inplanes (int): Channel number of inputs.
- planes (int): Channel number of outputs.
- stride (int): Stride in convolution. Default: 1.
- downsample (nn.Module): The downsample module. Default: None.
- """
- expansion = 4 # output channel expansion ratio
-
- def __init__(self, inplanes, planes, stride=1, downsample=None):
- super(Bottleneck, self).__init__()
- self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
- self.bn1 = nn.BatchNorm2d(planes)
- self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
- self.bn2 = nn.BatchNorm2d(planes)
- self.conv3 = nn.Conv2d(planes, planes * self.expansion, kernel_size=1, bias=False)
- self.bn3 = nn.BatchNorm2d(planes * self.expansion)
- self.relu = nn.ReLU(inplace=True)
- self.downsample = downsample
- self.stride = stride
-
- def forward(self, x):
- residual = x
-
- out = self.conv1(x)
- out = self.bn1(out)
- out = self.relu(out)
-
- out = self.conv2(out)
- out = self.bn2(out)
- out = self.relu(out)
-
- out = self.conv3(out)
- out = self.bn3(out)
-
- if self.downsample is not None:
- residual = self.downsample(x)
-
- out += residual
- out = self.relu(out)
-
- return out
-
-
-class SEBlock(nn.Module):
- """The squeeze-and-excitation block (SEBlock) used in the IRBlock.
-
- Args:
- channel (int): Channel number of inputs.
- reduction (int): Channel reduction ration. Default: 16.
- """
-
- def __init__(self, channel, reduction=16):
- super(SEBlock, self).__init__()
- self.avg_pool = nn.AdaptiveAvgPool2d(1) # pool to 1x1 without spatial information
- self.fc = nn.Sequential(
- nn.Linear(channel, channel // reduction), nn.PReLU(), nn.Linear(channel // reduction, channel),
- nn.Sigmoid())
-
- def forward(self, x):
- b, c, _, _ = x.size()
- y = self.avg_pool(x).view(b, c)
- y = self.fc(y).view(b, c, 1, 1)
- return x * y
-
-
-@ARCH_REGISTRY.register()
-class ResNetArcFace(nn.Module):
- """ArcFace with ResNet architectures.
-
- Ref: ArcFace: Additive Angular Margin Loss for Deep Face Recognition.
-
- Args:
- block (str): Block used in the ArcFace architecture.
- layers (tuple(int)): Block numbers in each layer.
- use_se (bool): Whether use the SEBlock (squeeze and excitation block). Default: True.
- """
-
- def __init__(self, block, layers, use_se=True):
- if block == 'IRBlock':
- block = IRBlock
- self.inplanes = 64
- self.use_se = use_se
- super(ResNetArcFace, self).__init__()
-
- self.conv1 = nn.Conv2d(1, 64, kernel_size=3, padding=1, bias=False)
- self.bn1 = nn.BatchNorm2d(64)
- self.prelu = nn.PReLU()
- self.maxpool = nn.MaxPool2d(kernel_size=2, stride=2)
- self.layer1 = self._make_layer(block, 64, layers[0])
- self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
- self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
- self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
- self.bn4 = nn.BatchNorm2d(512)
- self.dropout = nn.Dropout()
- self.fc5 = nn.Linear(512 * 8 * 8, 512)
- self.bn5 = nn.BatchNorm1d(512)
-
- # initialization
- for m in self.modules():
- if isinstance(m, nn.Conv2d):
- nn.init.xavier_normal_(m.weight)
- elif isinstance(m, nn.BatchNorm2d) or isinstance(m, nn.BatchNorm1d):
- nn.init.constant_(m.weight, 1)
- nn.init.constant_(m.bias, 0)
- elif isinstance(m, nn.Linear):
- nn.init.xavier_normal_(m.weight)
- nn.init.constant_(m.bias, 0)
-
- def _make_layer(self, block, planes, num_blocks, stride=1):
- downsample = None
- if stride != 1 or self.inplanes != planes * block.expansion:
- downsample = nn.Sequential(
- nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False),
- nn.BatchNorm2d(planes * block.expansion),
- )
- layers = []
- layers.append(block(self.inplanes, planes, stride, downsample, use_se=self.use_se))
- self.inplanes = planes
- for _ in range(1, num_blocks):
- layers.append(block(self.inplanes, planes, use_se=self.use_se))
-
- return nn.Sequential(*layers)
-
- def forward(self, x):
- x = self.conv1(x)
- x = self.bn1(x)
- x = self.prelu(x)
- x = self.maxpool(x)
-
- x = self.layer1(x)
- x = self.layer2(x)
- x = self.layer3(x)
- x = self.layer4(x)
- x = self.bn4(x)
- x = self.dropout(x)
- x = x.view(x.size(0), -1)
- x = self.fc5(x)
- x = self.bn5(x)
-
- return x
\ No newline at end of file
diff --git a/CodeFormer/CodeFormer/basicsr/archs/arch_util.py b/CodeFormer/CodeFormer/basicsr/archs/arch_util.py
deleted file mode 100644
index bad45ab34e901c47fb539152fca714a3795b0de2..0000000000000000000000000000000000000000
--- a/CodeFormer/CodeFormer/basicsr/archs/arch_util.py
+++ /dev/null
@@ -1,318 +0,0 @@
-import collections.abc
-import math
-import torch
-import torchvision
-import warnings
-from distutils.version import LooseVersion
-from itertools import repeat
-from torch import nn as nn
-from torch.nn import functional as F
-from torch.nn import init as init
-from torch.nn.modules.batchnorm import _BatchNorm
-
-from basicsr.ops.dcn import ModulatedDeformConvPack, modulated_deform_conv
-from basicsr.utils import get_root_logger
-
-
-@torch.no_grad()
-def default_init_weights(module_list, scale=1, bias_fill=0, **kwargs):
- """Initialize network weights.
-
- Args:
- module_list (list[nn.Module] | nn.Module): Modules to be initialized.
- scale (float): Scale initialized weights, especially for residual
- blocks. Default: 1.
- bias_fill (float): The value to fill bias. Default: 0
- kwargs (dict): Other arguments for initialization function.
- """
- if not isinstance(module_list, list):
- module_list = [module_list]
- for module in module_list:
- for m in module.modules():
- if isinstance(m, nn.Conv2d):
- init.kaiming_normal_(m.weight, **kwargs)
- m.weight.data *= scale
- if m.bias is not None:
- m.bias.data.fill_(bias_fill)
- elif isinstance(m, nn.Linear):
- init.kaiming_normal_(m.weight, **kwargs)
- m.weight.data *= scale
- if m.bias is not None:
- m.bias.data.fill_(bias_fill)
- elif isinstance(m, _BatchNorm):
- init.constant_(m.weight, 1)
- if m.bias is not None:
- m.bias.data.fill_(bias_fill)
-
-
-def make_layer(basic_block, num_basic_block, **kwarg):
- """Make layers by stacking the same blocks.
-
- Args:
- basic_block (nn.module): nn.module class for basic block.
- num_basic_block (int): number of blocks.
-
- Returns:
- nn.Sequential: Stacked blocks in nn.Sequential.
- """
- layers = []
- for _ in range(num_basic_block):
- layers.append(basic_block(**kwarg))
- return nn.Sequential(*layers)
-
-
-class ResidualBlockNoBN(nn.Module):
- """Residual block without BN.
-
- It has a style of:
- ---Conv-ReLU-Conv-+-
- |________________|
-
- Args:
- num_feat (int): Channel number of intermediate features.
- Default: 64.
- res_scale (float): Residual scale. Default: 1.
- pytorch_init (bool): If set to True, use pytorch default init,
- otherwise, use default_init_weights. Default: False.
- """
-
- def __init__(self, num_feat=64, res_scale=1, pytorch_init=False):
- super(ResidualBlockNoBN, self).__init__()
- self.res_scale = res_scale
- self.conv1 = nn.Conv2d(num_feat, num_feat, 3, 1, 1, bias=True)
- self.conv2 = nn.Conv2d(num_feat, num_feat, 3, 1, 1, bias=True)
- self.relu = nn.ReLU(inplace=True)
-
- if not pytorch_init:
- default_init_weights([self.conv1, self.conv2], 0.1)
-
- def forward(self, x):
- identity = x
- out = self.conv2(self.relu(self.conv1(x)))
- return identity + out * self.res_scale
-
-
-class Upsample(nn.Sequential):
- """Upsample module.
-
- Args:
- scale (int): Scale factor. Supported scales: 2^n and 3.
- num_feat (int): Channel number of intermediate features.
- """
-
- def __init__(self, scale, num_feat):
- m = []
- if (scale & (scale - 1)) == 0: # scale = 2^n
- for _ in range(int(math.log(scale, 2))):
- m.append(nn.Conv2d(num_feat, 4 * num_feat, 3, 1, 1))
- m.append(nn.PixelShuffle(2))
- elif scale == 3:
- m.append(nn.Conv2d(num_feat, 9 * num_feat, 3, 1, 1))
- m.append(nn.PixelShuffle(3))
- else:
- raise ValueError(f'scale {scale} is not supported. Supported scales: 2^n and 3.')
- super(Upsample, self).__init__(*m)
-
-
-def flow_warp(x, flow, interp_mode='bilinear', padding_mode='zeros', align_corners=True):
- """Warp an image or feature map with optical flow.
-
- Args:
- x (Tensor): Tensor with size (n, c, h, w).
- flow (Tensor): Tensor with size (n, h, w, 2), normal value.
- interp_mode (str): 'nearest' or 'bilinear'. Default: 'bilinear'.
- padding_mode (str): 'zeros' or 'border' or 'reflection'.
- Default: 'zeros'.
- align_corners (bool): Before pytorch 1.3, the default value is
- align_corners=True. After pytorch 1.3, the default value is
- align_corners=False. Here, we use the True as default.
-
- Returns:
- Tensor: Warped image or feature map.
- """
- assert x.size()[-2:] == flow.size()[1:3]
- _, _, h, w = x.size()
- # create mesh grid
- grid_y, grid_x = torch.meshgrid(torch.arange(0, h).type_as(x), torch.arange(0, w).type_as(x))
- grid = torch.stack((grid_x, grid_y), 2).float() # W(x), H(y), 2
- grid.requires_grad = False
-
- vgrid = grid + flow
- # scale grid to [-1,1]
- vgrid_x = 2.0 * vgrid[:, :, :, 0] / max(w - 1, 1) - 1.0
- vgrid_y = 2.0 * vgrid[:, :, :, 1] / max(h - 1, 1) - 1.0
- vgrid_scaled = torch.stack((vgrid_x, vgrid_y), dim=3)
- output = F.grid_sample(x, vgrid_scaled, mode=interp_mode, padding_mode=padding_mode, align_corners=align_corners)
-
- # TODO, what if align_corners=False
- return output
-
-
-def resize_flow(flow, size_type, sizes, interp_mode='bilinear', align_corners=False):
- """Resize a flow according to ratio or shape.
-
- Args:
- flow (Tensor): Precomputed flow. shape [N, 2, H, W].
- size_type (str): 'ratio' or 'shape'.
- sizes (list[int | float]): the ratio for resizing or the final output
- shape.
- 1) The order of ratio should be [ratio_h, ratio_w]. For
- downsampling, the ratio should be smaller than 1.0 (i.e., ratio
- < 1.0). For upsampling, the ratio should be larger than 1.0 (i.e.,
- ratio > 1.0).
- 2) The order of output_size should be [out_h, out_w].
- interp_mode (str): The mode of interpolation for resizing.
- Default: 'bilinear'.
- align_corners (bool): Whether align corners. Default: False.
-
- Returns:
- Tensor: Resized flow.
- """
- _, _, flow_h, flow_w = flow.size()
- if size_type == 'ratio':
- output_h, output_w = int(flow_h * sizes[0]), int(flow_w * sizes[1])
- elif size_type == 'shape':
- output_h, output_w = sizes[0], sizes[1]
- else:
- raise ValueError(f'Size type should be ratio or shape, but got type {size_type}.')
-
- input_flow = flow.clone()
- ratio_h = output_h / flow_h
- ratio_w = output_w / flow_w
- input_flow[:, 0, :, :] *= ratio_w
- input_flow[:, 1, :, :] *= ratio_h
- resized_flow = F.interpolate(
- input=input_flow, size=(output_h, output_w), mode=interp_mode, align_corners=align_corners)
- return resized_flow
-
-
-# TODO: may write a cpp file
-def pixel_unshuffle(x, scale):
- """ Pixel unshuffle.
-
- Args:
- x (Tensor): Input feature with shape (b, c, hh, hw).
- scale (int): Downsample ratio.
-
- Returns:
- Tensor: the pixel unshuffled feature.
- """
- b, c, hh, hw = x.size()
- out_channel = c * (scale**2)
- assert hh % scale == 0 and hw % scale == 0
- h = hh // scale
- w = hw // scale
- x_view = x.view(b, c, h, scale, w, scale)
- return x_view.permute(0, 1, 3, 5, 2, 4).reshape(b, out_channel, h, w)
-
-
-class DCNv2Pack(ModulatedDeformConvPack):
- """Modulated deformable conv for deformable alignment.
-
- Different from the official DCNv2Pack, which generates offsets and masks
- from the preceding features, this DCNv2Pack takes another different
- features to generate offsets and masks.
-
- Ref:
- Delving Deep into Deformable Alignment in Video Super-Resolution.
- """
-
- def forward(self, x, feat):
- out = self.conv_offset(feat)
- o1, o2, mask = torch.chunk(out, 3, dim=1)
- offset = torch.cat((o1, o2), dim=1)
- mask = torch.sigmoid(mask)
-
- offset_absmean = torch.mean(torch.abs(offset))
- if offset_absmean > 50:
- logger = get_root_logger()
- logger.warning(f'Offset abs mean is {offset_absmean}, larger than 50.')
-
- if LooseVersion(torchvision.__version__) >= LooseVersion('0.9.0'):
- return torchvision.ops.deform_conv2d(x, offset, self.weight, self.bias, self.stride, self.padding,
- self.dilation, mask)
- else:
- return modulated_deform_conv(x, offset, mask, self.weight, self.bias, self.stride, self.padding,
- self.dilation, self.groups, self.deformable_groups)
-
-
-def _no_grad_trunc_normal_(tensor, mean, std, a, b):
- # From: https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/layers/weight_init.py
- # Cut & paste from PyTorch official master until it's in a few official releases - RW
- # Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
- def norm_cdf(x):
- # Computes standard normal cumulative distribution function
- return (1. + math.erf(x / math.sqrt(2.))) / 2.
-
- if (mean < a - 2 * std) or (mean > b + 2 * std):
- warnings.warn(
- 'mean is more than 2 std from [a, b] in nn.init.trunc_normal_. '
- 'The distribution of values may be incorrect.',
- stacklevel=2)
-
- with torch.no_grad():
- # Values are generated by using a truncated uniform distribution and
- # then using the inverse CDF for the normal distribution.
- # Get upper and lower cdf values
- low = norm_cdf((a - mean) / std)
- up = norm_cdf((b - mean) / std)
-
- # Uniformly fill tensor with values from [low, up], then translate to
- # [2l-1, 2u-1].
- tensor.uniform_(2 * low - 1, 2 * up - 1)
-
- # Use inverse cdf transform for normal distribution to get truncated
- # standard normal
- tensor.erfinv_()
-
- # Transform to proper mean, std
- tensor.mul_(std * math.sqrt(2.))
- tensor.add_(mean)
-
- # Clamp to ensure it's in the proper range
- tensor.clamp_(min=a, max=b)
- return tensor
-
-
-def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.):
- r"""Fills the input Tensor with values drawn from a truncated
- normal distribution.
-
- From: https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/layers/weight_init.py
-
- The values are effectively drawn from the
- normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)`
- with values outside :math:`[a, b]` redrawn until they are within
- the bounds. The method used for generating the random values works
- best when :math:`a \leq \text{mean} \leq b`.
-
- Args:
- tensor: an n-dimensional `torch.Tensor`
- mean: the mean of the normal distribution
- std: the standard deviation of the normal distribution
- a: the minimum cutoff value
- b: the maximum cutoff value
-
- Examples:
- >>> w = torch.empty(3, 5)
- >>> nn.init.trunc_normal_(w)
- """
- return _no_grad_trunc_normal_(tensor, mean, std, a, b)
-
-
-# From PyTorch
-def _ntuple(n):
-
- def parse(x):
- if isinstance(x, collections.abc.Iterable):
- return x
- return tuple(repeat(x, n))
-
- return parse
-
-
-to_1tuple = _ntuple(1)
-to_2tuple = _ntuple(2)
-to_3tuple = _ntuple(3)
-to_4tuple = _ntuple(4)
-to_ntuple = _ntuple
\ No newline at end of file
diff --git a/CodeFormer/CodeFormer/basicsr/archs/codeformer_arch.py b/CodeFormer/CodeFormer/basicsr/archs/codeformer_arch.py
deleted file mode 100644
index 4d0d8027c8c4ffb26af6f4ba361514e93e320e8d..0000000000000000000000000000000000000000
--- a/CodeFormer/CodeFormer/basicsr/archs/codeformer_arch.py
+++ /dev/null
@@ -1,276 +0,0 @@
-import math
-import numpy as np
-import torch
-from torch import nn, Tensor
-import torch.nn.functional as F
-from typing import Optional, List
-
-from basicsr.archs.vqgan_arch import *
-from basicsr.utils import get_root_logger
-from basicsr.utils.registry import ARCH_REGISTRY
-
-def calc_mean_std(feat, eps=1e-5):
- """Calculate mean and std for adaptive_instance_normalization.
-
- Args:
- feat (Tensor): 4D tensor.
- eps (float): A small value added to the variance to avoid
- divide-by-zero. Default: 1e-5.
- """
- size = feat.size()
- assert len(size) == 4, 'The input feature should be 4D tensor.'
- b, c = size[:2]
- feat_var = feat.view(b, c, -1).var(dim=2) + eps
- feat_std = feat_var.sqrt().view(b, c, 1, 1)
- feat_mean = feat.view(b, c, -1).mean(dim=2).view(b, c, 1, 1)
- return feat_mean, feat_std
-
-
-def adaptive_instance_normalization(content_feat, style_feat):
- """Adaptive instance normalization.
-
- Adjust the reference features to have the similar color and illuminations
- as those in the degradate features.
-
- Args:
- content_feat (Tensor): The reference feature.
- style_feat (Tensor): The degradate features.
- """
- size = content_feat.size()
- style_mean, style_std = calc_mean_std(style_feat)
- content_mean, content_std = calc_mean_std(content_feat)
- normalized_feat = (content_feat - content_mean.expand(size)) / content_std.expand(size)
- return normalized_feat * style_std.expand(size) + style_mean.expand(size)
-
-
-class PositionEmbeddingSine(nn.Module):
- """
- This is a more standard version of the position embedding, very similar to the one
- used by the Attention is all you need paper, generalized to work on images.
- """
-
- def __init__(self, num_pos_feats=64, temperature=10000, normalize=False, scale=None):
- super().__init__()
- self.num_pos_feats = num_pos_feats
- self.temperature = temperature
- self.normalize = normalize
- if scale is not None and normalize is False:
- raise ValueError("normalize should be True if scale is passed")
- if scale is None:
- scale = 2 * math.pi
- self.scale = scale
-
- def forward(self, x, mask=None):
- if mask is None:
- mask = torch.zeros((x.size(0), x.size(2), x.size(3)), device=x.device, dtype=torch.bool)
- not_mask = ~mask
- y_embed = not_mask.cumsum(1, dtype=torch.float32)
- x_embed = not_mask.cumsum(2, dtype=torch.float32)
- if self.normalize:
- eps = 1e-6
- y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale
- x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale
-
- dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device)
- dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats)
-
- pos_x = x_embed[:, :, :, None] / dim_t
- pos_y = y_embed[:, :, :, None] / dim_t
- pos_x = torch.stack(
- (pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4
- ).flatten(3)
- pos_y = torch.stack(
- (pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4
- ).flatten(3)
- pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2)
- return pos
-
-def _get_activation_fn(activation):
- """Return an activation function given a string"""
- if activation == "relu":
- return F.relu
- if activation == "gelu":
- return F.gelu
- if activation == "glu":
- return F.glu
- raise RuntimeError(F"activation should be relu/gelu, not {activation}.")
-
-
-class TransformerSALayer(nn.Module):
- def __init__(self, embed_dim, nhead=8, dim_mlp=2048, dropout=0.0, activation="gelu"):
- super().__init__()
- self.self_attn = nn.MultiheadAttention(embed_dim, nhead, dropout=dropout)
- # Implementation of Feedforward model - MLP
- self.linear1 = nn.Linear(embed_dim, dim_mlp)
- self.dropout = nn.Dropout(dropout)
- self.linear2 = nn.Linear(dim_mlp, embed_dim)
-
- self.norm1 = nn.LayerNorm(embed_dim)
- self.norm2 = nn.LayerNorm(embed_dim)
- self.dropout1 = nn.Dropout(dropout)
- self.dropout2 = nn.Dropout(dropout)
-
- self.activation = _get_activation_fn(activation)
-
- def with_pos_embed(self, tensor, pos: Optional[Tensor]):
- return tensor if pos is None else tensor + pos
-
- def forward(self, tgt,
- tgt_mask: Optional[Tensor] = None,
- tgt_key_padding_mask: Optional[Tensor] = None,
- query_pos: Optional[Tensor] = None):
-
- # self attention
- tgt2 = self.norm1(tgt)
- q = k = self.with_pos_embed(tgt2, query_pos)
- tgt2 = self.self_attn(q, k, value=tgt2, attn_mask=tgt_mask,
- key_padding_mask=tgt_key_padding_mask)[0]
- tgt = tgt + self.dropout1(tgt2)
-
- # ffn
- tgt2 = self.norm2(tgt)
- tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt2))))
- tgt = tgt + self.dropout2(tgt2)
- return tgt
-
-class Fuse_sft_block(nn.Module):
- def __init__(self, in_ch, out_ch):
- super().__init__()
- self.encode_enc = ResBlock(2*in_ch, out_ch)
-
- self.scale = nn.Sequential(
- nn.Conv2d(in_ch, out_ch, kernel_size=3, padding=1),
- nn.LeakyReLU(0.2, True),
- nn.Conv2d(out_ch, out_ch, kernel_size=3, padding=1))
-
- self.shift = nn.Sequential(
- nn.Conv2d(in_ch, out_ch, kernel_size=3, padding=1),
- nn.LeakyReLU(0.2, True),
- nn.Conv2d(out_ch, out_ch, kernel_size=3, padding=1))
-
- def forward(self, enc_feat, dec_feat, w=1):
- enc_feat = self.encode_enc(torch.cat([enc_feat, dec_feat], dim=1))
- scale = self.scale(enc_feat)
- shift = self.shift(enc_feat)
- residual = w * (dec_feat * scale + shift)
- out = dec_feat + residual
- return out
-
-
-@ARCH_REGISTRY.register()
-class CodeFormer(VQAutoEncoder):
- def __init__(self, dim_embd=512, n_head=8, n_layers=9,
- codebook_size=1024, latent_size=256,
- connect_list=['32', '64', '128', '256'],
- fix_modules=['quantize','generator']):
- super(CodeFormer, self).__init__(512, 64, [1, 2, 2, 4, 4, 8], 'nearest',2, [16], codebook_size)
-
- if fix_modules is not None:
- for module in fix_modules:
- for param in getattr(self, module).parameters():
- param.requires_grad = False
-
- self.connect_list = connect_list
- self.n_layers = n_layers
- self.dim_embd = dim_embd
- self.dim_mlp = dim_embd*2
-
- self.position_emb = nn.Parameter(torch.zeros(latent_size, self.dim_embd))
- self.feat_emb = nn.Linear(256, self.dim_embd)
-
- # transformer
- self.ft_layers = nn.Sequential(*[TransformerSALayer(embed_dim=dim_embd, nhead=n_head, dim_mlp=self.dim_mlp, dropout=0.0)
- for _ in range(self.n_layers)])
-
- # logits_predict head
- self.idx_pred_layer = nn.Sequential(
- nn.LayerNorm(dim_embd),
- nn.Linear(dim_embd, codebook_size, bias=False))
-
- self.channels = {
- '16': 512,
- '32': 256,
- '64': 256,
- '128': 128,
- '256': 128,
- '512': 64,
- }
-
- # after second residual block for > 16, before attn layer for ==16
- self.fuse_encoder_block = {'512':2, '256':5, '128':8, '64':11, '32':14, '16':18}
- # after first residual block for > 16, before attn layer for ==16
- self.fuse_generator_block = {'16':6, '32': 9, '64':12, '128':15, '256':18, '512':21}
-
- # fuse_convs_dict
- self.fuse_convs_dict = nn.ModuleDict()
- for f_size in self.connect_list:
- in_ch = self.channels[f_size]
- self.fuse_convs_dict[f_size] = Fuse_sft_block(in_ch, in_ch)
-
- def _init_weights(self, module):
- if isinstance(module, (nn.Linear, nn.Embedding)):
- module.weight.data.normal_(mean=0.0, std=0.02)
- if isinstance(module, nn.Linear) and module.bias is not None:
- module.bias.data.zero_()
- elif isinstance(module, nn.LayerNorm):
- module.bias.data.zero_()
- module.weight.data.fill_(1.0)
-
- def forward(self, x, w=0, detach_16=True, code_only=False, adain=False):
- # ################### Encoder #####################
- enc_feat_dict = {}
- out_list = [self.fuse_encoder_block[f_size] for f_size in self.connect_list]
- for i, block in enumerate(self.encoder.blocks):
- x = block(x)
- if i in out_list:
- enc_feat_dict[str(x.shape[-1])] = x.clone()
-
- lq_feat = x
- # ################# Transformer ###################
- # quant_feat, codebook_loss, quant_stats = self.quantize(lq_feat)
- pos_emb = self.position_emb.unsqueeze(1).repeat(1,x.shape[0],1)
- # BCHW -> BC(HW) -> (HW)BC
- feat_emb = self.feat_emb(lq_feat.flatten(2).permute(2,0,1))
- query_emb = feat_emb
- # Transformer encoder
- for layer in self.ft_layers:
- query_emb = layer(query_emb, query_pos=pos_emb)
-
- # output logits
- logits = self.idx_pred_layer(query_emb) # (hw)bn
- logits = logits.permute(1,0,2) # (hw)bn -> b(hw)n
-
- if code_only: # for training stage II
- # logits doesn't need softmax before cross_entropy loss
- return logits, lq_feat
-
- # ################# Quantization ###################
- # if self.training:
- # quant_feat = torch.einsum('btn,nc->btc', [soft_one_hot, self.quantize.embedding.weight])
- # # b(hw)c -> bc(hw) -> bchw
- # quant_feat = quant_feat.permute(0,2,1).view(lq_feat.shape)
- # ------------
- soft_one_hot = F.softmax(logits, dim=2)
- _, top_idx = torch.topk(soft_one_hot, 1, dim=2)
- quant_feat = self.quantize.get_codebook_feat(top_idx, shape=[x.shape[0],16,16,256])
- # preserve gradients
- # quant_feat = lq_feat + (quant_feat - lq_feat).detach()
-
- if detach_16:
- quant_feat = quant_feat.detach() # for training stage III
- if adain:
- quant_feat = adaptive_instance_normalization(quant_feat, lq_feat)
-
- # ################## Generator ####################
- x = quant_feat
- fuse_list = [self.fuse_generator_block[f_size] for f_size in self.connect_list]
-
- for i, block in enumerate(self.generator.blocks):
- x = block(x)
- if i in fuse_list: # fuse after i-th block
- f_size = str(x.shape[-1])
- if w>0:
- x = self.fuse_convs_dict[f_size](enc_feat_dict[f_size].detach(), x, w)
- out = x
- # logits doesn't need softmax before cross_entropy loss
- return out, logits, lq_feat
\ No newline at end of file
diff --git a/CodeFormer/CodeFormer/basicsr/archs/rrdbnet_arch.py b/CodeFormer/CodeFormer/basicsr/archs/rrdbnet_arch.py
deleted file mode 100644
index 49a2d6c204557cba53ada7550deb587541855cfb..0000000000000000000000000000000000000000
--- a/CodeFormer/CodeFormer/basicsr/archs/rrdbnet_arch.py
+++ /dev/null
@@ -1,119 +0,0 @@
-import torch
-from torch import nn as nn
-from torch.nn import functional as F
-
-from basicsr.utils.registry import ARCH_REGISTRY
-from .arch_util import default_init_weights, make_layer, pixel_unshuffle
-
-
-class ResidualDenseBlock(nn.Module):
- """Residual Dense Block.
-
- Used in RRDB block in ESRGAN.
-
- Args:
- num_feat (int): Channel number of intermediate features.
- num_grow_ch (int): Channels for each growth.
- """
-
- def __init__(self, num_feat=64, num_grow_ch=32):
- super(ResidualDenseBlock, self).__init__()
- self.conv1 = nn.Conv2d(num_feat, num_grow_ch, 3, 1, 1)
- self.conv2 = nn.Conv2d(num_feat + num_grow_ch, num_grow_ch, 3, 1, 1)
- self.conv3 = nn.Conv2d(num_feat + 2 * num_grow_ch, num_grow_ch, 3, 1, 1)
- self.conv4 = nn.Conv2d(num_feat + 3 * num_grow_ch, num_grow_ch, 3, 1, 1)
- self.conv5 = nn.Conv2d(num_feat + 4 * num_grow_ch, num_feat, 3, 1, 1)
-
- self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
-
- # initialization
- default_init_weights([self.conv1, self.conv2, self.conv3, self.conv4, self.conv5], 0.1)
-
- def forward(self, x):
- x1 = self.lrelu(self.conv1(x))
- x2 = self.lrelu(self.conv2(torch.cat((x, x1), 1)))
- x3 = self.lrelu(self.conv3(torch.cat((x, x1, x2), 1)))
- x4 = self.lrelu(self.conv4(torch.cat((x, x1, x2, x3), 1)))
- x5 = self.conv5(torch.cat((x, x1, x2, x3, x4), 1))
- # Emperically, we use 0.2 to scale the residual for better performance
- return x5 * 0.2 + x
-
-
-class RRDB(nn.Module):
- """Residual in Residual Dense Block.
-
- Used in RRDB-Net in ESRGAN.
-
- Args:
- num_feat (int): Channel number of intermediate features.
- num_grow_ch (int): Channels for each growth.
- """
-
- def __init__(self, num_feat, num_grow_ch=32):
- super(RRDB, self).__init__()
- self.rdb1 = ResidualDenseBlock(num_feat, num_grow_ch)
- self.rdb2 = ResidualDenseBlock(num_feat, num_grow_ch)
- self.rdb3 = ResidualDenseBlock(num_feat, num_grow_ch)
-
- def forward(self, x):
- out = self.rdb1(x)
- out = self.rdb2(out)
- out = self.rdb3(out)
- # Emperically, we use 0.2 to scale the residual for better performance
- return out * 0.2 + x
-
-
-@ARCH_REGISTRY.register()
-class RRDBNet(nn.Module):
- """Networks consisting of Residual in Residual Dense Block, which is used
- in ESRGAN.
-
- ESRGAN: Enhanced Super-Resolution Generative Adversarial Networks.
-
- We extend ESRGAN for scale x2 and scale x1.
- Note: This is one option for scale 1, scale 2 in RRDBNet.
- We first employ the pixel-unshuffle (an inverse operation of pixelshuffle to reduce the spatial size
- and enlarge the channel size before feeding inputs into the main ESRGAN architecture.
-
- Args:
- num_in_ch (int): Channel number of inputs.
- num_out_ch (int): Channel number of outputs.
- num_feat (int): Channel number of intermediate features.
- Default: 64
- num_block (int): Block number in the trunk network. Defaults: 23
- num_grow_ch (int): Channels for each growth. Default: 32.
- """
-
- def __init__(self, num_in_ch, num_out_ch, scale=4, num_feat=64, num_block=23, num_grow_ch=32):
- super(RRDBNet, self).__init__()
- self.scale = scale
- if scale == 2:
- num_in_ch = num_in_ch * 4
- elif scale == 1:
- num_in_ch = num_in_ch * 16
- self.conv_first = nn.Conv2d(num_in_ch, num_feat, 3, 1, 1)
- self.body = make_layer(RRDB, num_block, num_feat=num_feat, num_grow_ch=num_grow_ch)
- self.conv_body = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
- # upsample
- self.conv_up1 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
- self.conv_up2 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
- self.conv_hr = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
- self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1)
-
- self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
-
- def forward(self, x):
- if self.scale == 2:
- feat = pixel_unshuffle(x, scale=2)
- elif self.scale == 1:
- feat = pixel_unshuffle(x, scale=4)
- else:
- feat = x
- feat = self.conv_first(feat)
- body_feat = self.conv_body(self.body(feat))
- feat = feat + body_feat
- # upsample
- feat = self.lrelu(self.conv_up1(F.interpolate(feat, scale_factor=2, mode='nearest')))
- feat = self.lrelu(self.conv_up2(F.interpolate(feat, scale_factor=2, mode='nearest')))
- out = self.conv_last(self.lrelu(self.conv_hr(feat)))
- return out
\ No newline at end of file
diff --git a/CodeFormer/CodeFormer/basicsr/archs/vgg_arch.py b/CodeFormer/CodeFormer/basicsr/archs/vgg_arch.py
deleted file mode 100644
index 23bb0103c8b14ef2588028f7177753db9af62cae..0000000000000000000000000000000000000000
--- a/CodeFormer/CodeFormer/basicsr/archs/vgg_arch.py
+++ /dev/null
@@ -1,161 +0,0 @@
-import os
-import torch
-from collections import OrderedDict
-from torch import nn as nn
-from torchvision.models import vgg as vgg
-
-from basicsr.utils.registry import ARCH_REGISTRY
-
-VGG_PRETRAIN_PATH = 'experiments/pretrained_models/vgg19-dcbb9e9d.pth'
-NAMES = {
- 'vgg11': [
- 'conv1_1', 'relu1_1', 'pool1', 'conv2_1', 'relu2_1', 'pool2', 'conv3_1', 'relu3_1', 'conv3_2', 'relu3_2',
- 'pool3', 'conv4_1', 'relu4_1', 'conv4_2', 'relu4_2', 'pool4', 'conv5_1', 'relu5_1', 'conv5_2', 'relu5_2',
- 'pool5'
- ],
- 'vgg13': [
- 'conv1_1', 'relu1_1', 'conv1_2', 'relu1_2', 'pool1', 'conv2_1', 'relu2_1', 'conv2_2', 'relu2_2', 'pool2',
- 'conv3_1', 'relu3_1', 'conv3_2', 'relu3_2', 'pool3', 'conv4_1', 'relu4_1', 'conv4_2', 'relu4_2', 'pool4',
- 'conv5_1', 'relu5_1', 'conv5_2', 'relu5_2', 'pool5'
- ],
- 'vgg16': [
- 'conv1_1', 'relu1_1', 'conv1_2', 'relu1_2', 'pool1', 'conv2_1', 'relu2_1', 'conv2_2', 'relu2_2', 'pool2',
- 'conv3_1', 'relu3_1', 'conv3_2', 'relu3_2', 'conv3_3', 'relu3_3', 'pool3', 'conv4_1', 'relu4_1', 'conv4_2',
- 'relu4_2', 'conv4_3', 'relu4_3', 'pool4', 'conv5_1', 'relu5_1', 'conv5_2', 'relu5_2', 'conv5_3', 'relu5_3',
- 'pool5'
- ],
- 'vgg19': [
- 'conv1_1', 'relu1_1', 'conv1_2', 'relu1_2', 'pool1', 'conv2_1', 'relu2_1', 'conv2_2', 'relu2_2', 'pool2',
- 'conv3_1', 'relu3_1', 'conv3_2', 'relu3_2', 'conv3_3', 'relu3_3', 'conv3_4', 'relu3_4', 'pool3', 'conv4_1',
- 'relu4_1', 'conv4_2', 'relu4_2', 'conv4_3', 'relu4_3', 'conv4_4', 'relu4_4', 'pool4', 'conv5_1', 'relu5_1',
- 'conv5_2', 'relu5_2', 'conv5_3', 'relu5_3', 'conv5_4', 'relu5_4', 'pool5'
- ]
-}
-
-
-def insert_bn(names):
- """Insert bn layer after each conv.
-
- Args:
- names (list): The list of layer names.
-
- Returns:
- list: The list of layer names with bn layers.
- """
- names_bn = []
- for name in names:
- names_bn.append(name)
- if 'conv' in name:
- position = name.replace('conv', '')
- names_bn.append('bn' + position)
- return names_bn
-
-
-@ARCH_REGISTRY.register()
-class VGGFeatureExtractor(nn.Module):
- """VGG network for feature extraction.
-
- In this implementation, we allow users to choose whether use normalization
- in the input feature and the type of vgg network. Note that the pretrained
- path must fit the vgg type.
-
- Args:
- layer_name_list (list[str]): Forward function returns the corresponding
- features according to the layer_name_list.
- Example: {'relu1_1', 'relu2_1', 'relu3_1'}.
- vgg_type (str): Set the type of vgg network. Default: 'vgg19'.
- use_input_norm (bool): If True, normalize the input image. Importantly,
- the input feature must in the range [0, 1]. Default: True.
- range_norm (bool): If True, norm images with range [-1, 1] to [0, 1].
- Default: False.
- requires_grad (bool): If true, the parameters of VGG network will be
- optimized. Default: False.
- remove_pooling (bool): If true, the max pooling operations in VGG net
- will be removed. Default: False.
- pooling_stride (int): The stride of max pooling operation. Default: 2.
- """
-
- def __init__(self,
- layer_name_list,
- vgg_type='vgg19',
- use_input_norm=True,
- range_norm=False,
- requires_grad=False,
- remove_pooling=False,
- pooling_stride=2):
- super(VGGFeatureExtractor, self).__init__()
-
- self.layer_name_list = layer_name_list
- self.use_input_norm = use_input_norm
- self.range_norm = range_norm
-
- self.names = NAMES[vgg_type.replace('_bn', '')]
- if 'bn' in vgg_type:
- self.names = insert_bn(self.names)
-
- # only borrow layers that will be used to avoid unused params
- max_idx = 0
- for v in layer_name_list:
- idx = self.names.index(v)
- if idx > max_idx:
- max_idx = idx
-
- if os.path.exists(VGG_PRETRAIN_PATH):
- vgg_net = getattr(vgg, vgg_type)(pretrained=False)
- state_dict = torch.load(VGG_PRETRAIN_PATH, map_location=lambda storage, loc: storage)
- vgg_net.load_state_dict(state_dict)
- else:
- vgg_net = getattr(vgg, vgg_type)(pretrained=True)
-
- features = vgg_net.features[:max_idx + 1]
-
- modified_net = OrderedDict()
- for k, v in zip(self.names, features):
- if 'pool' in k:
- # if remove_pooling is true, pooling operation will be removed
- if remove_pooling:
- continue
- else:
- # in some cases, we may want to change the default stride
- modified_net[k] = nn.MaxPool2d(kernel_size=2, stride=pooling_stride)
- else:
- modified_net[k] = v
-
- self.vgg_net = nn.Sequential(modified_net)
-
- if not requires_grad:
- self.vgg_net.eval()
- for param in self.parameters():
- param.requires_grad = False
- else:
- self.vgg_net.train()
- for param in self.parameters():
- param.requires_grad = True
-
- if self.use_input_norm:
- # the mean is for image with range [0, 1]
- self.register_buffer('mean', torch.Tensor([0.485, 0.456, 0.406]).view(1, 3, 1, 1))
- # the std is for image with range [0, 1]
- self.register_buffer('std', torch.Tensor([0.229, 0.224, 0.225]).view(1, 3, 1, 1))
-
- def forward(self, x):
- """Forward function.
-
- Args:
- x (Tensor): Input tensor with shape (n, c, h, w).
-
- Returns:
- Tensor: Forward results.
- """
- if self.range_norm:
- x = (x + 1) / 2
- if self.use_input_norm:
- x = (x - self.mean) / self.std
- output = {}
-
- for key, layer in self.vgg_net._modules.items():
- x = layer(x)
- if key in self.layer_name_list:
- output[key] = x.clone()
-
- return output
diff --git a/CodeFormer/CodeFormer/basicsr/archs/vqgan_arch.py b/CodeFormer/CodeFormer/basicsr/archs/vqgan_arch.py
deleted file mode 100644
index f6dfcf4c9983b431f0a978701e5ddd9598faf381..0000000000000000000000000000000000000000
--- a/CodeFormer/CodeFormer/basicsr/archs/vqgan_arch.py
+++ /dev/null
@@ -1,435 +0,0 @@
-'''
-VQGAN code, adapted from the original created by the Unleashing Transformers authors:
-https://github.com/samb-t/unleashing-transformers/blob/master/models/vqgan.py
-
-'''
-import numpy as np
-import torch
-import torch.nn as nn
-import torch.nn.functional as F
-import copy
-from basicsr.utils import get_root_logger
-from basicsr.utils.registry import ARCH_REGISTRY
-
-def normalize(in_channels):
- return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
-
-
-@torch.jit.script
-def swish(x):
- return x*torch.sigmoid(x)
-
-
-# Define VQVAE classes
-class VectorQuantizer(nn.Module):
- def __init__(self, codebook_size, emb_dim, beta):
- super(VectorQuantizer, self).__init__()
- self.codebook_size = codebook_size # number of embeddings
- self.emb_dim = emb_dim # dimension of embedding
- self.beta = beta # commitment cost used in loss term, beta * ||z_e(x)-sg[e]||^2
- self.embedding = nn.Embedding(self.codebook_size, self.emb_dim)
- self.embedding.weight.data.uniform_(-1.0 / self.codebook_size, 1.0 / self.codebook_size)
-
- def forward(self, z):
- # reshape z -> (batch, height, width, channel) and flatten
- z = z.permute(0, 2, 3, 1).contiguous()
- z_flattened = z.view(-1, self.emb_dim)
-
- # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z
- d = (z_flattened ** 2).sum(dim=1, keepdim=True) + (self.embedding.weight**2).sum(1) - \
- 2 * torch.matmul(z_flattened, self.embedding.weight.t())
-
- mean_distance = torch.mean(d)
- # find closest encodings
- # min_encoding_indices = torch.argmin(d, dim=1).unsqueeze(1)
- min_encoding_scores, min_encoding_indices = torch.topk(d, 1, dim=1, largest=False)
- # [0-1], higher score, higher confidence
- min_encoding_scores = torch.exp(-min_encoding_scores/10)
-
- min_encodings = torch.zeros(min_encoding_indices.shape[0], self.codebook_size).to(z)
- min_encodings.scatter_(1, min_encoding_indices, 1)
-
- # get quantized latent vectors
- z_q = torch.matmul(min_encodings, self.embedding.weight).view(z.shape)
- # compute loss for embedding
- loss = torch.mean((z_q.detach()-z)**2) + self.beta * torch.mean((z_q - z.detach()) ** 2)
- # preserve gradients
- z_q = z + (z_q - z).detach()
-
- # perplexity
- e_mean = torch.mean(min_encodings, dim=0)
- perplexity = torch.exp(-torch.sum(e_mean * torch.log(e_mean + 1e-10)))
- # reshape back to match original input shape
- z_q = z_q.permute(0, 3, 1, 2).contiguous()
-
- return z_q, loss, {
- "perplexity": perplexity,
- "min_encodings": min_encodings,
- "min_encoding_indices": min_encoding_indices,
- "min_encoding_scores": min_encoding_scores,
- "mean_distance": mean_distance
- }
-
- def get_codebook_feat(self, indices, shape):
- # input indices: batch*token_num -> (batch*token_num)*1
- # shape: batch, height, width, channel
- indices = indices.view(-1,1)
- min_encodings = torch.zeros(indices.shape[0], self.codebook_size).to(indices)
- min_encodings.scatter_(1, indices, 1)
- # get quantized latent vectors
- z_q = torch.matmul(min_encodings.float(), self.embedding.weight)
-
- if shape is not None: # reshape back to match original input shape
- z_q = z_q.view(shape).permute(0, 3, 1, 2).contiguous()
-
- return z_q
-
-
-class GumbelQuantizer(nn.Module):
- def __init__(self, codebook_size, emb_dim, num_hiddens, straight_through=False, kl_weight=5e-4, temp_init=1.0):
- super().__init__()
- self.codebook_size = codebook_size # number of embeddings
- self.emb_dim = emb_dim # dimension of embedding
- self.straight_through = straight_through
- self.temperature = temp_init
- self.kl_weight = kl_weight
- self.proj = nn.Conv2d(num_hiddens, codebook_size, 1) # projects last encoder layer to quantized logits
- self.embed = nn.Embedding(codebook_size, emb_dim)
-
- def forward(self, z):
- hard = self.straight_through if self.training else True
-
- logits = self.proj(z)
-
- soft_one_hot = F.gumbel_softmax(logits, tau=self.temperature, dim=1, hard=hard)
-
- z_q = torch.einsum("b n h w, n d -> b d h w", soft_one_hot, self.embed.weight)
-
- # + kl divergence to the prior loss
- qy = F.softmax(logits, dim=1)
- diff = self.kl_weight * torch.sum(qy * torch.log(qy * self.codebook_size + 1e-10), dim=1).mean()
- min_encoding_indices = soft_one_hot.argmax(dim=1)
-
- return z_q, diff, {
- "min_encoding_indices": min_encoding_indices
- }
-
-
-class Downsample(nn.Module):
- def __init__(self, in_channels):
- super().__init__()
- self.conv = torch.nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=2, padding=0)
-
- def forward(self, x):
- pad = (0, 1, 0, 1)
- x = torch.nn.functional.pad(x, pad, mode="constant", value=0)
- x = self.conv(x)
- return x
-
-
-class Upsample(nn.Module):
- def __init__(self, in_channels):
- super().__init__()
- self.conv = nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1)
-
- def forward(self, x):
- x = F.interpolate(x, scale_factor=2.0, mode="nearest")
- x = self.conv(x)
-
- return x
-
-
-class ResBlock(nn.Module):
- def __init__(self, in_channels, out_channels=None):
- super(ResBlock, self).__init__()
- self.in_channels = in_channels
- self.out_channels = in_channels if out_channels is None else out_channels
- self.norm1 = normalize(in_channels)
- self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
- self.norm2 = normalize(out_channels)
- self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
- if self.in_channels != self.out_channels:
- self.conv_out = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0)
-
- def forward(self, x_in):
- x = x_in
- x = self.norm1(x)
- x = swish(x)
- x = self.conv1(x)
- x = self.norm2(x)
- x = swish(x)
- x = self.conv2(x)
- if self.in_channels != self.out_channels:
- x_in = self.conv_out(x_in)
-
- return x + x_in
-
-
-class AttnBlock(nn.Module):
- def __init__(self, in_channels):
- super().__init__()
- self.in_channels = in_channels
-
- self.norm = normalize(in_channels)
- self.q = torch.nn.Conv2d(
- in_channels,
- in_channels,
- kernel_size=1,
- stride=1,
- padding=0
- )
- self.k = torch.nn.Conv2d(
- in_channels,
- in_channels,
- kernel_size=1,
- stride=1,
- padding=0
- )
- self.v = torch.nn.Conv2d(
- in_channels,
- in_channels,
- kernel_size=1,
- stride=1,
- padding=0
- )
- self.proj_out = torch.nn.Conv2d(
- in_channels,
- in_channels,
- kernel_size=1,
- stride=1,
- padding=0
- )
-
- def forward(self, x):
- h_ = x
- h_ = self.norm(h_)
- q = self.q(h_)
- k = self.k(h_)
- v = self.v(h_)
-
- # compute attention
- b, c, h, w = q.shape
- q = q.reshape(b, c, h*w)
- q = q.permute(0, 2, 1)
- k = k.reshape(b, c, h*w)
- w_ = torch.bmm(q, k)
- w_ = w_ * (int(c)**(-0.5))
- w_ = F.softmax(w_, dim=2)
-
- # attend to values
- v = v.reshape(b, c, h*w)
- w_ = w_.permute(0, 2, 1)
- h_ = torch.bmm(v, w_)
- h_ = h_.reshape(b, c, h, w)
-
- h_ = self.proj_out(h_)
-
- return x+h_
-
-
-class Encoder(nn.Module):
- def __init__(self, in_channels, nf, emb_dim, ch_mult, num_res_blocks, resolution, attn_resolutions):
- super().__init__()
- self.nf = nf
- self.num_resolutions = len(ch_mult)
- self.num_res_blocks = num_res_blocks
- self.resolution = resolution
- self.attn_resolutions = attn_resolutions
-
- curr_res = self.resolution
- in_ch_mult = (1,)+tuple(ch_mult)
-
- blocks = []
- # initial convultion
- blocks.append(nn.Conv2d(in_channels, nf, kernel_size=3, stride=1, padding=1))
-
- # residual and downsampling blocks, with attention on smaller res (16x16)
- for i in range(self.num_resolutions):
- block_in_ch = nf * in_ch_mult[i]
- block_out_ch = nf * ch_mult[i]
- for _ in range(self.num_res_blocks):
- blocks.append(ResBlock(block_in_ch, block_out_ch))
- block_in_ch = block_out_ch
- if curr_res in attn_resolutions:
- blocks.append(AttnBlock(block_in_ch))
-
- if i != self.num_resolutions - 1:
- blocks.append(Downsample(block_in_ch))
- curr_res = curr_res // 2
-
- # non-local attention block
- blocks.append(ResBlock(block_in_ch, block_in_ch))
- blocks.append(AttnBlock(block_in_ch))
- blocks.append(ResBlock(block_in_ch, block_in_ch))
-
- # normalise and convert to latent size
- blocks.append(normalize(block_in_ch))
- blocks.append(nn.Conv2d(block_in_ch, emb_dim, kernel_size=3, stride=1, padding=1))
- self.blocks = nn.ModuleList(blocks)
-
- def forward(self, x):
- for block in self.blocks:
- x = block(x)
-
- return x
-
-
-class Generator(nn.Module):
- def __init__(self, nf, emb_dim, ch_mult, res_blocks, img_size, attn_resolutions):
- super().__init__()
- self.nf = nf
- self.ch_mult = ch_mult
- self.num_resolutions = len(self.ch_mult)
- self.num_res_blocks = res_blocks
- self.resolution = img_size
- self.attn_resolutions = attn_resolutions
- self.in_channels = emb_dim
- self.out_channels = 3
- block_in_ch = self.nf * self.ch_mult[-1]
- curr_res = self.resolution // 2 ** (self.num_resolutions-1)
-
- blocks = []
- # initial conv
- blocks.append(nn.Conv2d(self.in_channels, block_in_ch, kernel_size=3, stride=1, padding=1))
-
- # non-local attention block
- blocks.append(ResBlock(block_in_ch, block_in_ch))
- blocks.append(AttnBlock(block_in_ch))
- blocks.append(ResBlock(block_in_ch, block_in_ch))
-
- for i in reversed(range(self.num_resolutions)):
- block_out_ch = self.nf * self.ch_mult[i]
-
- for _ in range(self.num_res_blocks):
- blocks.append(ResBlock(block_in_ch, block_out_ch))
- block_in_ch = block_out_ch
-
- if curr_res in self.attn_resolutions:
- blocks.append(AttnBlock(block_in_ch))
-
- if i != 0:
- blocks.append(Upsample(block_in_ch))
- curr_res = curr_res * 2
-
- blocks.append(normalize(block_in_ch))
- blocks.append(nn.Conv2d(block_in_ch, self.out_channels, kernel_size=3, stride=1, padding=1))
-
- self.blocks = nn.ModuleList(blocks)
-
-
- def forward(self, x):
- for block in self.blocks:
- x = block(x)
-
- return x
-
-
-@ARCH_REGISTRY.register()
-class VQAutoEncoder(nn.Module):
- def __init__(self, img_size, nf, ch_mult, quantizer="nearest", res_blocks=2, attn_resolutions=[16], codebook_size=1024, emb_dim=256,
- beta=0.25, gumbel_straight_through=False, gumbel_kl_weight=1e-8, model_path=None):
- super().__init__()
- logger = get_root_logger()
- self.in_channels = 3
- self.nf = nf
- self.n_blocks = res_blocks
- self.codebook_size = codebook_size
- self.embed_dim = emb_dim
- self.ch_mult = ch_mult
- self.resolution = img_size
- self.attn_resolutions = attn_resolutions
- self.quantizer_type = quantizer
- self.encoder = Encoder(
- self.in_channels,
- self.nf,
- self.embed_dim,
- self.ch_mult,
- self.n_blocks,
- self.resolution,
- self.attn_resolutions
- )
- if self.quantizer_type == "nearest":
- self.beta = beta #0.25
- self.quantize = VectorQuantizer(self.codebook_size, self.embed_dim, self.beta)
- elif self.quantizer_type == "gumbel":
- self.gumbel_num_hiddens = emb_dim
- self.straight_through = gumbel_straight_through
- self.kl_weight = gumbel_kl_weight
- self.quantize = GumbelQuantizer(
- self.codebook_size,
- self.embed_dim,
- self.gumbel_num_hiddens,
- self.straight_through,
- self.kl_weight
- )
- self.generator = Generator(
- self.nf,
- self.embed_dim,
- self.ch_mult,
- self.n_blocks,
- self.resolution,
- self.attn_resolutions
- )
-
- if model_path is not None:
- chkpt = torch.load(model_path, map_location='cpu')
- if 'params_ema' in chkpt:
- self.load_state_dict(torch.load(model_path, map_location='cpu')['params_ema'])
- logger.info(f'vqgan is loaded from: {model_path} [params_ema]')
- elif 'params' in chkpt:
- self.load_state_dict(torch.load(model_path, map_location='cpu')['params'])
- logger.info(f'vqgan is loaded from: {model_path} [params]')
- else:
- raise ValueError(f'Wrong params!')
-
-
- def forward(self, x):
- x = self.encoder(x)
- quant, codebook_loss, quant_stats = self.quantize(x)
- x = self.generator(quant)
- return x, codebook_loss, quant_stats
-
-
-
-# patch based discriminator
-@ARCH_REGISTRY.register()
-class VQGANDiscriminator(nn.Module):
- def __init__(self, nc=3, ndf=64, n_layers=4, model_path=None):
- super().__init__()
-
- layers = [nn.Conv2d(nc, ndf, kernel_size=4, stride=2, padding=1), nn.LeakyReLU(0.2, True)]
- ndf_mult = 1
- ndf_mult_prev = 1
- for n in range(1, n_layers): # gradually increase the number of filters
- ndf_mult_prev = ndf_mult
- ndf_mult = min(2 ** n, 8)
- layers += [
- nn.Conv2d(ndf * ndf_mult_prev, ndf * ndf_mult, kernel_size=4, stride=2, padding=1, bias=False),
- nn.BatchNorm2d(ndf * ndf_mult),
- nn.LeakyReLU(0.2, True)
- ]
-
- ndf_mult_prev = ndf_mult
- ndf_mult = min(2 ** n_layers, 8)
-
- layers += [
- nn.Conv2d(ndf * ndf_mult_prev, ndf * ndf_mult, kernel_size=4, stride=1, padding=1, bias=False),
- nn.BatchNorm2d(ndf * ndf_mult),
- nn.LeakyReLU(0.2, True)
- ]
-
- layers += [
- nn.Conv2d(ndf * ndf_mult, 1, kernel_size=4, stride=1, padding=1)] # output 1 channel prediction map
- self.main = nn.Sequential(*layers)
-
- if model_path is not None:
- chkpt = torch.load(model_path, map_location='cpu')
- if 'params_d' in chkpt:
- self.load_state_dict(torch.load(model_path, map_location='cpu')['params_d'])
- elif 'params' in chkpt:
- self.load_state_dict(torch.load(model_path, map_location='cpu')['params'])
- else:
- raise ValueError(f'Wrong params!')
-
- def forward(self, x):
- return self.main(x)
\ No newline at end of file
diff --git a/CodeFormer/CodeFormer/basicsr/data/__init__.py b/CodeFormer/CodeFormer/basicsr/data/__init__.py
deleted file mode 100644
index c6adb4bb6a926af7a46aaec4794eee95fda02a33..0000000000000000000000000000000000000000
--- a/CodeFormer/CodeFormer/basicsr/data/__init__.py
+++ /dev/null
@@ -1,100 +0,0 @@
-import importlib
-import numpy as np
-import random
-import torch
-import torch.utils.data
-from copy import deepcopy
-from functools import partial
-from os import path as osp
-
-from basicsr.data.prefetch_dataloader import PrefetchDataLoader
-from basicsr.utils import get_root_logger, scandir
-from basicsr.utils.dist_util import get_dist_info
-from basicsr.utils.registry import DATASET_REGISTRY
-
-__all__ = ['build_dataset', 'build_dataloader']
-
-# automatically scan and import dataset modules for registry
-# scan all the files under the data folder with '_dataset' in file names
-data_folder = osp.dirname(osp.abspath(__file__))
-dataset_filenames = [osp.splitext(osp.basename(v))[0] for v in scandir(data_folder) if v.endswith('_dataset.py')]
-# import all the dataset modules
-_dataset_modules = [importlib.import_module(f'basicsr.data.{file_name}') for file_name in dataset_filenames]
-
-
-def build_dataset(dataset_opt):
- """Build dataset from options.
-
- Args:
- dataset_opt (dict): Configuration for dataset. It must constain:
- name (str): Dataset name.
- type (str): Dataset type.
- """
- dataset_opt = deepcopy(dataset_opt)
- dataset = DATASET_REGISTRY.get(dataset_opt['type'])(dataset_opt)
- logger = get_root_logger()
- logger.info(f'Dataset [{dataset.__class__.__name__}] - {dataset_opt["name"]} ' 'is built.')
- return dataset
-
-
-def build_dataloader(dataset, dataset_opt, num_gpu=1, dist=False, sampler=None, seed=None):
- """Build dataloader.
-
- Args:
- dataset (torch.utils.data.Dataset): Dataset.
- dataset_opt (dict): Dataset options. It contains the following keys:
- phase (str): 'train' or 'val'.
- num_worker_per_gpu (int): Number of workers for each GPU.
- batch_size_per_gpu (int): Training batch size for each GPU.
- num_gpu (int): Number of GPUs. Used only in the train phase.
- Default: 1.
- dist (bool): Whether in distributed training. Used only in the train
- phase. Default: False.
- sampler (torch.utils.data.sampler): Data sampler. Default: None.
- seed (int | None): Seed. Default: None
- """
- phase = dataset_opt['phase']
- rank, _ = get_dist_info()
- if phase == 'train':
- if dist: # distributed training
- batch_size = dataset_opt['batch_size_per_gpu']
- num_workers = dataset_opt['num_worker_per_gpu']
- else: # non-distributed training
- multiplier = 1 if num_gpu == 0 else num_gpu
- batch_size = dataset_opt['batch_size_per_gpu'] * multiplier
- num_workers = dataset_opt['num_worker_per_gpu'] * multiplier
- dataloader_args = dict(
- dataset=dataset,
- batch_size=batch_size,
- shuffle=False,
- num_workers=num_workers,
- sampler=sampler,
- drop_last=True)
- if sampler is None:
- dataloader_args['shuffle'] = True
- dataloader_args['worker_init_fn'] = partial(
- worker_init_fn, num_workers=num_workers, rank=rank, seed=seed) if seed is not None else None
- elif phase in ['val', 'test']: # validation
- dataloader_args = dict(dataset=dataset, batch_size=1, shuffle=False, num_workers=0)
- else:
- raise ValueError(f'Wrong dataset phase: {phase}. ' "Supported ones are 'train', 'val' and 'test'.")
-
- dataloader_args['pin_memory'] = dataset_opt.get('pin_memory', False)
-
- prefetch_mode = dataset_opt.get('prefetch_mode')
- if prefetch_mode == 'cpu': # CPUPrefetcher
- num_prefetch_queue = dataset_opt.get('num_prefetch_queue', 1)
- logger = get_root_logger()
- logger.info(f'Use {prefetch_mode} prefetch dataloader: ' f'num_prefetch_queue = {num_prefetch_queue}')
- return PrefetchDataLoader(num_prefetch_queue=num_prefetch_queue, **dataloader_args)
- else:
- # prefetch_mode=None: Normal dataloader
- # prefetch_mode='cuda': dataloader for CUDAPrefetcher
- return torch.utils.data.DataLoader(**dataloader_args)
-
-
-def worker_init_fn(worker_id, num_workers, rank, seed):
- # Set the worker seed to num_workers * rank + worker_id + seed
- worker_seed = num_workers * rank + worker_id + seed
- np.random.seed(worker_seed)
- random.seed(worker_seed)
diff --git a/CodeFormer/CodeFormer/basicsr/data/__pycache__/__init__.cpython-310.pyc b/CodeFormer/CodeFormer/basicsr/data/__pycache__/__init__.cpython-310.pyc
deleted file mode 100644
index d47aaee382d0392ea9e70260b33a35c331223ded..0000000000000000000000000000000000000000
Binary files a/CodeFormer/CodeFormer/basicsr/data/__pycache__/__init__.cpython-310.pyc and /dev/null differ
diff --git a/CodeFormer/CodeFormer/basicsr/data/__pycache__/data_sampler.cpython-310.pyc b/CodeFormer/CodeFormer/basicsr/data/__pycache__/data_sampler.cpython-310.pyc
deleted file mode 100644
index 918a584d5229c36b5d663dd78fa8458721f163ba..0000000000000000000000000000000000000000
Binary files a/CodeFormer/CodeFormer/basicsr/data/__pycache__/data_sampler.cpython-310.pyc and /dev/null differ
diff --git a/CodeFormer/CodeFormer/basicsr/data/__pycache__/prefetch_dataloader.cpython-310.pyc b/CodeFormer/CodeFormer/basicsr/data/__pycache__/prefetch_dataloader.cpython-310.pyc
deleted file mode 100644
index 05ee4e2242cdcf7a41fd68294fa5bf4ee9fc6167..0000000000000000000000000000000000000000
Binary files a/CodeFormer/CodeFormer/basicsr/data/__pycache__/prefetch_dataloader.cpython-310.pyc and /dev/null differ
diff --git a/CodeFormer/CodeFormer/basicsr/data/data_sampler.py b/CodeFormer/CodeFormer/basicsr/data/data_sampler.py
deleted file mode 100644
index 575452d9f844a928f7f42296c81635cfbadec7c2..0000000000000000000000000000000000000000
--- a/CodeFormer/CodeFormer/basicsr/data/data_sampler.py
+++ /dev/null
@@ -1,48 +0,0 @@
-import math
-import torch
-from torch.utils.data.sampler import Sampler
-
-
-class EnlargedSampler(Sampler):
- """Sampler that restricts data loading to a subset of the dataset.
-
- Modified from torch.utils.data.distributed.DistributedSampler
- Support enlarging the dataset for iteration-based training, for saving
- time when restart the dataloader after each epoch
-
- Args:
- dataset (torch.utils.data.Dataset): Dataset used for sampling.
- num_replicas (int | None): Number of processes participating in
- the training. It is usually the world_size.
- rank (int | None): Rank of the current process within num_replicas.
- ratio (int): Enlarging ratio. Default: 1.
- """
-
- def __init__(self, dataset, num_replicas, rank, ratio=1):
- self.dataset = dataset
- self.num_replicas = num_replicas
- self.rank = rank
- self.epoch = 0
- self.num_samples = math.ceil(len(self.dataset) * ratio / self.num_replicas)
- self.total_size = self.num_samples * self.num_replicas
-
- def __iter__(self):
- # deterministically shuffle based on epoch
- g = torch.Generator()
- g.manual_seed(self.epoch)
- indices = torch.randperm(self.total_size, generator=g).tolist()
-
- dataset_size = len(self.dataset)
- indices = [v % dataset_size for v in indices]
-
- # subsample
- indices = indices[self.rank:self.total_size:self.num_replicas]
- assert len(indices) == self.num_samples
-
- return iter(indices)
-
- def __len__(self):
- return self.num_samples
-
- def set_epoch(self, epoch):
- self.epoch = epoch
diff --git a/CodeFormer/CodeFormer/basicsr/data/data_util.py b/CodeFormer/CodeFormer/basicsr/data/data_util.py
deleted file mode 100644
index 63b1bce8e089485182c962e830a163d6d0059da8..0000000000000000000000000000000000000000
--- a/CodeFormer/CodeFormer/basicsr/data/data_util.py
+++ /dev/null
@@ -1,305 +0,0 @@
-import cv2
-import numpy as np
-import torch
-from os import path as osp
-from torch.nn import functional as F
-
-from basicsr.data.transforms import mod_crop
-from basicsr.utils import img2tensor, scandir
-
-
-def read_img_seq(path, require_mod_crop=False, scale=1):
- """Read a sequence of images from a given folder path.
-
- Args:
- path (list[str] | str): List of image paths or image folder path.
- require_mod_crop (bool): Require mod crop for each image.
- Default: False.
- scale (int): Scale factor for mod_crop. Default: 1.
-
- Returns:
- Tensor: size (t, c, h, w), RGB, [0, 1].
- """
- if isinstance(path, list):
- img_paths = path
- else:
- img_paths = sorted(list(scandir(path, full_path=True)))
- imgs = [cv2.imread(v).astype(np.float32) / 255. for v in img_paths]
- if require_mod_crop:
- imgs = [mod_crop(img, scale) for img in imgs]
- imgs = img2tensor(imgs, bgr2rgb=True, float32=True)
- imgs = torch.stack(imgs, dim=0)
- return imgs
-
-
-def generate_frame_indices(crt_idx, max_frame_num, num_frames, padding='reflection'):
- """Generate an index list for reading `num_frames` frames from a sequence
- of images.
-
- Args:
- crt_idx (int): Current center index.
- max_frame_num (int): Max number of the sequence of images (from 1).
- num_frames (int): Reading num_frames frames.
- padding (str): Padding mode, one of
- 'replicate' | 'reflection' | 'reflection_circle' | 'circle'
- Examples: current_idx = 0, num_frames = 5
- The generated frame indices under different padding mode:
- replicate: [0, 0, 0, 1, 2]
- reflection: [2, 1, 0, 1, 2]
- reflection_circle: [4, 3, 0, 1, 2]
- circle: [3, 4, 0, 1, 2]
-
- Returns:
- list[int]: A list of indices.
- """
- assert num_frames % 2 == 1, 'num_frames should be an odd number.'
- assert padding in ('replicate', 'reflection', 'reflection_circle', 'circle'), f'Wrong padding mode: {padding}.'
-
- max_frame_num = max_frame_num - 1 # start from 0
- num_pad = num_frames // 2
-
- indices = []
- for i in range(crt_idx - num_pad, crt_idx + num_pad + 1):
- if i < 0:
- if padding == 'replicate':
- pad_idx = 0
- elif padding == 'reflection':
- pad_idx = -i
- elif padding == 'reflection_circle':
- pad_idx = crt_idx + num_pad - i
- else:
- pad_idx = num_frames + i
- elif i > max_frame_num:
- if padding == 'replicate':
- pad_idx = max_frame_num
- elif padding == 'reflection':
- pad_idx = max_frame_num * 2 - i
- elif padding == 'reflection_circle':
- pad_idx = (crt_idx - num_pad) - (i - max_frame_num)
- else:
- pad_idx = i - num_frames
- else:
- pad_idx = i
- indices.append(pad_idx)
- return indices
-
-
-def paired_paths_from_lmdb(folders, keys):
- """Generate paired paths from lmdb files.
-
- Contents of lmdb. Taking the `lq.lmdb` for example, the file structure is:
-
- lq.lmdb
- ├── data.mdb
- ├── lock.mdb
- ├── meta_info.txt
-
- The data.mdb and lock.mdb are standard lmdb files and you can refer to
- https://lmdb.readthedocs.io/en/release/ for more details.
-
- The meta_info.txt is a specified txt file to record the meta information
- of our datasets. It will be automatically created when preparing
- datasets by our provided dataset tools.
- Each line in the txt file records
- 1)image name (with extension),
- 2)image shape,
- 3)compression level, separated by a white space.
- Example: `baboon.png (120,125,3) 1`
-
- We use the image name without extension as the lmdb key.
- Note that we use the same key for the corresponding lq and gt images.
-
- Args:
- folders (list[str]): A list of folder path. The order of list should
- be [input_folder, gt_folder].
- keys (list[str]): A list of keys identifying folders. The order should
- be in consistent with folders, e.g., ['lq', 'gt'].
- Note that this key is different from lmdb keys.
-
- Returns:
- list[str]: Returned path list.
- """
- assert len(folders) == 2, ('The len of folders should be 2 with [input_folder, gt_folder]. '
- f'But got {len(folders)}')
- assert len(keys) == 2, ('The len of keys should be 2 with [input_key, gt_key]. ' f'But got {len(keys)}')
- input_folder, gt_folder = folders
- input_key, gt_key = keys
-
- if not (input_folder.endswith('.lmdb') and gt_folder.endswith('.lmdb')):
- raise ValueError(f'{input_key} folder and {gt_key} folder should both in lmdb '
- f'formats. But received {input_key}: {input_folder}; '
- f'{gt_key}: {gt_folder}')
- # ensure that the two meta_info files are the same
- with open(osp.join(input_folder, 'meta_info.txt')) as fin:
- input_lmdb_keys = [line.split('.')[0] for line in fin]
- with open(osp.join(gt_folder, 'meta_info.txt')) as fin:
- gt_lmdb_keys = [line.split('.')[0] for line in fin]
- if set(input_lmdb_keys) != set(gt_lmdb_keys):
- raise ValueError(f'Keys in {input_key}_folder and {gt_key}_folder are different.')
- else:
- paths = []
- for lmdb_key in sorted(input_lmdb_keys):
- paths.append(dict([(f'{input_key}_path', lmdb_key), (f'{gt_key}_path', lmdb_key)]))
- return paths
-
-
-def paired_paths_from_meta_info_file(folders, keys, meta_info_file, filename_tmpl):
- """Generate paired paths from an meta information file.
-
- Each line in the meta information file contains the image names and
- image shape (usually for gt), separated by a white space.
-
- Example of an meta information file:
- ```
- 0001_s001.png (480,480,3)
- 0001_s002.png (480,480,3)
- ```
-
- Args:
- folders (list[str]): A list of folder path. The order of list should
- be [input_folder, gt_folder].
- keys (list[str]): A list of keys identifying folders. The order should
- be in consistent with folders, e.g., ['lq', 'gt'].
- meta_info_file (str): Path to the meta information file.
- filename_tmpl (str): Template for each filename. Note that the
- template excludes the file extension. Usually the filename_tmpl is
- for files in the input folder.
-
- Returns:
- list[str]: Returned path list.
- """
- assert len(folders) == 2, ('The len of folders should be 2 with [input_folder, gt_folder]. '
- f'But got {len(folders)}')
- assert len(keys) == 2, ('The len of keys should be 2 with [input_key, gt_key]. ' f'But got {len(keys)}')
- input_folder, gt_folder = folders
- input_key, gt_key = keys
-
- with open(meta_info_file, 'r') as fin:
- gt_names = [line.split(' ')[0] for line in fin]
-
- paths = []
- for gt_name in gt_names:
- basename, ext = osp.splitext(osp.basename(gt_name))
- input_name = f'{filename_tmpl.format(basename)}{ext}'
- input_path = osp.join(input_folder, input_name)
- gt_path = osp.join(gt_folder, gt_name)
- paths.append(dict([(f'{input_key}_path', input_path), (f'{gt_key}_path', gt_path)]))
- return paths
-
-
-def paired_paths_from_folder(folders, keys, filename_tmpl):
- """Generate paired paths from folders.
-
- Args:
- folders (list[str]): A list of folder path. The order of list should
- be [input_folder, gt_folder].
- keys (list[str]): A list of keys identifying folders. The order should
- be in consistent with folders, e.g., ['lq', 'gt'].
- filename_tmpl (str): Template for each filename. Note that the
- template excludes the file extension. Usually the filename_tmpl is
- for files in the input folder.
-
- Returns:
- list[str]: Returned path list.
- """
- assert len(folders) == 2, ('The len of folders should be 2 with [input_folder, gt_folder]. '
- f'But got {len(folders)}')
- assert len(keys) == 2, ('The len of keys should be 2 with [input_key, gt_key]. ' f'But got {len(keys)}')
- input_folder, gt_folder = folders
- input_key, gt_key = keys
-
- input_paths = list(scandir(input_folder))
- gt_paths = list(scandir(gt_folder))
- assert len(input_paths) == len(gt_paths), (f'{input_key} and {gt_key} datasets have different number of images: '
- f'{len(input_paths)}, {len(gt_paths)}.')
- paths = []
- for gt_path in gt_paths:
- basename, ext = osp.splitext(osp.basename(gt_path))
- input_name = f'{filename_tmpl.format(basename)}{ext}'
- input_path = osp.join(input_folder, input_name)
- assert input_name in input_paths, (f'{input_name} is not in ' f'{input_key}_paths.')
- gt_path = osp.join(gt_folder, gt_path)
- paths.append(dict([(f'{input_key}_path', input_path), (f'{gt_key}_path', gt_path)]))
- return paths
-
-
-def paths_from_folder(folder):
- """Generate paths from folder.
-
- Args:
- folder (str): Folder path.
-
- Returns:
- list[str]: Returned path list.
- """
-
- paths = list(scandir(folder))
- paths = [osp.join(folder, path) for path in paths]
- return paths
-
-
-def paths_from_lmdb(folder):
- """Generate paths from lmdb.
-
- Args:
- folder (str): Folder path.
-
- Returns:
- list[str]: Returned path list.
- """
- if not folder.endswith('.lmdb'):
- raise ValueError(f'Folder {folder}folder should in lmdb format.')
- with open(osp.join(folder, 'meta_info.txt')) as fin:
- paths = [line.split('.')[0] for line in fin]
- return paths
-
-
-def generate_gaussian_kernel(kernel_size=13, sigma=1.6):
- """Generate Gaussian kernel used in `duf_downsample`.
-
- Args:
- kernel_size (int): Kernel size. Default: 13.
- sigma (float): Sigma of the Gaussian kernel. Default: 1.6.
-
- Returns:
- np.array: The Gaussian kernel.
- """
- from scipy.ndimage import filters as filters
- kernel = np.zeros((kernel_size, kernel_size))
- # set element at the middle to one, a dirac delta
- kernel[kernel_size // 2, kernel_size // 2] = 1
- # gaussian-smooth the dirac, resulting in a gaussian filter
- return filters.gaussian_filter(kernel, sigma)
-
-
-def duf_downsample(x, kernel_size=13, scale=4):
- """Downsamping with Gaussian kernel used in the DUF official code.
-
- Args:
- x (Tensor): Frames to be downsampled, with shape (b, t, c, h, w).
- kernel_size (int): Kernel size. Default: 13.
- scale (int): Downsampling factor. Supported scale: (2, 3, 4).
- Default: 4.
-
- Returns:
- Tensor: DUF downsampled frames.
- """
- assert scale in (2, 3, 4), f'Only support scale (2, 3, 4), but got {scale}.'
-
- squeeze_flag = False
- if x.ndim == 4:
- squeeze_flag = True
- x = x.unsqueeze(0)
- b, t, c, h, w = x.size()
- x = x.view(-1, 1, h, w)
- pad_w, pad_h = kernel_size // 2 + scale * 2, kernel_size // 2 + scale * 2
- x = F.pad(x, (pad_w, pad_w, pad_h, pad_h), 'reflect')
-
- gaussian_filter = generate_gaussian_kernel(kernel_size, 0.4 * scale)
- gaussian_filter = torch.from_numpy(gaussian_filter).type_as(x).unsqueeze(0).unsqueeze(0)
- x = F.conv2d(x, gaussian_filter, stride=scale)
- x = x[:, :, 2:-2, 2:-2]
- x = x.view(b, t, c, x.size(2), x.size(3))
- if squeeze_flag:
- x = x.squeeze(0)
- return x
diff --git a/CodeFormer/CodeFormer/basicsr/data/prefetch_dataloader.py b/CodeFormer/CodeFormer/basicsr/data/prefetch_dataloader.py
deleted file mode 100644
index 5088425050d4cc98114a9b93eb50ea60273f35a0..0000000000000000000000000000000000000000
--- a/CodeFormer/CodeFormer/basicsr/data/prefetch_dataloader.py
+++ /dev/null
@@ -1,125 +0,0 @@
-import queue as Queue
-import threading
-import torch
-from torch.utils.data import DataLoader
-
-
-class PrefetchGenerator(threading.Thread):
- """A general prefetch generator.
-
- Ref:
- https://stackoverflow.com/questions/7323664/python-generator-pre-fetch
-
- Args:
- generator: Python generator.
- num_prefetch_queue (int): Number of prefetch queue.
- """
-
- def __init__(self, generator, num_prefetch_queue):
- threading.Thread.__init__(self)
- self.queue = Queue.Queue(num_prefetch_queue)
- self.generator = generator
- self.daemon = True
- self.start()
-
- def run(self):
- for item in self.generator:
- self.queue.put(item)
- self.queue.put(None)
-
- def __next__(self):
- next_item = self.queue.get()
- if next_item is None:
- raise StopIteration
- return next_item
-
- def __iter__(self):
- return self
-
-
-class PrefetchDataLoader(DataLoader):
- """Prefetch version of dataloader.
-
- Ref:
- https://github.com/IgorSusmelj/pytorch-styleguide/issues/5#
-
- TODO:
- Need to test on single gpu and ddp (multi-gpu). There is a known issue in
- ddp.
-
- Args:
- num_prefetch_queue (int): Number of prefetch queue.
- kwargs (dict): Other arguments for dataloader.
- """
-
- def __init__(self, num_prefetch_queue, **kwargs):
- self.num_prefetch_queue = num_prefetch_queue
- super(PrefetchDataLoader, self).__init__(**kwargs)
-
- def __iter__(self):
- return PrefetchGenerator(super().__iter__(), self.num_prefetch_queue)
-
-
-class CPUPrefetcher():
- """CPU prefetcher.
-
- Args:
- loader: Dataloader.
- """
-
- def __init__(self, loader):
- self.ori_loader = loader
- self.loader = iter(loader)
-
- def next(self):
- try:
- return next(self.loader)
- except StopIteration:
- return None
-
- def reset(self):
- self.loader = iter(self.ori_loader)
-
-
-class CUDAPrefetcher():
- """CUDA prefetcher.
-
- Ref:
- https://github.com/NVIDIA/apex/issues/304#
-
- It may consums more GPU memory.
-
- Args:
- loader: Dataloader.
- opt (dict): Options.
- """
-
- def __init__(self, loader, opt):
- self.ori_loader = loader
- self.loader = iter(loader)
- self.opt = opt
- self.stream = torch.cuda.Stream()
- self.device = torch.device('cuda' if opt['num_gpu'] != 0 else 'cpu')
- self.preload()
-
- def preload(self):
- try:
- self.batch = next(self.loader) # self.batch is a dict
- except StopIteration:
- self.batch = None
- return None
- # put tensors to gpu
- with torch.cuda.stream(self.stream):
- for k, v in self.batch.items():
- if torch.is_tensor(v):
- self.batch[k] = self.batch[k].to(device=self.device, non_blocking=True)
-
- def next(self):
- torch.cuda.current_stream().wait_stream(self.stream)
- batch = self.batch
- self.preload()
- return batch
-
- def reset(self):
- self.loader = iter(self.ori_loader)
- self.preload()
diff --git a/CodeFormer/CodeFormer/basicsr/data/transforms.py b/CodeFormer/CodeFormer/basicsr/data/transforms.py
deleted file mode 100644
index aead9dc73ed063e1c5865040eaa2652b26aa3ad3..0000000000000000000000000000000000000000
--- a/CodeFormer/CodeFormer/basicsr/data/transforms.py
+++ /dev/null
@@ -1,165 +0,0 @@
-import cv2
-import random
-
-
-def mod_crop(img, scale):
- """Mod crop images, used during testing.
-
- Args:
- img (ndarray): Input image.
- scale (int): Scale factor.
-
- Returns:
- ndarray: Result image.
- """
- img = img.copy()
- if img.ndim in (2, 3):
- h, w = img.shape[0], img.shape[1]
- h_remainder, w_remainder = h % scale, w % scale
- img = img[:h - h_remainder, :w - w_remainder, ...]
- else:
- raise ValueError(f'Wrong img ndim: {img.ndim}.')
- return img
-
-
-def paired_random_crop(img_gts, img_lqs, gt_patch_size, scale, gt_path):
- """Paired random crop.
-
- It crops lists of lq and gt images with corresponding locations.
-
- Args:
- img_gts (list[ndarray] | ndarray): GT images. Note that all images
- should have the same shape. If the input is an ndarray, it will
- be transformed to a list containing itself.
- img_lqs (list[ndarray] | ndarray): LQ images. Note that all images
- should have the same shape. If the input is an ndarray, it will
- be transformed to a list containing itself.
- gt_patch_size (int): GT patch size.
- scale (int): Scale factor.
- gt_path (str): Path to ground-truth.
-
- Returns:
- list[ndarray] | ndarray: GT images and LQ images. If returned results
- only have one element, just return ndarray.
- """
-
- if not isinstance(img_gts, list):
- img_gts = [img_gts]
- if not isinstance(img_lqs, list):
- img_lqs = [img_lqs]
-
- h_lq, w_lq, _ = img_lqs[0].shape
- h_gt, w_gt, _ = img_gts[0].shape
- lq_patch_size = gt_patch_size // scale
-
- if h_gt != h_lq * scale or w_gt != w_lq * scale:
- raise ValueError(f'Scale mismatches. GT ({h_gt}, {w_gt}) is not {scale}x ',
- f'multiplication of LQ ({h_lq}, {w_lq}).')
- if h_lq < lq_patch_size or w_lq < lq_patch_size:
- raise ValueError(f'LQ ({h_lq}, {w_lq}) is smaller than patch size '
- f'({lq_patch_size}, {lq_patch_size}). '
- f'Please remove {gt_path}.')
-
- # randomly choose top and left coordinates for lq patch
- top = random.randint(0, h_lq - lq_patch_size)
- left = random.randint(0, w_lq - lq_patch_size)
-
- # crop lq patch
- img_lqs = [v[top:top + lq_patch_size, left:left + lq_patch_size, ...] for v in img_lqs]
-
- # crop corresponding gt patch
- top_gt, left_gt = int(top * scale), int(left * scale)
- img_gts = [v[top_gt:top_gt + gt_patch_size, left_gt:left_gt + gt_patch_size, ...] for v in img_gts]
- if len(img_gts) == 1:
- img_gts = img_gts[0]
- if len(img_lqs) == 1:
- img_lqs = img_lqs[0]
- return img_gts, img_lqs
-
-
-def augment(imgs, hflip=True, rotation=True, flows=None, return_status=False):
- """Augment: horizontal flips OR rotate (0, 90, 180, 270 degrees).
-
- We use vertical flip and transpose for rotation implementation.
- All the images in the list use the same augmentation.
-
- Args:
- imgs (list[ndarray] | ndarray): Images to be augmented. If the input
- is an ndarray, it will be transformed to a list.
- hflip (bool): Horizontal flip. Default: True.
- rotation (bool): Ratotation. Default: True.
- flows (list[ndarray]: Flows to be augmented. If the input is an
- ndarray, it will be transformed to a list.
- Dimension is (h, w, 2). Default: None.
- return_status (bool): Return the status of flip and rotation.
- Default: False.
-
- Returns:
- list[ndarray] | ndarray: Augmented images and flows. If returned
- results only have one element, just return ndarray.
-
- """
- hflip = hflip and random.random() < 0.5
- vflip = rotation and random.random() < 0.5
- rot90 = rotation and random.random() < 0.5
-
- def _augment(img):
- if hflip: # horizontal
- cv2.flip(img, 1, img)
- if vflip: # vertical
- cv2.flip(img, 0, img)
- if rot90:
- img = img.transpose(1, 0, 2)
- return img
-
- def _augment_flow(flow):
- if hflip: # horizontal
- cv2.flip(flow, 1, flow)
- flow[:, :, 0] *= -1
- if vflip: # vertical
- cv2.flip(flow, 0, flow)
- flow[:, :, 1] *= -1
- if rot90:
- flow = flow.transpose(1, 0, 2)
- flow = flow[:, :, [1, 0]]
- return flow
-
- if not isinstance(imgs, list):
- imgs = [imgs]
- imgs = [_augment(img) for img in imgs]
- if len(imgs) == 1:
- imgs = imgs[0]
-
- if flows is not None:
- if not isinstance(flows, list):
- flows = [flows]
- flows = [_augment_flow(flow) for flow in flows]
- if len(flows) == 1:
- flows = flows[0]
- return imgs, flows
- else:
- if return_status:
- return imgs, (hflip, vflip, rot90)
- else:
- return imgs
-
-
-def img_rotate(img, angle, center=None, scale=1.0):
- """Rotate image.
-
- Args:
- img (ndarray): Image to be rotated.
- angle (float): Rotation angle in degrees. Positive values mean
- counter-clockwise rotation.
- center (tuple[int]): Rotation center. If the center is None,
- initialize it as the center of the image. Default: None.
- scale (float): Isotropic scale factor. Default: 1.0.
- """
- (h, w) = img.shape[:2]
-
- if center is None:
- center = (w // 2, h // 2)
-
- matrix = cv2.getRotationMatrix2D(center, angle, scale)
- rotated_img = cv2.warpAffine(img, matrix, (w, h))
- return rotated_img
diff --git a/CodeFormer/CodeFormer/basicsr/losses/__init__.py b/CodeFormer/CodeFormer/basicsr/losses/__init__.py
deleted file mode 100644
index 2b184e74c861e6fca0c548692a9a949a6100b0aa..0000000000000000000000000000000000000000
--- a/CodeFormer/CodeFormer/basicsr/losses/__init__.py
+++ /dev/null
@@ -1,26 +0,0 @@
-from copy import deepcopy
-
-from basicsr.utils import get_root_logger
-from basicsr.utils.registry import LOSS_REGISTRY
-from .losses import (CharbonnierLoss, GANLoss, L1Loss, MSELoss, PerceptualLoss, WeightedTVLoss, g_path_regularize,
- gradient_penalty_loss, r1_penalty)
-
-__all__ = [
- 'L1Loss', 'MSELoss', 'CharbonnierLoss', 'WeightedTVLoss', 'PerceptualLoss', 'GANLoss', 'gradient_penalty_loss',
- 'r1_penalty', 'g_path_regularize'
-]
-
-
-def build_loss(opt):
- """Build loss from options.
-
- Args:
- opt (dict): Configuration. It must constain:
- type (str): Model type.
- """
- opt = deepcopy(opt)
- loss_type = opt.pop('type')
- loss = LOSS_REGISTRY.get(loss_type)(**opt)
- logger = get_root_logger()
- logger.info(f'Loss [{loss.__class__.__name__}] is created.')
- return loss
diff --git a/CodeFormer/CodeFormer/basicsr/losses/__pycache__/__init__.cpython-310.pyc b/CodeFormer/CodeFormer/basicsr/losses/__pycache__/__init__.cpython-310.pyc
deleted file mode 100644
index ec814a407cf9bbd91791feeff2d076f812ebd0c5..0000000000000000000000000000000000000000
Binary files a/CodeFormer/CodeFormer/basicsr/losses/__pycache__/__init__.cpython-310.pyc and /dev/null differ
diff --git a/CodeFormer/CodeFormer/basicsr/losses/__pycache__/loss_util.cpython-310.pyc b/CodeFormer/CodeFormer/basicsr/losses/__pycache__/loss_util.cpython-310.pyc
deleted file mode 100644
index 7afa4b2690813167a6b6b9377e77e2ed576ed409..0000000000000000000000000000000000000000
Binary files a/CodeFormer/CodeFormer/basicsr/losses/__pycache__/loss_util.cpython-310.pyc and /dev/null differ
diff --git a/CodeFormer/CodeFormer/basicsr/losses/__pycache__/losses.cpython-310.pyc b/CodeFormer/CodeFormer/basicsr/losses/__pycache__/losses.cpython-310.pyc
deleted file mode 100644
index cc54e557209c5b55b0bff2ef8892a7661576fc42..0000000000000000000000000000000000000000
Binary files a/CodeFormer/CodeFormer/basicsr/losses/__pycache__/losses.cpython-310.pyc and /dev/null differ
diff --git a/CodeFormer/CodeFormer/basicsr/losses/loss_util.py b/CodeFormer/CodeFormer/basicsr/losses/loss_util.py
deleted file mode 100644
index 744eeb46d1f3b5a7b4553ca23237ddd9c899a698..0000000000000000000000000000000000000000
--- a/CodeFormer/CodeFormer/basicsr/losses/loss_util.py
+++ /dev/null
@@ -1,95 +0,0 @@
-import functools
-from torch.nn import functional as F
-
-
-def reduce_loss(loss, reduction):
- """Reduce loss as specified.
-
- Args:
- loss (Tensor): Elementwise loss tensor.
- reduction (str): Options are 'none', 'mean' and 'sum'.
-
- Returns:
- Tensor: Reduced loss tensor.
- """
- reduction_enum = F._Reduction.get_enum(reduction)
- # none: 0, elementwise_mean:1, sum: 2
- if reduction_enum == 0:
- return loss
- elif reduction_enum == 1:
- return loss.mean()
- else:
- return loss.sum()
-
-
-def weight_reduce_loss(loss, weight=None, reduction='mean'):
- """Apply element-wise weight and reduce loss.
-
- Args:
- loss (Tensor): Element-wise loss.
- weight (Tensor): Element-wise weights. Default: None.
- reduction (str): Same as built-in losses of PyTorch. Options are
- 'none', 'mean' and 'sum'. Default: 'mean'.
-
- Returns:
- Tensor: Loss values.
- """
- # if weight is specified, apply element-wise weight
- if weight is not None:
- assert weight.dim() == loss.dim()
- assert weight.size(1) == 1 or weight.size(1) == loss.size(1)
- loss = loss * weight
-
- # if weight is not specified or reduction is sum, just reduce the loss
- if weight is None or reduction == 'sum':
- loss = reduce_loss(loss, reduction)
- # if reduction is mean, then compute mean over weight region
- elif reduction == 'mean':
- if weight.size(1) > 1:
- weight = weight.sum()
- else:
- weight = weight.sum() * loss.size(1)
- loss = loss.sum() / weight
-
- return loss
-
-
-def weighted_loss(loss_func):
- """Create a weighted version of a given loss function.
-
- To use this decorator, the loss function must have the signature like
- `loss_func(pred, target, **kwargs)`. The function only needs to compute
- element-wise loss without any reduction. This decorator will add weight
- and reduction arguments to the function. The decorated function will have
- the signature like `loss_func(pred, target, weight=None, reduction='mean',
- **kwargs)`.
-
- :Example:
-
- >>> import torch
- >>> @weighted_loss
- >>> def l1_loss(pred, target):
- >>> return (pred - target).abs()
-
- >>> pred = torch.Tensor([0, 2, 3])
- >>> target = torch.Tensor([1, 1, 1])
- >>> weight = torch.Tensor([1, 0, 1])
-
- >>> l1_loss(pred, target)
- tensor(1.3333)
- >>> l1_loss(pred, target, weight)
- tensor(1.5000)
- >>> l1_loss(pred, target, reduction='none')
- tensor([1., 1., 2.])
- >>> l1_loss(pred, target, weight, reduction='sum')
- tensor(3.)
- """
-
- @functools.wraps(loss_func)
- def wrapper(pred, target, weight=None, reduction='mean', **kwargs):
- # get element-wise loss
- loss = loss_func(pred, target, **kwargs)
- loss = weight_reduce_loss(loss, weight, reduction)
- return loss
-
- return wrapper
diff --git a/CodeFormer/CodeFormer/basicsr/losses/losses.py b/CodeFormer/CodeFormer/basicsr/losses/losses.py
deleted file mode 100644
index 1bcf272cfb756d99451a3005567ea4d4c9059067..0000000000000000000000000000000000000000
--- a/CodeFormer/CodeFormer/basicsr/losses/losses.py
+++ /dev/null
@@ -1,455 +0,0 @@
-import math
-import lpips
-import torch
-from torch import autograd as autograd
-from torch import nn as nn
-from torch.nn import functional as F
-
-from basicsr.archs.vgg_arch import VGGFeatureExtractor
-from basicsr.utils.registry import LOSS_REGISTRY
-from .loss_util import weighted_loss
-
-_reduction_modes = ['none', 'mean', 'sum']
-
-
-@weighted_loss
-def l1_loss(pred, target):
- return F.l1_loss(pred, target, reduction='none')
-
-
-@weighted_loss
-def mse_loss(pred, target):
- return F.mse_loss(pred, target, reduction='none')
-
-
-@weighted_loss
-def charbonnier_loss(pred, target, eps=1e-12):
- return torch.sqrt((pred - target)**2 + eps)
-
-
-@LOSS_REGISTRY.register()
-class L1Loss(nn.Module):
- """L1 (mean absolute error, MAE) loss.
-
- Args:
- loss_weight (float): Loss weight for L1 loss. Default: 1.0.
- reduction (str): Specifies the reduction to apply to the output.
- Supported choices are 'none' | 'mean' | 'sum'. Default: 'mean'.
- """
-
- def __init__(self, loss_weight=1.0, reduction='mean'):
- super(L1Loss, self).__init__()
- if reduction not in ['none', 'mean', 'sum']:
- raise ValueError(f'Unsupported reduction mode: {reduction}. ' f'Supported ones are: {_reduction_modes}')
-
- self.loss_weight = loss_weight
- self.reduction = reduction
-
- def forward(self, pred, target, weight=None, **kwargs):
- """
- Args:
- pred (Tensor): of shape (N, C, H, W). Predicted tensor.
- target (Tensor): of shape (N, C, H, W). Ground truth tensor.
- weight (Tensor, optional): of shape (N, C, H, W). Element-wise
- weights. Default: None.
- """
- return self.loss_weight * l1_loss(pred, target, weight, reduction=self.reduction)
-
-
-@LOSS_REGISTRY.register()
-class MSELoss(nn.Module):
- """MSE (L2) loss.
-
- Args:
- loss_weight (float): Loss weight for MSE loss. Default: 1.0.
- reduction (str): Specifies the reduction to apply to the output.
- Supported choices are 'none' | 'mean' | 'sum'. Default: 'mean'.
- """
-
- def __init__(self, loss_weight=1.0, reduction='mean'):
- super(MSELoss, self).__init__()
- if reduction not in ['none', 'mean', 'sum']:
- raise ValueError(f'Unsupported reduction mode: {reduction}. ' f'Supported ones are: {_reduction_modes}')
-
- self.loss_weight = loss_weight
- self.reduction = reduction
-
- def forward(self, pred, target, weight=None, **kwargs):
- """
- Args:
- pred (Tensor): of shape (N, C, H, W). Predicted tensor.
- target (Tensor): of shape (N, C, H, W). Ground truth tensor.
- weight (Tensor, optional): of shape (N, C, H, W). Element-wise
- weights. Default: None.
- """
- return self.loss_weight * mse_loss(pred, target, weight, reduction=self.reduction)
-
-
-@LOSS_REGISTRY.register()
-class CharbonnierLoss(nn.Module):
- """Charbonnier loss (one variant of Robust L1Loss, a differentiable
- variant of L1Loss).
-
- Described in "Deep Laplacian Pyramid Networks for Fast and Accurate
- Super-Resolution".
-
- Args:
- loss_weight (float): Loss weight for L1 loss. Default: 1.0.
- reduction (str): Specifies the reduction to apply to the output.
- Supported choices are 'none' | 'mean' | 'sum'. Default: 'mean'.
- eps (float): A value used to control the curvature near zero.
- Default: 1e-12.
- """
-
- def __init__(self, loss_weight=1.0, reduction='mean', eps=1e-12):
- super(CharbonnierLoss, self).__init__()
- if reduction not in ['none', 'mean', 'sum']:
- raise ValueError(f'Unsupported reduction mode: {reduction}. ' f'Supported ones are: {_reduction_modes}')
-
- self.loss_weight = loss_weight
- self.reduction = reduction
- self.eps = eps
-
- def forward(self, pred, target, weight=None, **kwargs):
- """
- Args:
- pred (Tensor): of shape (N, C, H, W). Predicted tensor.
- target (Tensor): of shape (N, C, H, W). Ground truth tensor.
- weight (Tensor, optional): of shape (N, C, H, W). Element-wise
- weights. Default: None.
- """
- return self.loss_weight * charbonnier_loss(pred, target, weight, eps=self.eps, reduction=self.reduction)
-
-
-@LOSS_REGISTRY.register()
-class WeightedTVLoss(L1Loss):
- """Weighted TV loss.
-
- Args:
- loss_weight (float): Loss weight. Default: 1.0.
- """
-
- def __init__(self, loss_weight=1.0):
- super(WeightedTVLoss, self).__init__(loss_weight=loss_weight)
-
- def forward(self, pred, weight=None):
- y_diff = super(WeightedTVLoss, self).forward(pred[:, :, :-1, :], pred[:, :, 1:, :], weight=weight[:, :, :-1, :])
- x_diff = super(WeightedTVLoss, self).forward(pred[:, :, :, :-1], pred[:, :, :, 1:], weight=weight[:, :, :, :-1])
-
- loss = x_diff + y_diff
-
- return loss
-
-
-@LOSS_REGISTRY.register()
-class PerceptualLoss(nn.Module):
- """Perceptual loss with commonly used style loss.
-
- Args:
- layer_weights (dict): The weight for each layer of vgg feature.
- Here is an example: {'conv5_4': 1.}, which means the conv5_4
- feature layer (before relu5_4) will be extracted with weight
- 1.0 in calculting losses.
- vgg_type (str): The type of vgg network used as feature extractor.
- Default: 'vgg19'.
- use_input_norm (bool): If True, normalize the input image in vgg.
- Default: True.
- range_norm (bool): If True, norm images with range [-1, 1] to [0, 1].
- Default: False.
- perceptual_weight (float): If `perceptual_weight > 0`, the perceptual
- loss will be calculated and the loss will multiplied by the
- weight. Default: 1.0.
- style_weight (float): If `style_weight > 0`, the style loss will be
- calculated and the loss will multiplied by the weight.
- Default: 0.
- criterion (str): Criterion used for perceptual loss. Default: 'l1'.
- """
-
- def __init__(self,
- layer_weights,
- vgg_type='vgg19',
- use_input_norm=True,
- range_norm=False,
- perceptual_weight=1.0,
- style_weight=0.,
- criterion='l1'):
- super(PerceptualLoss, self).__init__()
- self.perceptual_weight = perceptual_weight
- self.style_weight = style_weight
- self.layer_weights = layer_weights
- self.vgg = VGGFeatureExtractor(
- layer_name_list=list(layer_weights.keys()),
- vgg_type=vgg_type,
- use_input_norm=use_input_norm,
- range_norm=range_norm)
-
- self.criterion_type = criterion
- if self.criterion_type == 'l1':
- self.criterion = torch.nn.L1Loss()
- elif self.criterion_type == 'l2':
- self.criterion = torch.nn.L2loss()
- elif self.criterion_type == 'mse':
- self.criterion = torch.nn.MSELoss(reduction='mean')
- elif self.criterion_type == 'fro':
- self.criterion = None
- else:
- raise NotImplementedError(f'{criterion} criterion has not been supported.')
-
- def forward(self, x, gt):
- """Forward function.
-
- Args:
- x (Tensor): Input tensor with shape (n, c, h, w).
- gt (Tensor): Ground-truth tensor with shape (n, c, h, w).
-
- Returns:
- Tensor: Forward results.
- """
- # extract vgg features
- x_features = self.vgg(x)
- gt_features = self.vgg(gt.detach())
-
- # calculate perceptual loss
- if self.perceptual_weight > 0:
- percep_loss = 0
- for k in x_features.keys():
- if self.criterion_type == 'fro':
- percep_loss += torch.norm(x_features[k] - gt_features[k], p='fro') * self.layer_weights[k]
- else:
- percep_loss += self.criterion(x_features[k], gt_features[k]) * self.layer_weights[k]
- percep_loss *= self.perceptual_weight
- else:
- percep_loss = None
-
- # calculate style loss
- if self.style_weight > 0:
- style_loss = 0
- for k in x_features.keys():
- if self.criterion_type == 'fro':
- style_loss += torch.norm(
- self._gram_mat(x_features[k]) - self._gram_mat(gt_features[k]), p='fro') * self.layer_weights[k]
- else:
- style_loss += self.criterion(self._gram_mat(x_features[k]), self._gram_mat(
- gt_features[k])) * self.layer_weights[k]
- style_loss *= self.style_weight
- else:
- style_loss = None
-
- return percep_loss, style_loss
-
- def _gram_mat(self, x):
- """Calculate Gram matrix.
-
- Args:
- x (torch.Tensor): Tensor with shape of (n, c, h, w).
-
- Returns:
- torch.Tensor: Gram matrix.
- """
- n, c, h, w = x.size()
- features = x.view(n, c, w * h)
- features_t = features.transpose(1, 2)
- gram = features.bmm(features_t) / (c * h * w)
- return gram
-
-
-@LOSS_REGISTRY.register()
-class LPIPSLoss(nn.Module):
- def __init__(self,
- loss_weight=1.0,
- use_input_norm=True,
- range_norm=False,):
- super(LPIPSLoss, self).__init__()
- self.perceptual = lpips.LPIPS(net="vgg", spatial=False).eval()
- self.loss_weight = loss_weight
- self.use_input_norm = use_input_norm
- self.range_norm = range_norm
-
- if self.use_input_norm:
- # the mean is for image with range [0, 1]
- self.register_buffer('mean', torch.Tensor([0.485, 0.456, 0.406]).view(1, 3, 1, 1))
- # the std is for image with range [0, 1]
- self.register_buffer('std', torch.Tensor([0.229, 0.224, 0.225]).view(1, 3, 1, 1))
-
- def forward(self, pred, target):
- if self.range_norm:
- pred = (pred + 1) / 2
- target = (target + 1) / 2
- if self.use_input_norm:
- pred = (pred - self.mean) / self.std
- target = (target - self.mean) / self.std
- lpips_loss = self.perceptual(target.contiguous(), pred.contiguous())
- return self.loss_weight * lpips_loss.mean()
-
-
-@LOSS_REGISTRY.register()
-class GANLoss(nn.Module):
- """Define GAN loss.
-
- Args:
- gan_type (str): Support 'vanilla', 'lsgan', 'wgan', 'hinge'.
- real_label_val (float): The value for real label. Default: 1.0.
- fake_label_val (float): The value for fake label. Default: 0.0.
- loss_weight (float): Loss weight. Default: 1.0.
- Note that loss_weight is only for generators; and it is always 1.0
- for discriminators.
- """
-
- def __init__(self, gan_type, real_label_val=1.0, fake_label_val=0.0, loss_weight=1.0):
- super(GANLoss, self).__init__()
- self.gan_type = gan_type
- self.loss_weight = loss_weight
- self.real_label_val = real_label_val
- self.fake_label_val = fake_label_val
-
- if self.gan_type == 'vanilla':
- self.loss = nn.BCEWithLogitsLoss()
- elif self.gan_type == 'lsgan':
- self.loss = nn.MSELoss()
- elif self.gan_type == 'wgan':
- self.loss = self._wgan_loss
- elif self.gan_type == 'wgan_softplus':
- self.loss = self._wgan_softplus_loss
- elif self.gan_type == 'hinge':
- self.loss = nn.ReLU()
- else:
- raise NotImplementedError(f'GAN type {self.gan_type} is not implemented.')
-
- def _wgan_loss(self, input, target):
- """wgan loss.
-
- Args:
- input (Tensor): Input tensor.
- target (bool): Target label.
-
- Returns:
- Tensor: wgan loss.
- """
- return -input.mean() if target else input.mean()
-
- def _wgan_softplus_loss(self, input, target):
- """wgan loss with soft plus. softplus is a smooth approximation to the
- ReLU function.
-
- In StyleGAN2, it is called:
- Logistic loss for discriminator;
- Non-saturating loss for generator.
-
- Args:
- input (Tensor): Input tensor.
- target (bool): Target label.
-
- Returns:
- Tensor: wgan loss.
- """
- return F.softplus(-input).mean() if target else F.softplus(input).mean()
-
- def get_target_label(self, input, target_is_real):
- """Get target label.
-
- Args:
- input (Tensor): Input tensor.
- target_is_real (bool): Whether the target is real or fake.
-
- Returns:
- (bool | Tensor): Target tensor. Return bool for wgan, otherwise,
- return Tensor.
- """
-
- if self.gan_type in ['wgan', 'wgan_softplus']:
- return target_is_real
- target_val = (self.real_label_val if target_is_real else self.fake_label_val)
- return input.new_ones(input.size()) * target_val
-
- def forward(self, input, target_is_real, is_disc=False):
- """
- Args:
- input (Tensor): The input for the loss module, i.e., the network
- prediction.
- target_is_real (bool): Whether the targe is real or fake.
- is_disc (bool): Whether the loss for discriminators or not.
- Default: False.
-
- Returns:
- Tensor: GAN loss value.
- """
- if self.gan_type == 'hinge':
- if is_disc: # for discriminators in hinge-gan
- input = -input if target_is_real else input
- loss = self.loss(1 + input).mean()
- else: # for generators in hinge-gan
- loss = -input.mean()
- else: # other gan types
- target_label = self.get_target_label(input, target_is_real)
- loss = self.loss(input, target_label)
-
- # loss_weight is always 1.0 for discriminators
- return loss if is_disc else loss * self.loss_weight
-
-
-def r1_penalty(real_pred, real_img):
- """R1 regularization for discriminator. The core idea is to
- penalize the gradient on real data alone: when the
- generator distribution produces the true data distribution
- and the discriminator is equal to 0 on the data manifold, the
- gradient penalty ensures that the discriminator cannot create
- a non-zero gradient orthogonal to the data manifold without
- suffering a loss in the GAN game.
-
- Ref:
- Eq. 9 in Which training methods for GANs do actually converge.
- """
- grad_real = autograd.grad(outputs=real_pred.sum(), inputs=real_img, create_graph=True)[0]
- grad_penalty = grad_real.pow(2).view(grad_real.shape[0], -1).sum(1).mean()
- return grad_penalty
-
-
-def g_path_regularize(fake_img, latents, mean_path_length, decay=0.01):
- noise = torch.randn_like(fake_img) / math.sqrt(fake_img.shape[2] * fake_img.shape[3])
- grad = autograd.grad(outputs=(fake_img * noise).sum(), inputs=latents, create_graph=True)[0]
- path_lengths = torch.sqrt(grad.pow(2).sum(2).mean(1))
-
- path_mean = mean_path_length + decay * (path_lengths.mean() - mean_path_length)
-
- path_penalty = (path_lengths - path_mean).pow(2).mean()
-
- return path_penalty, path_lengths.detach().mean(), path_mean.detach()
-
-
-def gradient_penalty_loss(discriminator, real_data, fake_data, weight=None):
- """Calculate gradient penalty for wgan-gp.
-
- Args:
- discriminator (nn.Module): Network for the discriminator.
- real_data (Tensor): Real input data.
- fake_data (Tensor): Fake input data.
- weight (Tensor): Weight tensor. Default: None.
-
- Returns:
- Tensor: A tensor for gradient penalty.
- """
-
- batch_size = real_data.size(0)
- alpha = real_data.new_tensor(torch.rand(batch_size, 1, 1, 1))
-
- # interpolate between real_data and fake_data
- interpolates = alpha * real_data + (1. - alpha) * fake_data
- interpolates = autograd.Variable(interpolates, requires_grad=True)
-
- disc_interpolates = discriminator(interpolates)
- gradients = autograd.grad(
- outputs=disc_interpolates,
- inputs=interpolates,
- grad_outputs=torch.ones_like(disc_interpolates),
- create_graph=True,
- retain_graph=True,
- only_inputs=True)[0]
-
- if weight is not None:
- gradients = gradients * weight
-
- gradients_penalty = ((gradients.norm(2, dim=1) - 1)**2).mean()
- if weight is not None:
- gradients_penalty /= torch.mean(weight)
-
- return gradients_penalty
diff --git a/CodeFormer/CodeFormer/basicsr/metrics/__init__.py b/CodeFormer/CodeFormer/basicsr/metrics/__init__.py
deleted file mode 100644
index 19d55cc8321f124c918d78465b053aef67f13a33..0000000000000000000000000000000000000000
--- a/CodeFormer/CodeFormer/basicsr/metrics/__init__.py
+++ /dev/null
@@ -1,19 +0,0 @@
-from copy import deepcopy
-
-from basicsr.utils.registry import METRIC_REGISTRY
-from .psnr_ssim import calculate_psnr, calculate_ssim
-
-__all__ = ['calculate_psnr', 'calculate_ssim']
-
-
-def calculate_metric(data, opt):
- """Calculate metric from data and options.
-
- Args:
- opt (dict): Configuration. It must constain:
- type (str): Model type.
- """
- opt = deepcopy(opt)
- metric_type = opt.pop('type')
- metric = METRIC_REGISTRY.get(metric_type)(**data, **opt)
- return metric
diff --git a/CodeFormer/CodeFormer/basicsr/metrics/__pycache__/__init__.cpython-310.pyc b/CodeFormer/CodeFormer/basicsr/metrics/__pycache__/__init__.cpython-310.pyc
deleted file mode 100644
index 62f806a550bb9687bb8cb2e585e0a508a0855a2c..0000000000000000000000000000000000000000
Binary files a/CodeFormer/CodeFormer/basicsr/metrics/__pycache__/__init__.cpython-310.pyc and /dev/null differ
diff --git a/CodeFormer/CodeFormer/basicsr/metrics/__pycache__/metric_util.cpython-310.pyc b/CodeFormer/CodeFormer/basicsr/metrics/__pycache__/metric_util.cpython-310.pyc
deleted file mode 100644
index b956b9b1a9ebb898118368292d40639533e259f1..0000000000000000000000000000000000000000
Binary files a/CodeFormer/CodeFormer/basicsr/metrics/__pycache__/metric_util.cpython-310.pyc and /dev/null differ
diff --git a/CodeFormer/CodeFormer/basicsr/metrics/__pycache__/psnr_ssim.cpython-310.pyc b/CodeFormer/CodeFormer/basicsr/metrics/__pycache__/psnr_ssim.cpython-310.pyc
deleted file mode 100644
index 57c96d36b759caadbb9219286b5eb35aad512032..0000000000000000000000000000000000000000
Binary files a/CodeFormer/CodeFormer/basicsr/metrics/__pycache__/psnr_ssim.cpython-310.pyc and /dev/null differ
diff --git a/CodeFormer/CodeFormer/basicsr/metrics/metric_util.py b/CodeFormer/CodeFormer/basicsr/metrics/metric_util.py
deleted file mode 100644
index 4d18f0f7816431bed6af9d58319c6435bdf5c971..0000000000000000000000000000000000000000
--- a/CodeFormer/CodeFormer/basicsr/metrics/metric_util.py
+++ /dev/null
@@ -1,45 +0,0 @@
-import numpy as np
-
-from basicsr.utils.matlab_functions import bgr2ycbcr
-
-
-def reorder_image(img, input_order='HWC'):
- """Reorder images to 'HWC' order.
-
- If the input_order is (h, w), return (h, w, 1);
- If the input_order is (c, h, w), return (h, w, c);
- If the input_order is (h, w, c), return as it is.
-
- Args:
- img (ndarray): Input image.
- input_order (str): Whether the input order is 'HWC' or 'CHW'.
- If the input image shape is (h, w), input_order will not have
- effects. Default: 'HWC'.
-
- Returns:
- ndarray: reordered image.
- """
-
- if input_order not in ['HWC', 'CHW']:
- raise ValueError(f'Wrong input_order {input_order}. Supported input_orders are ' "'HWC' and 'CHW'")
- if len(img.shape) == 2:
- img = img[..., None]
- if input_order == 'CHW':
- img = img.transpose(1, 2, 0)
- return img
-
-
-def to_y_channel(img):
- """Change to Y channel of YCbCr.
-
- Args:
- img (ndarray): Images with range [0, 255].
-
- Returns:
- (ndarray): Images with range [0, 255] (float type) without round.
- """
- img = img.astype(np.float32) / 255.
- if img.ndim == 3 and img.shape[2] == 3:
- img = bgr2ycbcr(img, y_only=True)
- img = img[..., None]
- return img * 255.
diff --git a/CodeFormer/CodeFormer/basicsr/metrics/psnr_ssim.py b/CodeFormer/CodeFormer/basicsr/metrics/psnr_ssim.py
deleted file mode 100644
index bbd950699c2495880236883861d9e199f900eae8..0000000000000000000000000000000000000000
--- a/CodeFormer/CodeFormer/basicsr/metrics/psnr_ssim.py
+++ /dev/null
@@ -1,128 +0,0 @@
-import cv2
-import numpy as np
-
-from basicsr.metrics.metric_util import reorder_image, to_y_channel
-from basicsr.utils.registry import METRIC_REGISTRY
-
-
-@METRIC_REGISTRY.register()
-def calculate_psnr(img1, img2, crop_border, input_order='HWC', test_y_channel=False):
- """Calculate PSNR (Peak Signal-to-Noise Ratio).
-
- Ref: https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio
-
- Args:
- img1 (ndarray): Images with range [0, 255].
- img2 (ndarray): Images with range [0, 255].
- crop_border (int): Cropped pixels in each edge of an image. These
- pixels are not involved in the PSNR calculation.
- input_order (str): Whether the input order is 'HWC' or 'CHW'.
- Default: 'HWC'.
- test_y_channel (bool): Test on Y channel of YCbCr. Default: False.
-
- Returns:
- float: psnr result.
- """
-
- assert img1.shape == img2.shape, (f'Image shapes are differnet: {img1.shape}, {img2.shape}.')
- if input_order not in ['HWC', 'CHW']:
- raise ValueError(f'Wrong input_order {input_order}. Supported input_orders are ' '"HWC" and "CHW"')
- img1 = reorder_image(img1, input_order=input_order)
- img2 = reorder_image(img2, input_order=input_order)
- img1 = img1.astype(np.float64)
- img2 = img2.astype(np.float64)
-
- if crop_border != 0:
- img1 = img1[crop_border:-crop_border, crop_border:-crop_border, ...]
- img2 = img2[crop_border:-crop_border, crop_border:-crop_border, ...]
-
- if test_y_channel:
- img1 = to_y_channel(img1)
- img2 = to_y_channel(img2)
-
- mse = np.mean((img1 - img2)**2)
- if mse == 0:
- return float('inf')
- return 20. * np.log10(255. / np.sqrt(mse))
-
-
-def _ssim(img1, img2):
- """Calculate SSIM (structural similarity) for one channel images.
-
- It is called by func:`calculate_ssim`.
-
- Args:
- img1 (ndarray): Images with range [0, 255] with order 'HWC'.
- img2 (ndarray): Images with range [0, 255] with order 'HWC'.
-
- Returns:
- float: ssim result.
- """
-
- C1 = (0.01 * 255)**2
- C2 = (0.03 * 255)**2
-
- img1 = img1.astype(np.float64)
- img2 = img2.astype(np.float64)
- kernel = cv2.getGaussianKernel(11, 1.5)
- window = np.outer(kernel, kernel.transpose())
-
- mu1 = cv2.filter2D(img1, -1, window)[5:-5, 5:-5]
- mu2 = cv2.filter2D(img2, -1, window)[5:-5, 5:-5]
- mu1_sq = mu1**2
- mu2_sq = mu2**2
- mu1_mu2 = mu1 * mu2
- sigma1_sq = cv2.filter2D(img1**2, -1, window)[5:-5, 5:-5] - mu1_sq
- sigma2_sq = cv2.filter2D(img2**2, -1, window)[5:-5, 5:-5] - mu2_sq
- sigma12 = cv2.filter2D(img1 * img2, -1, window)[5:-5, 5:-5] - mu1_mu2
-
- ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / ((mu1_sq + mu2_sq + C1) * (sigma1_sq + sigma2_sq + C2))
- return ssim_map.mean()
-
-
-@METRIC_REGISTRY.register()
-def calculate_ssim(img1, img2, crop_border, input_order='HWC', test_y_channel=False):
- """Calculate SSIM (structural similarity).
-
- Ref:
- Image quality assessment: From error visibility to structural similarity
-
- The results are the same as that of the official released MATLAB code in
- https://ece.uwaterloo.ca/~z70wang/research/ssim/.
-
- For three-channel images, SSIM is calculated for each channel and then
- averaged.
-
- Args:
- img1 (ndarray): Images with range [0, 255].
- img2 (ndarray): Images with range [0, 255].
- crop_border (int): Cropped pixels in each edge of an image. These
- pixels are not involved in the SSIM calculation.
- input_order (str): Whether the input order is 'HWC' or 'CHW'.
- Default: 'HWC'.
- test_y_channel (bool): Test on Y channel of YCbCr. Default: False.
-
- Returns:
- float: ssim result.
- """
-
- assert img1.shape == img2.shape, (f'Image shapes are differnet: {img1.shape}, {img2.shape}.')
- if input_order not in ['HWC', 'CHW']:
- raise ValueError(f'Wrong input_order {input_order}. Supported input_orders are ' '"HWC" and "CHW"')
- img1 = reorder_image(img1, input_order=input_order)
- img2 = reorder_image(img2, input_order=input_order)
- img1 = img1.astype(np.float64)
- img2 = img2.astype(np.float64)
-
- if crop_border != 0:
- img1 = img1[crop_border:-crop_border, crop_border:-crop_border, ...]
- img2 = img2[crop_border:-crop_border, crop_border:-crop_border, ...]
-
- if test_y_channel:
- img1 = to_y_channel(img1)
- img2 = to_y_channel(img2)
-
- ssims = []
- for i in range(img1.shape[2]):
- ssims.append(_ssim(img1[..., i], img2[..., i]))
- return np.array(ssims).mean()
diff --git a/CodeFormer/CodeFormer/basicsr/models/__init__.py b/CodeFormer/CodeFormer/basicsr/models/__init__.py
deleted file mode 100644
index 00bde45f003698a5b15d3517ae47b59ef1d86e0c..0000000000000000000000000000000000000000
--- a/CodeFormer/CodeFormer/basicsr/models/__init__.py
+++ /dev/null
@@ -1,30 +0,0 @@
-import importlib
-from copy import deepcopy
-from os import path as osp
-
-from basicsr.utils import get_root_logger, scandir
-from basicsr.utils.registry import MODEL_REGISTRY
-
-__all__ = ['build_model']
-
-# automatically scan and import model modules for registry
-# scan all the files under the 'models' folder and collect files ending with
-# '_model.py'
-model_folder = osp.dirname(osp.abspath(__file__))
-model_filenames = [osp.splitext(osp.basename(v))[0] for v in scandir(model_folder) if v.endswith('_model.py')]
-# import all the model modules
-_model_modules = [importlib.import_module(f'basicsr.models.{file_name}') for file_name in model_filenames]
-
-
-def build_model(opt):
- """Build model from options.
-
- Args:
- opt (dict): Configuration. It must constain:
- model_type (str): Model type.
- """
- opt = deepcopy(opt)
- model = MODEL_REGISTRY.get(opt['model_type'])(opt)
- logger = get_root_logger()
- logger.info(f'Model [{model.__class__.__name__}] is created.')
- return model
diff --git a/CodeFormer/CodeFormer/basicsr/models/__pycache__/__init__.cpython-310.pyc b/CodeFormer/CodeFormer/basicsr/models/__pycache__/__init__.cpython-310.pyc
deleted file mode 100644
index f7d185ffb47fae584cdd45b4735d4a87bb7f64a0..0000000000000000000000000000000000000000
Binary files a/CodeFormer/CodeFormer/basicsr/models/__pycache__/__init__.cpython-310.pyc and /dev/null differ
diff --git a/CodeFormer/CodeFormer/basicsr/ops/__init__.py b/CodeFormer/CodeFormer/basicsr/ops/__init__.py
deleted file mode 100644
index e69de29bb2d1d6434b8b29ae775ad8c2e48c5391..0000000000000000000000000000000000000000
diff --git a/CodeFormer/CodeFormer/basicsr/ops/__pycache__/__init__.cpython-310.pyc b/CodeFormer/CodeFormer/basicsr/ops/__pycache__/__init__.cpython-310.pyc
deleted file mode 100644
index 8ebf90e2b58ca004dc040bf5342eae422c3eed49..0000000000000000000000000000000000000000
Binary files a/CodeFormer/CodeFormer/basicsr/ops/__pycache__/__init__.cpython-310.pyc and /dev/null differ
diff --git a/CodeFormer/CodeFormer/basicsr/ops/dcn/__init__.py b/CodeFormer/CodeFormer/basicsr/ops/dcn/__init__.py
deleted file mode 100644
index 32e3592f896d61b4127e09d0476381b9d55e32ff..0000000000000000000000000000000000000000
--- a/CodeFormer/CodeFormer/basicsr/ops/dcn/__init__.py
+++ /dev/null
@@ -1,7 +0,0 @@
-from .deform_conv import (DeformConv, DeformConvPack, ModulatedDeformConv, ModulatedDeformConvPack, deform_conv,
- modulated_deform_conv)
-
-__all__ = [
- 'DeformConv', 'DeformConvPack', 'ModulatedDeformConv', 'ModulatedDeformConvPack', 'deform_conv',
- 'modulated_deform_conv'
-]
diff --git a/CodeFormer/CodeFormer/basicsr/ops/dcn/__pycache__/__init__.cpython-310.pyc b/CodeFormer/CodeFormer/basicsr/ops/dcn/__pycache__/__init__.cpython-310.pyc
deleted file mode 100644
index ef7b1d65cfba046ed73a1f0c53299765342e5603..0000000000000000000000000000000000000000
Binary files a/CodeFormer/CodeFormer/basicsr/ops/dcn/__pycache__/__init__.cpython-310.pyc and /dev/null differ
diff --git a/CodeFormer/CodeFormer/basicsr/ops/dcn/__pycache__/deform_conv.cpython-310.pyc b/CodeFormer/CodeFormer/basicsr/ops/dcn/__pycache__/deform_conv.cpython-310.pyc
deleted file mode 100644
index a8bb2413dc8dda48e50269a91c75da69889c2dd7..0000000000000000000000000000000000000000
Binary files a/CodeFormer/CodeFormer/basicsr/ops/dcn/__pycache__/deform_conv.cpython-310.pyc and /dev/null differ
diff --git a/CodeFormer/CodeFormer/basicsr/ops/dcn/deform_conv.py b/CodeFormer/CodeFormer/basicsr/ops/dcn/deform_conv.py
deleted file mode 100644
index 734154f9ed9447d585eae7df6886acb136f8a3cf..0000000000000000000000000000000000000000
--- a/CodeFormer/CodeFormer/basicsr/ops/dcn/deform_conv.py
+++ /dev/null
@@ -1,377 +0,0 @@
-import math
-import torch
-from torch import nn as nn
-from torch.autograd import Function
-from torch.autograd.function import once_differentiable
-from torch.nn import functional as F
-from torch.nn.modules.utils import _pair, _single
-
-try:
- from . import deform_conv_ext
-except ImportError:
- import os
- BASICSR_JIT = os.getenv('BASICSR_JIT')
- if BASICSR_JIT == 'True':
- from torch.utils.cpp_extension import load
- module_path = os.path.dirname(__file__)
- deform_conv_ext = load(
- 'deform_conv',
- sources=[
- os.path.join(module_path, 'src', 'deform_conv_ext.cpp'),
- os.path.join(module_path, 'src', 'deform_conv_cuda.cpp'),
- os.path.join(module_path, 'src', 'deform_conv_cuda_kernel.cu'),
- ],
- )
-
-
-class DeformConvFunction(Function):
-
- @staticmethod
- def forward(ctx,
- input,
- offset,
- weight,
- stride=1,
- padding=0,
- dilation=1,
- groups=1,
- deformable_groups=1,
- im2col_step=64):
- if input is not None and input.dim() != 4:
- raise ValueError(f'Expected 4D tensor as input, got {input.dim()}' 'D tensor instead.')
- ctx.stride = _pair(stride)
- ctx.padding = _pair(padding)
- ctx.dilation = _pair(dilation)
- ctx.groups = groups
- ctx.deformable_groups = deformable_groups
- ctx.im2col_step = im2col_step
-
- ctx.save_for_backward(input, offset, weight)
-
- output = input.new_empty(DeformConvFunction._output_size(input, weight, ctx.padding, ctx.dilation, ctx.stride))
-
- ctx.bufs_ = [input.new_empty(0), input.new_empty(0)] # columns, ones
-
- if not input.is_cuda:
- raise NotImplementedError
- else:
- cur_im2col_step = min(ctx.im2col_step, input.shape[0])
- assert (input.shape[0] % cur_im2col_step) == 0, 'im2col step must divide batchsize'
- deform_conv_ext.deform_conv_forward(input, weight,
- offset, output, ctx.bufs_[0], ctx.bufs_[1], weight.size(3),
- weight.size(2), ctx.stride[1], ctx.stride[0], ctx.padding[1],
- ctx.padding[0], ctx.dilation[1], ctx.dilation[0], ctx.groups,
- ctx.deformable_groups, cur_im2col_step)
- return output
-
- @staticmethod
- @once_differentiable
- def backward(ctx, grad_output):
- input, offset, weight = ctx.saved_tensors
-
- grad_input = grad_offset = grad_weight = None
-
- if not grad_output.is_cuda:
- raise NotImplementedError
- else:
- cur_im2col_step = min(ctx.im2col_step, input.shape[0])
- assert (input.shape[0] % cur_im2col_step) == 0, 'im2col step must divide batchsize'
-
- if ctx.needs_input_grad[0] or ctx.needs_input_grad[1]:
- grad_input = torch.zeros_like(input)
- grad_offset = torch.zeros_like(offset)
- deform_conv_ext.deform_conv_backward_input(input, offset, grad_output, grad_input,
- grad_offset, weight, ctx.bufs_[0], weight.size(3),
- weight.size(2), ctx.stride[1], ctx.stride[0], ctx.padding[1],
- ctx.padding[0], ctx.dilation[1], ctx.dilation[0], ctx.groups,
- ctx.deformable_groups, cur_im2col_step)
-
- if ctx.needs_input_grad[2]:
- grad_weight = torch.zeros_like(weight)
- deform_conv_ext.deform_conv_backward_parameters(input, offset, grad_output, grad_weight,
- ctx.bufs_[0], ctx.bufs_[1], weight.size(3),
- weight.size(2), ctx.stride[1], ctx.stride[0],
- ctx.padding[1], ctx.padding[0], ctx.dilation[1],
- ctx.dilation[0], ctx.groups, ctx.deformable_groups, 1,
- cur_im2col_step)
-
- return (grad_input, grad_offset, grad_weight, None, None, None, None, None)
-
- @staticmethod
- def _output_size(input, weight, padding, dilation, stride):
- channels = weight.size(0)
- output_size = (input.size(0), channels)
- for d in range(input.dim() - 2):
- in_size = input.size(d + 2)
- pad = padding[d]
- kernel = dilation[d] * (weight.size(d + 2) - 1) + 1
- stride_ = stride[d]
- output_size += ((in_size + (2 * pad) - kernel) // stride_ + 1, )
- if not all(map(lambda s: s > 0, output_size)):
- raise ValueError('convolution input is too small (output would be ' f'{"x".join(map(str, output_size))})')
- return output_size
-
-
-class ModulatedDeformConvFunction(Function):
-
- @staticmethod
- def forward(ctx,
- input,
- offset,
- mask,
- weight,
- bias=None,
- stride=1,
- padding=0,
- dilation=1,
- groups=1,
- deformable_groups=1):
- ctx.stride = stride
- ctx.padding = padding
- ctx.dilation = dilation
- ctx.groups = groups
- ctx.deformable_groups = deformable_groups
- ctx.with_bias = bias is not None
- if not ctx.with_bias:
- bias = input.new_empty(1) # fake tensor
- if not input.is_cuda:
- raise NotImplementedError
- if weight.requires_grad or mask.requires_grad or offset.requires_grad \
- or input.requires_grad:
- ctx.save_for_backward(input, offset, mask, weight, bias)
- output = input.new_empty(ModulatedDeformConvFunction._infer_shape(ctx, input, weight))
- ctx._bufs = [input.new_empty(0), input.new_empty(0)]
- deform_conv_ext.modulated_deform_conv_forward(input, weight, bias, ctx._bufs[0], offset, mask, output,
- ctx._bufs[1], weight.shape[2], weight.shape[3], ctx.stride,
- ctx.stride, ctx.padding, ctx.padding, ctx.dilation, ctx.dilation,
- ctx.groups, ctx.deformable_groups, ctx.with_bias)
- return output
-
- @staticmethod
- @once_differentiable
- def backward(ctx, grad_output):
- if not grad_output.is_cuda:
- raise NotImplementedError
- input, offset, mask, weight, bias = ctx.saved_tensors
- grad_input = torch.zeros_like(input)
- grad_offset = torch.zeros_like(offset)
- grad_mask = torch.zeros_like(mask)
- grad_weight = torch.zeros_like(weight)
- grad_bias = torch.zeros_like(bias)
- deform_conv_ext.modulated_deform_conv_backward(input, weight, bias, ctx._bufs[0], offset, mask, ctx._bufs[1],
- grad_input, grad_weight, grad_bias, grad_offset, grad_mask,
- grad_output, weight.shape[2], weight.shape[3], ctx.stride,
- ctx.stride, ctx.padding, ctx.padding, ctx.dilation, ctx.dilation,
- ctx.groups, ctx.deformable_groups, ctx.with_bias)
- if not ctx.with_bias:
- grad_bias = None
-
- return (grad_input, grad_offset, grad_mask, grad_weight, grad_bias, None, None, None, None, None)
-
- @staticmethod
- def _infer_shape(ctx, input, weight):
- n = input.size(0)
- channels_out = weight.size(0)
- height, width = input.shape[2:4]
- kernel_h, kernel_w = weight.shape[2:4]
- height_out = (height + 2 * ctx.padding - (ctx.dilation * (kernel_h - 1) + 1)) // ctx.stride + 1
- width_out = (width + 2 * ctx.padding - (ctx.dilation * (kernel_w - 1) + 1)) // ctx.stride + 1
- return n, channels_out, height_out, width_out
-
-
-deform_conv = DeformConvFunction.apply
-modulated_deform_conv = ModulatedDeformConvFunction.apply
-
-
-class DeformConv(nn.Module):
-
- def __init__(self,
- in_channels,
- out_channels,
- kernel_size,
- stride=1,
- padding=0,
- dilation=1,
- groups=1,
- deformable_groups=1,
- bias=False):
- super(DeformConv, self).__init__()
-
- assert not bias
- assert in_channels % groups == 0, \
- f'in_channels {in_channels} is not divisible by groups {groups}'
- assert out_channels % groups == 0, \
- f'out_channels {out_channels} is not divisible ' \
- f'by groups {groups}'
-
- self.in_channels = in_channels
- self.out_channels = out_channels
- self.kernel_size = _pair(kernel_size)
- self.stride = _pair(stride)
- self.padding = _pair(padding)
- self.dilation = _pair(dilation)
- self.groups = groups
- self.deformable_groups = deformable_groups
- # enable compatibility with nn.Conv2d
- self.transposed = False
- self.output_padding = _single(0)
-
- self.weight = nn.Parameter(torch.Tensor(out_channels, in_channels // self.groups, *self.kernel_size))
-
- self.reset_parameters()
-
- def reset_parameters(self):
- n = self.in_channels
- for k in self.kernel_size:
- n *= k
- stdv = 1. / math.sqrt(n)
- self.weight.data.uniform_(-stdv, stdv)
-
- def forward(self, x, offset):
- # To fix an assert error in deform_conv_cuda.cpp:128
- # input image is smaller than kernel
- input_pad = (x.size(2) < self.kernel_size[0] or x.size(3) < self.kernel_size[1])
- if input_pad:
- pad_h = max(self.kernel_size[0] - x.size(2), 0)
- pad_w = max(self.kernel_size[1] - x.size(3), 0)
- x = F.pad(x, (0, pad_w, 0, pad_h), 'constant', 0).contiguous()
- offset = F.pad(offset, (0, pad_w, 0, pad_h), 'constant', 0).contiguous()
- out = deform_conv(x, offset, self.weight, self.stride, self.padding, self.dilation, self.groups,
- self.deformable_groups)
- if input_pad:
- out = out[:, :, :out.size(2) - pad_h, :out.size(3) - pad_w].contiguous()
- return out
-
-
-class DeformConvPack(DeformConv):
- """A Deformable Conv Encapsulation that acts as normal Conv layers.
-
- Args:
- in_channels (int): Same as nn.Conv2d.
- out_channels (int): Same as nn.Conv2d.
- kernel_size (int or tuple[int]): Same as nn.Conv2d.
- stride (int or tuple[int]): Same as nn.Conv2d.
- padding (int or tuple[int]): Same as nn.Conv2d.
- dilation (int or tuple[int]): Same as nn.Conv2d.
- groups (int): Same as nn.Conv2d.
- bias (bool or str): If specified as `auto`, it will be decided by the
- norm_cfg. Bias will be set as True if norm_cfg is None, otherwise
- False.
- """
-
- _version = 2
-
- def __init__(self, *args, **kwargs):
- super(DeformConvPack, self).__init__(*args, **kwargs)
-
- self.conv_offset = nn.Conv2d(
- self.in_channels,
- self.deformable_groups * 2 * self.kernel_size[0] * self.kernel_size[1],
- kernel_size=self.kernel_size,
- stride=_pair(self.stride),
- padding=_pair(self.padding),
- dilation=_pair(self.dilation),
- bias=True)
- self.init_offset()
-
- def init_offset(self):
- self.conv_offset.weight.data.zero_()
- self.conv_offset.bias.data.zero_()
-
- def forward(self, x):
- offset = self.conv_offset(x)
- return deform_conv(x, offset, self.weight, self.stride, self.padding, self.dilation, self.groups,
- self.deformable_groups)
-
-
-class ModulatedDeformConv(nn.Module):
-
- def __init__(self,
- in_channels,
- out_channels,
- kernel_size,
- stride=1,
- padding=0,
- dilation=1,
- groups=1,
- deformable_groups=1,
- bias=True):
- super(ModulatedDeformConv, self).__init__()
- self.in_channels = in_channels
- self.out_channels = out_channels
- self.kernel_size = _pair(kernel_size)
- self.stride = stride
- self.padding = padding
- self.dilation = dilation
- self.groups = groups
- self.deformable_groups = deformable_groups
- self.with_bias = bias
- # enable compatibility with nn.Conv2d
- self.transposed = False
- self.output_padding = _single(0)
-
- self.weight = nn.Parameter(torch.Tensor(out_channels, in_channels // groups, *self.kernel_size))
- if bias:
- self.bias = nn.Parameter(torch.Tensor(out_channels))
- else:
- self.register_parameter('bias', None)
- self.init_weights()
-
- def init_weights(self):
- n = self.in_channels
- for k in self.kernel_size:
- n *= k
- stdv = 1. / math.sqrt(n)
- self.weight.data.uniform_(-stdv, stdv)
- if self.bias is not None:
- self.bias.data.zero_()
-
- def forward(self, x, offset, mask):
- return modulated_deform_conv(x, offset, mask, self.weight, self.bias, self.stride, self.padding, self.dilation,
- self.groups, self.deformable_groups)
-
-
-class ModulatedDeformConvPack(ModulatedDeformConv):
- """A ModulatedDeformable Conv Encapsulation that acts as normal Conv layers.
-
- Args:
- in_channels (int): Same as nn.Conv2d.
- out_channels (int): Same as nn.Conv2d.
- kernel_size (int or tuple[int]): Same as nn.Conv2d.
- stride (int or tuple[int]): Same as nn.Conv2d.
- padding (int or tuple[int]): Same as nn.Conv2d.
- dilation (int or tuple[int]): Same as nn.Conv2d.
- groups (int): Same as nn.Conv2d.
- bias (bool or str): If specified as `auto`, it will be decided by the
- norm_cfg. Bias will be set as True if norm_cfg is None, otherwise
- False.
- """
-
- _version = 2
-
- def __init__(self, *args, **kwargs):
- super(ModulatedDeformConvPack, self).__init__(*args, **kwargs)
-
- self.conv_offset = nn.Conv2d(
- self.in_channels,
- self.deformable_groups * 3 * self.kernel_size[0] * self.kernel_size[1],
- kernel_size=self.kernel_size,
- stride=_pair(self.stride),
- padding=_pair(self.padding),
- dilation=_pair(self.dilation),
- bias=True)
- self.init_weights()
-
- def init_weights(self):
- super(ModulatedDeformConvPack, self).init_weights()
- if hasattr(self, 'conv_offset'):
- self.conv_offset.weight.data.zero_()
- self.conv_offset.bias.data.zero_()
-
- def forward(self, x):
- out = self.conv_offset(x)
- o1, o2, mask = torch.chunk(out, 3, dim=1)
- offset = torch.cat((o1, o2), dim=1)
- mask = torch.sigmoid(mask)
- return modulated_deform_conv(x, offset, mask, self.weight, self.bias, self.stride, self.padding, self.dilation,
- self.groups, self.deformable_groups)
diff --git a/CodeFormer/CodeFormer/basicsr/ops/dcn/src/deform_conv_cuda.cpp b/CodeFormer/CodeFormer/basicsr/ops/dcn/src/deform_conv_cuda.cpp
deleted file mode 100644
index 5d9424908ed2dbd4ac3cdb98d13e09287a4d2f2d..0000000000000000000000000000000000000000
--- a/CodeFormer/CodeFormer/basicsr/ops/dcn/src/deform_conv_cuda.cpp
+++ /dev/null
@@ -1,685 +0,0 @@
-// modify from
-// https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/blob/mmdetection/mmdet/ops/dcn/src/deform_conv_cuda.c
-
-#include
-#include
-
-#include
-#include
-
-void deformable_im2col(const at::Tensor data_im, const at::Tensor data_offset,
- const int channels, const int height, const int width,
- const int ksize_h, const int ksize_w, const int pad_h,
- const int pad_w, const int stride_h, const int stride_w,
- const int dilation_h, const int dilation_w,
- const int parallel_imgs, const int deformable_group,
- at::Tensor data_col);
-
-void deformable_col2im(const at::Tensor data_col, const at::Tensor data_offset,
- const int channels, const int height, const int width,
- const int ksize_h, const int ksize_w, const int pad_h,
- const int pad_w, const int stride_h, const int stride_w,
- const int dilation_h, const int dilation_w,
- const int parallel_imgs, const int deformable_group,
- at::Tensor grad_im);
-
-void deformable_col2im_coord(
- const at::Tensor data_col, const at::Tensor data_im,
- const at::Tensor data_offset, const int channels, const int height,
- const int width, const int ksize_h, const int ksize_w, const int pad_h,
- const int pad_w, const int stride_h, const int stride_w,
- const int dilation_h, const int dilation_w, const int parallel_imgs,
- const int deformable_group, at::Tensor grad_offset);
-
-void modulated_deformable_im2col_cuda(
- const at::Tensor data_im, const at::Tensor data_offset,
- const at::Tensor data_mask, const int batch_size, const int channels,
- const int height_im, const int width_im, const int height_col,
- const int width_col, const int kernel_h, const int kenerl_w,
- const int pad_h, const int pad_w, const int stride_h, const int stride_w,
- const int dilation_h, const int dilation_w, const int deformable_group,
- at::Tensor data_col);
-
-void modulated_deformable_col2im_cuda(
- const at::Tensor data_col, const at::Tensor data_offset,
- const at::Tensor data_mask, const int batch_size, const int channels,
- const int height_im, const int width_im, const int height_col,
- const int width_col, const int kernel_h, const int kenerl_w,
- const int pad_h, const int pad_w, const int stride_h, const int stride_w,
- const int dilation_h, const int dilation_w, const int deformable_group,
- at::Tensor grad_im);
-
-void modulated_deformable_col2im_coord_cuda(
- const at::Tensor data_col, const at::Tensor data_im,
- const at::Tensor data_offset, const at::Tensor data_mask,
- const int batch_size, const int channels, const int height_im,
- const int width_im, const int height_col, const int width_col,
- const int kernel_h, const int kenerl_w, const int pad_h, const int pad_w,
- const int stride_h, const int stride_w, const int dilation_h,
- const int dilation_w, const int deformable_group, at::Tensor grad_offset,
- at::Tensor grad_mask);
-
-void shape_check(at::Tensor input, at::Tensor offset, at::Tensor *gradOutput,
- at::Tensor weight, int kH, int kW, int dH, int dW, int padH,
- int padW, int dilationH, int dilationW, int group,
- int deformable_group) {
- TORCH_CHECK(weight.ndimension() == 4,
- "4D weight tensor (nOutputPlane,nInputPlane,kH,kW) expected, "
- "but got: %s",
- weight.ndimension());
-
- TORCH_CHECK(weight.is_contiguous(), "weight tensor has to be contiguous");
-
- TORCH_CHECK(kW > 0 && kH > 0,
- "kernel size should be greater than zero, but got kH: %d kW: %d", kH,
- kW);
-
- TORCH_CHECK((weight.size(2) == kH && weight.size(3) == kW),
- "kernel size should be consistent with weight, ",
- "but got kH: %d kW: %d weight.size(2): %d, weight.size(3): %d", kH,
- kW, weight.size(2), weight.size(3));
-
- TORCH_CHECK(dW > 0 && dH > 0,
- "stride should be greater than zero, but got dH: %d dW: %d", dH, dW);
-
- TORCH_CHECK(
- dilationW > 0 && dilationH > 0,
- "dilation should be greater than 0, but got dilationH: %d dilationW: %d",
- dilationH, dilationW);
-
- int ndim = input.ndimension();
- int dimf = 0;
- int dimh = 1;
- int dimw = 2;
-
- if (ndim == 4) {
- dimf++;
- dimh++;
- dimw++;
- }
-
- TORCH_CHECK(ndim == 3 || ndim == 4, "3D or 4D input tensor expected but got: %s",
- ndim);
-
- long nInputPlane = weight.size(1) * group;
- long inputHeight = input.size(dimh);
- long inputWidth = input.size(dimw);
- long nOutputPlane = weight.size(0);
- long outputHeight =
- (inputHeight + 2 * padH - (dilationH * (kH - 1) + 1)) / dH + 1;
- long outputWidth =
- (inputWidth + 2 * padW - (dilationW * (kW - 1) + 1)) / dW + 1;
-
- TORCH_CHECK(nInputPlane % deformable_group == 0,
- "input channels must divide deformable group size");
-
- if (outputWidth < 1 || outputHeight < 1)
- AT_ERROR(
- "Given input size: (%ld x %ld x %ld). "
- "Calculated output size: (%ld x %ld x %ld). Output size is too small",
- nInputPlane, inputHeight, inputWidth, nOutputPlane, outputHeight,
- outputWidth);
-
- TORCH_CHECK(input.size(1) == nInputPlane,
- "invalid number of input planes, expected: %d, but got: %d",
- nInputPlane, input.size(1));
-
- TORCH_CHECK((inputHeight >= kH && inputWidth >= kW),
- "input image is smaller than kernel");
-
- TORCH_CHECK((offset.size(2) == outputHeight && offset.size(3) == outputWidth),
- "invalid spatial size of offset, expected height: %d width: %d, but "
- "got height: %d width: %d",
- outputHeight, outputWidth, offset.size(2), offset.size(3));
-
- TORCH_CHECK((offset.size(1) == deformable_group * 2 * kH * kW),
- "invalid number of channels of offset");
-
- if (gradOutput != NULL) {
- TORCH_CHECK(gradOutput->size(dimf) == nOutputPlane,
- "invalid number of gradOutput planes, expected: %d, but got: %d",
- nOutputPlane, gradOutput->size(dimf));
-
- TORCH_CHECK((gradOutput->size(dimh) == outputHeight &&
- gradOutput->size(dimw) == outputWidth),
- "invalid size of gradOutput, expected height: %d width: %d , but "
- "got height: %d width: %d",
- outputHeight, outputWidth, gradOutput->size(dimh),
- gradOutput->size(dimw));
- }
-}
-
-int deform_conv_forward_cuda(at::Tensor input, at::Tensor weight,
- at::Tensor offset, at::Tensor output,
- at::Tensor columns, at::Tensor ones, int kW,
- int kH, int dW, int dH, int padW, int padH,
- int dilationW, int dilationH, int group,
- int deformable_group, int im2col_step) {
- // todo: resize columns to include im2col: done
- // todo: add im2col_step as input
- // todo: add new output buffer and transpose it to output (or directly
- // transpose output) todo: possibly change data indexing because of
- // parallel_imgs
-
- shape_check(input, offset, NULL, weight, kH, kW, dH, dW, padH, padW,
- dilationH, dilationW, group, deformable_group);
- at::DeviceGuard guard(input.device());
-
- input = input.contiguous();
- offset = offset.contiguous();
- weight = weight.contiguous();
-
- int batch = 1;
- if (input.ndimension() == 3) {
- // Force batch
- batch = 0;
- input.unsqueeze_(0);
- offset.unsqueeze_(0);
- }
-
- // todo: assert batchsize dividable by im2col_step
-
- long batchSize = input.size(0);
- long nInputPlane = input.size(1);
- long inputHeight = input.size(2);
- long inputWidth = input.size(3);
-
- long nOutputPlane = weight.size(0);
-
- long outputWidth =
- (inputWidth + 2 * padW - (dilationW * (kW - 1) + 1)) / dW + 1;
- long outputHeight =
- (inputHeight + 2 * padH - (dilationH * (kH - 1) + 1)) / dH + 1;
-
- TORCH_CHECK((offset.size(0) == batchSize), "invalid batch size of offset");
-
- output = output.view({batchSize / im2col_step, im2col_step, nOutputPlane,
- outputHeight, outputWidth});
- columns = at::zeros(
- {nInputPlane * kW * kH, im2col_step * outputHeight * outputWidth},
- input.options());
-
- if (ones.ndimension() != 2 ||
- ones.size(0) * ones.size(1) < outputHeight * outputWidth) {
- ones = at::ones({outputHeight, outputWidth}, input.options());
- }
-
- input = input.view({batchSize / im2col_step, im2col_step, nInputPlane,
- inputHeight, inputWidth});
- offset =
- offset.view({batchSize / im2col_step, im2col_step,
- deformable_group * 2 * kH * kW, outputHeight, outputWidth});
-
- at::Tensor output_buffer =
- at::zeros({batchSize / im2col_step, nOutputPlane,
- im2col_step * outputHeight, outputWidth},
- output.options());
-
- output_buffer = output_buffer.view(
- {output_buffer.size(0), group, output_buffer.size(1) / group,
- output_buffer.size(2), output_buffer.size(3)});
-
- for (int elt = 0; elt < batchSize / im2col_step; elt++) {
- deformable_im2col(input[elt], offset[elt], nInputPlane, inputHeight,
- inputWidth, kH, kW, padH, padW, dH, dW, dilationH,
- dilationW, im2col_step, deformable_group, columns);
-
- columns = columns.view({group, columns.size(0) / group, columns.size(1)});
- weight = weight.view({group, weight.size(0) / group, weight.size(1),
- weight.size(2), weight.size(3)});
-
- for (int g = 0; g < group; g++) {
- output_buffer[elt][g] = output_buffer[elt][g]
- .flatten(1)
- .addmm_(weight[g].flatten(1), columns[g])
- .view_as(output_buffer[elt][g]);
- }
- }
-
- output_buffer = output_buffer.view(
- {output_buffer.size(0), output_buffer.size(1) * output_buffer.size(2),
- output_buffer.size(3), output_buffer.size(4)});
-
- output_buffer = output_buffer.view({batchSize / im2col_step, nOutputPlane,
- im2col_step, outputHeight, outputWidth});
- output_buffer.transpose_(1, 2);
- output.copy_(output_buffer);
- output = output.view({batchSize, nOutputPlane, outputHeight, outputWidth});
-
- input = input.view({batchSize, nInputPlane, inputHeight, inputWidth});
- offset = offset.view(
- {batchSize, deformable_group * 2 * kH * kW, outputHeight, outputWidth});
-
- if (batch == 0) {
- output = output.view({nOutputPlane, outputHeight, outputWidth});
- input = input.view({nInputPlane, inputHeight, inputWidth});
- offset = offset.view({offset.size(1), offset.size(2), offset.size(3)});
- }
-
- return 1;
-}
-
-int deform_conv_backward_input_cuda(at::Tensor input, at::Tensor offset,
- at::Tensor gradOutput, at::Tensor gradInput,
- at::Tensor gradOffset, at::Tensor weight,
- at::Tensor columns, int kW, int kH, int dW,
- int dH, int padW, int padH, int dilationW,
- int dilationH, int group,
- int deformable_group, int im2col_step) {
- shape_check(input, offset, &gradOutput, weight, kH, kW, dH, dW, padH, padW,
- dilationH, dilationW, group, deformable_group);
- at::DeviceGuard guard(input.device());
-
- input = input.contiguous();
- offset = offset.contiguous();
- gradOutput = gradOutput.contiguous();
- weight = weight.contiguous();
-
- int batch = 1;
-
- if (input.ndimension() == 3) {
- // Force batch
- batch = 0;
- input = input.view({1, input.size(0), input.size(1), input.size(2)});
- offset = offset.view({1, offset.size(0), offset.size(1), offset.size(2)});
- gradOutput = gradOutput.view(
- {1, gradOutput.size(0), gradOutput.size(1), gradOutput.size(2)});
- }
-
- long batchSize = input.size(0);
- long nInputPlane = input.size(1);
- long inputHeight = input.size(2);
- long inputWidth = input.size(3);
-
- long nOutputPlane = weight.size(0);
-
- long outputWidth =
- (inputWidth + 2 * padW - (dilationW * (kW - 1) + 1)) / dW + 1;
- long outputHeight =
- (inputHeight + 2 * padH - (dilationH * (kH - 1) + 1)) / dH + 1;
-
- TORCH_CHECK((offset.size(0) == batchSize), 3, "invalid batch size of offset");
- gradInput = gradInput.view({batchSize, nInputPlane, inputHeight, inputWidth});
- columns = at::zeros(
- {nInputPlane * kW * kH, im2col_step * outputHeight * outputWidth},
- input.options());
-
- // change order of grad output
- gradOutput = gradOutput.view({batchSize / im2col_step, im2col_step,
- nOutputPlane, outputHeight, outputWidth});
- gradOutput.transpose_(1, 2);
-
- gradInput = gradInput.view({batchSize / im2col_step, im2col_step, nInputPlane,
- inputHeight, inputWidth});
- input = input.view({batchSize / im2col_step, im2col_step, nInputPlane,
- inputHeight, inputWidth});
- gradOffset = gradOffset.view({batchSize / im2col_step, im2col_step,
- deformable_group * 2 * kH * kW, outputHeight,
- outputWidth});
- offset =
- offset.view({batchSize / im2col_step, im2col_step,
- deformable_group * 2 * kH * kW, outputHeight, outputWidth});
-
- for (int elt = 0; elt < batchSize / im2col_step; elt++) {
- // divide into groups
- columns = columns.view({group, columns.size(0) / group, columns.size(1)});
- weight = weight.view({group, weight.size(0) / group, weight.size(1),
- weight.size(2), weight.size(3)});
- gradOutput = gradOutput.view(
- {gradOutput.size(0), group, gradOutput.size(1) / group,
- gradOutput.size(2), gradOutput.size(3), gradOutput.size(4)});
-
- for (int g = 0; g < group; g++) {
- columns[g] = columns[g].addmm_(weight[g].flatten(1).transpose(0, 1),
- gradOutput[elt][g].flatten(1), 0.0f, 1.0f);
- }
-
- columns =
- columns.view({columns.size(0) * columns.size(1), columns.size(2)});
- gradOutput = gradOutput.view(
- {gradOutput.size(0), gradOutput.size(1) * gradOutput.size(2),
- gradOutput.size(3), gradOutput.size(4), gradOutput.size(5)});
-
- deformable_col2im_coord(columns, input[elt], offset[elt], nInputPlane,
- inputHeight, inputWidth, kH, kW, padH, padW, dH, dW,
- dilationH, dilationW, im2col_step, deformable_group,
- gradOffset[elt]);
-
- deformable_col2im(columns, offset[elt], nInputPlane, inputHeight,
- inputWidth, kH, kW, padH, padW, dH, dW, dilationH,
- dilationW, im2col_step, deformable_group, gradInput[elt]);
- }
-
- gradOutput.transpose_(1, 2);
- gradOutput =
- gradOutput.view({batchSize, nOutputPlane, outputHeight, outputWidth});
-
- gradInput = gradInput.view({batchSize, nInputPlane, inputHeight, inputWidth});
- input = input.view({batchSize, nInputPlane, inputHeight, inputWidth});
- gradOffset = gradOffset.view(
- {batchSize, deformable_group * 2 * kH * kW, outputHeight, outputWidth});
- offset = offset.view(
- {batchSize, deformable_group * 2 * kH * kW, outputHeight, outputWidth});
-
- if (batch == 0) {
- gradOutput = gradOutput.view({nOutputPlane, outputHeight, outputWidth});
- input = input.view({nInputPlane, inputHeight, inputWidth});
- gradInput = gradInput.view({nInputPlane, inputHeight, inputWidth});
- offset = offset.view({offset.size(1), offset.size(2), offset.size(3)});
- gradOffset =
- gradOffset.view({offset.size(1), offset.size(2), offset.size(3)});
- }
-
- return 1;
-}
-
-int deform_conv_backward_parameters_cuda(
- at::Tensor input, at::Tensor offset, at::Tensor gradOutput,
- at::Tensor gradWeight, // at::Tensor gradBias,
- at::Tensor columns, at::Tensor ones, int kW, int kH, int dW, int dH,
- int padW, int padH, int dilationW, int dilationH, int group,
- int deformable_group, float scale, int im2col_step) {
- // todo: transpose and reshape outGrad
- // todo: reshape columns
- // todo: add im2col_step as input
-
- shape_check(input, offset, &gradOutput, gradWeight, kH, kW, dH, dW, padH,
- padW, dilationH, dilationW, group, deformable_group);
- at::DeviceGuard guard(input.device());
-
- input = input.contiguous();
- offset = offset.contiguous();
- gradOutput = gradOutput.contiguous();
-
- int batch = 1;
-
- if (input.ndimension() == 3) {
- // Force batch
- batch = 0;
- input = input.view(
- at::IntList({1, input.size(0), input.size(1), input.size(2)}));
- gradOutput = gradOutput.view(
- {1, gradOutput.size(0), gradOutput.size(1), gradOutput.size(2)});
- }
-
- long batchSize = input.size(0);
- long nInputPlane = input.size(1);
- long inputHeight = input.size(2);
- long inputWidth = input.size(3);
-
- long nOutputPlane = gradWeight.size(0);
-
- long outputWidth =
- (inputWidth + 2 * padW - (dilationW * (kW - 1) + 1)) / dW + 1;
- long outputHeight =
- (inputHeight + 2 * padH - (dilationH * (kH - 1) + 1)) / dH + 1;
-
- TORCH_CHECK((offset.size(0) == batchSize), "invalid batch size of offset");
-
- columns = at::zeros(
- {nInputPlane * kW * kH, im2col_step * outputHeight * outputWidth},
- input.options());
-
- gradOutput = gradOutput.view({batchSize / im2col_step, im2col_step,
- nOutputPlane, outputHeight, outputWidth});
- gradOutput.transpose_(1, 2);
-
- at::Tensor gradOutputBuffer = at::zeros_like(gradOutput);
- gradOutputBuffer =
- gradOutputBuffer.view({batchSize / im2col_step, nOutputPlane, im2col_step,
- outputHeight, outputWidth});
- gradOutputBuffer.copy_(gradOutput);
- gradOutputBuffer =
- gradOutputBuffer.view({batchSize / im2col_step, nOutputPlane,
- im2col_step * outputHeight, outputWidth});
-
- gradOutput.transpose_(1, 2);
- gradOutput =
- gradOutput.view({batchSize, nOutputPlane, outputHeight, outputWidth});
-
- input = input.view({batchSize / im2col_step, im2col_step, nInputPlane,
- inputHeight, inputWidth});
- offset =
- offset.view({batchSize / im2col_step, im2col_step,
- deformable_group * 2 * kH * kW, outputHeight, outputWidth});
-
- for (int elt = 0; elt < batchSize / im2col_step; elt++) {
- deformable_im2col(input[elt], offset[elt], nInputPlane, inputHeight,
- inputWidth, kH, kW, padH, padW, dH, dW, dilationH,
- dilationW, im2col_step, deformable_group, columns);
-
- // divide into group
- gradOutputBuffer = gradOutputBuffer.view(
- {gradOutputBuffer.size(0), group, gradOutputBuffer.size(1) / group,
- gradOutputBuffer.size(2), gradOutputBuffer.size(3)});
- columns = columns.view({group, columns.size(0) / group, columns.size(1)});
- gradWeight =
- gradWeight.view({group, gradWeight.size(0) / group, gradWeight.size(1),
- gradWeight.size(2), gradWeight.size(3)});
-
- for (int g = 0; g < group; g++) {
- gradWeight[g] = gradWeight[g]
- .flatten(1)
- .addmm_(gradOutputBuffer[elt][g].flatten(1),
- columns[g].transpose(1, 0), 1.0, scale)
- .view_as(gradWeight[g]);
- }
- gradOutputBuffer = gradOutputBuffer.view(
- {gradOutputBuffer.size(0),
- gradOutputBuffer.size(1) * gradOutputBuffer.size(2),
- gradOutputBuffer.size(3), gradOutputBuffer.size(4)});
- columns =
- columns.view({columns.size(0) * columns.size(1), columns.size(2)});
- gradWeight = gradWeight.view({gradWeight.size(0) * gradWeight.size(1),
- gradWeight.size(2), gradWeight.size(3),
- gradWeight.size(4)});
- }
-
- input = input.view({batchSize, nInputPlane, inputHeight, inputWidth});
- offset = offset.view(
- {batchSize, deformable_group * 2 * kH * kW, outputHeight, outputWidth});
-
- if (batch == 0) {
- gradOutput = gradOutput.view({nOutputPlane, outputHeight, outputWidth});
- input = input.view({nInputPlane, inputHeight, inputWidth});
- }
-
- return 1;
-}
-
-void modulated_deform_conv_cuda_forward(
- at::Tensor input, at::Tensor weight, at::Tensor bias, at::Tensor ones,
- at::Tensor offset, at::Tensor mask, at::Tensor output, at::Tensor columns,
- int kernel_h, int kernel_w, const int stride_h, const int stride_w,
- const int pad_h, const int pad_w, const int dilation_h,
- const int dilation_w, const int group, const int deformable_group,
- const bool with_bias) {
- TORCH_CHECK(input.is_contiguous(), "input tensor has to be contiguous");
- TORCH_CHECK(weight.is_contiguous(), "weight tensor has to be contiguous");
- at::DeviceGuard guard(input.device());
-
- const int batch = input.size(0);
- const int channels = input.size(1);
- const int height = input.size(2);
- const int width = input.size(3);
-
- const int channels_out = weight.size(0);
- const int channels_kernel = weight.size(1);
- const int kernel_h_ = weight.size(2);
- const int kernel_w_ = weight.size(3);
-
- if (kernel_h_ != kernel_h || kernel_w_ != kernel_w)
- AT_ERROR("Input shape and kernel shape wont match: (%d x %d vs %d x %d).",
- kernel_h_, kernel_w, kernel_h_, kernel_w_);
- if (channels != channels_kernel * group)
- AT_ERROR("Input shape and kernel channels wont match: (%d vs %d).",
- channels, channels_kernel * group);
-
- const int height_out =
- (height + 2 * pad_h - (dilation_h * (kernel_h - 1) + 1)) / stride_h + 1;
- const int width_out =
- (width + 2 * pad_w - (dilation_w * (kernel_w - 1) + 1)) / stride_w + 1;
-
- if (ones.ndimension() != 2 ||
- ones.size(0) * ones.size(1) < height_out * width_out) {
- // Resize plane and fill with ones...
- ones = at::ones({height_out, width_out}, input.options());
- }
-
- // resize output
- output = output.view({batch, channels_out, height_out, width_out}).zero_();
- // resize temporary columns
- columns =
- at::zeros({channels * kernel_h * kernel_w, 1 * height_out * width_out},
- input.options());
-
- output = output.view({output.size(0), group, output.size(1) / group,
- output.size(2), output.size(3)});
-
- for (int b = 0; b < batch; b++) {
- modulated_deformable_im2col_cuda(
- input[b], offset[b], mask[b], 1, channels, height, width, height_out,
- width_out, kernel_h, kernel_w, pad_h, pad_w, stride_h, stride_w,
- dilation_h, dilation_w, deformable_group, columns);
-
- // divide into group
- weight = weight.view({group, weight.size(0) / group, weight.size(1),
- weight.size(2), weight.size(3)});
- columns = columns.view({group, columns.size(0) / group, columns.size(1)});
-
- for (int g = 0; g < group; g++) {
- output[b][g] = output[b][g]
- .flatten(1)
- .addmm_(weight[g].flatten(1), columns[g])
- .view_as(output[b][g]);
- }
-
- weight = weight.view({weight.size(0) * weight.size(1), weight.size(2),
- weight.size(3), weight.size(4)});
- columns =
- columns.view({columns.size(0) * columns.size(1), columns.size(2)});
- }
-
- output = output.view({output.size(0), output.size(1) * output.size(2),
- output.size(3), output.size(4)});
-
- if (with_bias) {
- output += bias.view({1, bias.size(0), 1, 1});
- }
-}
-
-void modulated_deform_conv_cuda_backward(
- at::Tensor input, at::Tensor weight, at::Tensor bias, at::Tensor ones,
- at::Tensor offset, at::Tensor mask, at::Tensor columns,
- at::Tensor grad_input, at::Tensor grad_weight, at::Tensor grad_bias,
- at::Tensor grad_offset, at::Tensor grad_mask, at::Tensor grad_output,
- int kernel_h, int kernel_w, int stride_h, int stride_w, int pad_h,
- int pad_w, int dilation_h, int dilation_w, int group, int deformable_group,
- const bool with_bias) {
- TORCH_CHECK(input.is_contiguous(), "input tensor has to be contiguous");
- TORCH_CHECK(weight.is_contiguous(), "weight tensor has to be contiguous");
- at::DeviceGuard guard(input.device());
-
- const int batch = input.size(0);
- const int channels = input.size(1);
- const int height = input.size(2);
- const int width = input.size(3);
-
- const int channels_kernel = weight.size(1);
- const int kernel_h_ = weight.size(2);
- const int kernel_w_ = weight.size(3);
- if (kernel_h_ != kernel_h || kernel_w_ != kernel_w)
- AT_ERROR("Input shape and kernel shape wont match: (%d x %d vs %d x %d).",
- kernel_h_, kernel_w, kernel_h_, kernel_w_);
- if (channels != channels_kernel * group)
- AT_ERROR("Input shape and kernel channels wont match: (%d vs %d).",
- channels, channels_kernel * group);
-
- const int height_out =
- (height + 2 * pad_h - (dilation_h * (kernel_h - 1) + 1)) / stride_h + 1;
- const int width_out =
- (width + 2 * pad_w - (dilation_w * (kernel_w - 1) + 1)) / stride_w + 1;
-
- if (ones.ndimension() != 2 ||
- ones.size(0) * ones.size(1) < height_out * width_out) {
- // Resize plane and fill with ones...
- ones = at::ones({height_out, width_out}, input.options());
- }
-
- grad_input = grad_input.view({batch, channels, height, width});
- columns = at::zeros({channels * kernel_h * kernel_w, height_out * width_out},
- input.options());
-
- grad_output =
- grad_output.view({grad_output.size(0), group, grad_output.size(1) / group,
- grad_output.size(2), grad_output.size(3)});
-
- for (int b = 0; b < batch; b++) {
- // divide int group
- columns = columns.view({group, columns.size(0) / group, columns.size(1)});
- weight = weight.view({group, weight.size(0) / group, weight.size(1),
- weight.size(2), weight.size(3)});
-
- for (int g = 0; g < group; g++) {
- columns[g].addmm_(weight[g].flatten(1).transpose(0, 1),
- grad_output[b][g].flatten(1), 0.0f, 1.0f);
- }
-
- columns =
- columns.view({columns.size(0) * columns.size(1), columns.size(2)});
- weight = weight.view({weight.size(0) * weight.size(1), weight.size(2),
- weight.size(3), weight.size(4)});
-
- // gradient w.r.t. input coordinate data
- modulated_deformable_col2im_coord_cuda(
- columns, input[b], offset[b], mask[b], 1, channels, height, width,
- height_out, width_out, kernel_h, kernel_w, pad_h, pad_w, stride_h,
- stride_w, dilation_h, dilation_w, deformable_group, grad_offset[b],
- grad_mask[b]);
- // gradient w.r.t. input data
- modulated_deformable_col2im_cuda(
- columns, offset[b], mask[b], 1, channels, height, width, height_out,
- width_out, kernel_h, kernel_w, pad_h, pad_w, stride_h, stride_w,
- dilation_h, dilation_w, deformable_group, grad_input[b]);
-
- // gradient w.r.t. weight, dWeight should accumulate across the batch and
- // group
- modulated_deformable_im2col_cuda(
- input[b], offset[b], mask[b], 1, channels, height, width, height_out,
- width_out, kernel_h, kernel_w, pad_h, pad_w, stride_h, stride_w,
- dilation_h, dilation_w, deformable_group, columns);
-
- columns = columns.view({group, columns.size(0) / group, columns.size(1)});
- grad_weight = grad_weight.view({group, grad_weight.size(0) / group,
- grad_weight.size(1), grad_weight.size(2),
- grad_weight.size(3)});
- if (with_bias)
- grad_bias = grad_bias.view({group, grad_bias.size(0) / group});
-
- for (int g = 0; g < group; g++) {
- grad_weight[g] =
- grad_weight[g]
- .flatten(1)
- .addmm_(grad_output[b][g].flatten(1), columns[g].transpose(0, 1))
- .view_as(grad_weight[g]);
- if (with_bias) {
- grad_bias[g] =
- grad_bias[g]
- .view({-1, 1})
- .addmm_(grad_output[b][g].flatten(1), ones.view({-1, 1}))
- .view(-1);
- }
- }
-
- columns =
- columns.view({columns.size(0) * columns.size(1), columns.size(2)});
- grad_weight = grad_weight.view({grad_weight.size(0) * grad_weight.size(1),
- grad_weight.size(2), grad_weight.size(3),
- grad_weight.size(4)});
- if (with_bias)
- grad_bias = grad_bias.view({grad_bias.size(0) * grad_bias.size(1)});
- }
- grad_output = grad_output.view({grad_output.size(0) * grad_output.size(1),
- grad_output.size(2), grad_output.size(3),
- grad_output.size(4)});
-}
diff --git a/CodeFormer/CodeFormer/basicsr/ops/dcn/src/deform_conv_cuda_kernel.cu b/CodeFormer/CodeFormer/basicsr/ops/dcn/src/deform_conv_cuda_kernel.cu
deleted file mode 100644
index 98752dccf8c58817ca1a952554dd3f33188a2d34..0000000000000000000000000000000000000000
--- a/CodeFormer/CodeFormer/basicsr/ops/dcn/src/deform_conv_cuda_kernel.cu
+++ /dev/null
@@ -1,867 +0,0 @@
-/*!
- ******************* BEGIN Caffe Copyright Notice and Disclaimer ****************
- *
- * COPYRIGHT
- *
- * All contributions by the University of California:
- * Copyright (c) 2014-2017 The Regents of the University of California (Regents)
- * All rights reserved.
- *
- * All other contributions:
- * Copyright (c) 2014-2017, the respective contributors
- * All rights reserved.
- *
- * Caffe uses a shared copyright model: each contributor holds copyright over
- * their contributions to Caffe. The project versioning records all such
- * contribution and copyright details. If a contributor wants to further mark
- * their specific copyright on a particular contribution, they should indicate
- * their copyright solely in the commit message of the change when it is
- * committed.
- *
- * LICENSE
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions are met:
- *
- * 1. Redistributions of source code must retain the above copyright notice, this
- * list of conditions and the following disclaimer.
- * 2. Redistributions in binary form must reproduce the above copyright notice,
- * this list of conditions and the following disclaimer in the documentation
- * and/or other materials provided with the distribution.
- *
- * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
- * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
- * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
- * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
- * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
- * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
- * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
- * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
- * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- *
- * CONTRIBUTION AGREEMENT
- *
- * By contributing to the BVLC/caffe repository through pull-request, comment,
- * or otherwise, the contributor releases their content to the
- * license and copyright terms herein.
- *
- ***************** END Caffe Copyright Notice and Disclaimer ********************
- *
- * Copyright (c) 2018 Microsoft
- * Licensed under The MIT License [see LICENSE for details]
- * \file modulated_deformable_im2col.cuh
- * \brief Function definitions of converting an image to
- * column matrix based on kernel, padding, dilation, and offset.
- * These functions are mainly used in deformable convolution operators.
- * \ref: https://arxiv.org/abs/1703.06211
- * \author Yuwen Xiong, Haozhi Qi, Jifeng Dai, Xizhou Zhu, Han Hu, Dazhi Cheng
- */
-
-// modified from https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/blob/mmdetection/mmdet/ops/dcn/src/deform_conv_cuda_kernel.cu
-
-#include
-#include
-#include
-#include
-#include
-#include
-
-using namespace at;
-
-#define CUDA_KERNEL_LOOP(i, n) \
- for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < (n); \
- i += blockDim.x * gridDim.x)
-
-const int CUDA_NUM_THREADS = 1024;
-const int kMaxGridNum = 65535;
-
-inline int GET_BLOCKS(const int N)
-{
- return std::min(kMaxGridNum, (N + CUDA_NUM_THREADS - 1) / CUDA_NUM_THREADS);
-}
-
-template
-__device__ scalar_t deformable_im2col_bilinear(const scalar_t *bottom_data, const int data_width,
- const int height, const int width, scalar_t h, scalar_t w)
-{
-
- int h_low = floor(h);
- int w_low = floor(w);
- int h_high = h_low + 1;
- int w_high = w_low + 1;
-
- scalar_t lh = h - h_low;
- scalar_t lw = w - w_low;
- scalar_t hh = 1 - lh, hw = 1 - lw;
-
- scalar_t v1 = 0;
- if (h_low >= 0 && w_low >= 0)
- v1 = bottom_data[h_low * data_width + w_low];
- scalar_t v2 = 0;
- if (h_low >= 0 && w_high <= width - 1)
- v2 = bottom_data[h_low * data_width + w_high];
- scalar_t v3 = 0;
- if (h_high <= height - 1 && w_low >= 0)
- v3 = bottom_data[h_high * data_width + w_low];
- scalar_t v4 = 0;
- if (h_high <= height - 1 && w_high <= width - 1)
- v4 = bottom_data[h_high * data_width + w_high];
-
- scalar_t w1 = hh * hw, w2 = hh * lw, w3 = lh * hw, w4 = lh * lw;
-
- scalar_t val = (w1 * v1 + w2 * v2 + w3 * v3 + w4 * v4);
- return val;
-}
-
-template
-__device__ scalar_t get_gradient_weight(scalar_t argmax_h, scalar_t argmax_w,
- const int h, const int w, const int height, const int width)
-{
-
- if (argmax_h <= -1 || argmax_h >= height || argmax_w <= -1 || argmax_w >= width)
- {
- //empty
- return 0;
- }
-
- int argmax_h_low = floor(argmax_h);
- int argmax_w_low = floor(argmax_w);
- int argmax_h_high = argmax_h_low + 1;
- int argmax_w_high = argmax_w_low + 1;
-
- scalar_t weight = 0;
- if (h == argmax_h_low && w == argmax_w_low)
- weight = (h + 1 - argmax_h) * (w + 1 - argmax_w);
- if (h == argmax_h_low && w == argmax_w_high)
- weight = (h + 1 - argmax_h) * (argmax_w + 1 - w);
- if (h == argmax_h_high && w == argmax_w_low)
- weight = (argmax_h + 1 - h) * (w + 1 - argmax_w);
- if (h == argmax_h_high && w == argmax_w_high)
- weight = (argmax_h + 1 - h) * (argmax_w + 1 - w);
- return weight;
-}
-
-template
-__device__ scalar_t get_coordinate_weight(scalar_t argmax_h, scalar_t argmax_w,
- const int height, const int width, const scalar_t *im_data,
- const int data_width, const int bp_dir)
-{
-
- if (argmax_h <= -1 || argmax_h >= height || argmax_w <= -1 || argmax_w >= width)
- {
- //empty
- return 0;
- }
-
- int argmax_h_low = floor(argmax_h);
- int argmax_w_low = floor(argmax_w);
- int argmax_h_high = argmax_h_low + 1;
- int argmax_w_high = argmax_w_low + 1;
-
- scalar_t weight = 0;
-
- if (bp_dir == 0)
- {
- if (argmax_h_low >= 0 && argmax_w_low >= 0)
- weight += -1 * (argmax_w_low + 1 - argmax_w) * im_data[argmax_h_low * data_width + argmax_w_low];
- if (argmax_h_low >= 0 && argmax_w_high <= width - 1)
- weight += -1 * (argmax_w - argmax_w_low) * im_data[argmax_h_low * data_width + argmax_w_high];
- if (argmax_h_high <= height - 1 && argmax_w_low >= 0)
- weight += (argmax_w_low + 1 - argmax_w) * im_data[argmax_h_high * data_width + argmax_w_low];
- if (argmax_h_high <= height - 1 && argmax_w_high <= width - 1)
- weight += (argmax_w - argmax_w_low) * im_data[argmax_h_high * data_width + argmax_w_high];
- }
- else if (bp_dir == 1)
- {
- if (argmax_h_low >= 0 && argmax_w_low >= 0)
- weight += -1 * (argmax_h_low + 1 - argmax_h) * im_data[argmax_h_low * data_width + argmax_w_low];
- if (argmax_h_low >= 0 && argmax_w_high <= width - 1)
- weight += (argmax_h_low + 1 - argmax_h) * im_data[argmax_h_low * data_width + argmax_w_high];
- if (argmax_h_high <= height - 1 && argmax_w_low >= 0)
- weight += -1 * (argmax_h - argmax_h_low) * im_data[argmax_h_high * data_width + argmax_w_low];
- if (argmax_h_high <= height - 1 && argmax_w_high <= width - 1)
- weight += (argmax_h - argmax_h_low) * im_data[argmax_h_high * data_width + argmax_w_high];
- }
-
- return weight;
-}
-
-template
-__global__ void deformable_im2col_gpu_kernel(const int n, const scalar_t *data_im, const scalar_t *data_offset,
- const int height, const int width, const int kernel_h, const int kernel_w,
- const int pad_h, const int pad_w, const int stride_h, const int stride_w,
- const int dilation_h, const int dilation_w, const int channel_per_deformable_group,
- const int batch_size, const int num_channels, const int deformable_group,
- const int height_col, const int width_col,
- scalar_t *data_col)
-{
- CUDA_KERNEL_LOOP(index, n)
- {
- // index index of output matrix
- const int w_col = index % width_col;
- const int h_col = (index / width_col) % height_col;
- const int b_col = (index / width_col / height_col) % batch_size;
- const int c_im = (index / width_col / height_col) / batch_size;
- const int c_col = c_im * kernel_h * kernel_w;
-
- // compute deformable group index
- const int deformable_group_index = c_im / channel_per_deformable_group;
-
- const int h_in = h_col * stride_h - pad_h;
- const int w_in = w_col * stride_w - pad_w;
- scalar_t *data_col_ptr = data_col + ((c_col * batch_size + b_col) * height_col + h_col) * width_col + w_col;
- //const scalar_t* data_im_ptr = data_im + ((b_col * num_channels + c_im) * height + h_in) * width + w_in;
- const scalar_t *data_im_ptr = data_im + (b_col * num_channels + c_im) * height * width;
- const scalar_t *data_offset_ptr = data_offset + (b_col * deformable_group + deformable_group_index) * 2 * kernel_h * kernel_w * height_col * width_col;
-
- for (int i = 0; i < kernel_h; ++i)
- {
- for (int j = 0; j < kernel_w; ++j)
- {
- const int data_offset_h_ptr = ((2 * (i * kernel_w + j)) * height_col + h_col) * width_col + w_col;
- const int data_offset_w_ptr = ((2 * (i * kernel_w + j) + 1) * height_col + h_col) * width_col + w_col;
- const scalar_t offset_h = data_offset_ptr[data_offset_h_ptr];
- const scalar_t offset_w = data_offset_ptr[data_offset_w_ptr];
- scalar_t val = static_cast(0);
- const scalar_t h_im = h_in + i * dilation_h + offset_h;
- const scalar_t w_im = w_in + j * dilation_w + offset_w;
- if (h_im > -1 && w_im > -1 && h_im < height && w_im < width)
- {
- //const scalar_t map_h = i * dilation_h + offset_h;
- //const scalar_t map_w = j * dilation_w + offset_w;
- //const int cur_height = height - h_in;
- //const int cur_width = width - w_in;
- //val = deformable_im2col_bilinear(data_im_ptr, width, cur_height, cur_width, map_h, map_w);
- val = deformable_im2col_bilinear(data_im_ptr, width, height, width, h_im, w_im);
- }
- *data_col_ptr = val;
- data_col_ptr += batch_size * height_col * width_col;
- }
- }
- }
-}
-
-void deformable_im2col(
- const at::Tensor data_im, const at::Tensor data_offset, const int channels,
- const int height, const int width, const int ksize_h, const int ksize_w,
- const int pad_h, const int pad_w, const int stride_h, const int stride_w,
- const int dilation_h, const int dilation_w, const int parallel_imgs,
- const int deformable_group, at::Tensor data_col)
-{
- // num_axes should be smaller than block size
- // todo: check parallel_imgs is correctly passed in
- int height_col = (height + 2 * pad_h - (dilation_h * (ksize_h - 1) + 1)) / stride_h + 1;
- int width_col = (width + 2 * pad_w - (dilation_w * (ksize_w - 1) + 1)) / stride_w + 1;
- int num_kernels = channels * height_col * width_col * parallel_imgs;
- int channel_per_deformable_group = channels / deformable_group;
-
- AT_DISPATCH_FLOATING_TYPES_AND_HALF(
- data_im.scalar_type(), "deformable_im2col_gpu", ([&] {
- const scalar_t *data_im_ = data_im.data_ptr();
- const scalar_t *data_offset_ = data_offset.data_ptr();
- scalar_t *data_col_ = data_col.data_ptr();
-
- deformable_im2col_gpu_kernel<<>>(
- num_kernels, data_im_, data_offset_, height, width, ksize_h, ksize_w,
- pad_h, pad_w, stride_h, stride_w, dilation_h, dilation_w,
- channel_per_deformable_group, parallel_imgs, channels, deformable_group,
- height_col, width_col, data_col_);
- }));
-
- cudaError_t err = cudaGetLastError();
- if (err != cudaSuccess)
- {
- printf("error in deformable_im2col: %s\n", cudaGetErrorString(err));
- }
-}
-
-template
-__global__ void deformable_col2im_gpu_kernel(
- const int n, const scalar_t *data_col, const scalar_t *data_offset,
- const int channels, const int height, const int width,
- const int kernel_h, const int kernel_w,
- const int pad_h, const int pad_w,
- const int stride_h, const int stride_w,
- const int dilation_h, const int dilation_w,
- const int channel_per_deformable_group,
- const int batch_size, const int deformable_group,
- const int height_col, const int width_col,
- scalar_t *grad_im)
-{
- CUDA_KERNEL_LOOP(index, n)
- {
- const int j = (index / width_col / height_col / batch_size) % kernel_w;
- const int i = (index / width_col / height_col / batch_size / kernel_w) % kernel_h;
- const int c = index / width_col / height_col / batch_size / kernel_w / kernel_h;
- // compute the start and end of the output
-
- const int deformable_group_index = c / channel_per_deformable_group;
-
- int w_out = index % width_col;
- int h_out = (index / width_col) % height_col;
- int b = (index / width_col / height_col) % batch_size;
- int w_in = w_out * stride_w - pad_w;
- int h_in = h_out * stride_h - pad_h;
-
- const scalar_t *data_offset_ptr = data_offset + (b * deformable_group + deformable_group_index) *
- 2 * kernel_h * kernel_w * height_col * width_col;
- const int data_offset_h_ptr = ((2 * (i * kernel_w + j)) * height_col + h_out) * width_col + w_out;
- const int data_offset_w_ptr = ((2 * (i * kernel_w + j) + 1) * height_col + h_out) * width_col + w_out;
- const scalar_t offset_h = data_offset_ptr[data_offset_h_ptr];
- const scalar_t offset_w = data_offset_ptr[data_offset_w_ptr];
- const scalar_t cur_inv_h_data = h_in + i * dilation_h + offset_h;
- const scalar_t cur_inv_w_data = w_in + j * dilation_w + offset_w;
-
- const scalar_t cur_top_grad = data_col[index];
- const int cur_h = (int)cur_inv_h_data;
- const int cur_w = (int)cur_inv_w_data;
- for (int dy = -2; dy <= 2; dy++)
- {
- for (int dx = -2; dx <= 2; dx++)
- {
- if (cur_h + dy >= 0 && cur_h + dy < height &&
- cur_w + dx >= 0 && cur_w + dx < width &&
- abs(cur_inv_h_data - (cur_h + dy)) < 1 &&
- abs(cur_inv_w_data - (cur_w + dx)) < 1)
- {
- int cur_bottom_grad_pos = ((b * channels + c) * height + cur_h + dy) * width + cur_w + dx;
- scalar_t weight = get_gradient_weight(cur_inv_h_data, cur_inv_w_data, cur_h + dy, cur_w + dx, height, width);
- atomicAdd(grad_im + cur_bottom_grad_pos, weight * cur_top_grad);
- }
- }
- }
- }
-}
-
-void deformable_col2im(
- const at::Tensor data_col, const at::Tensor data_offset, const int channels,
- const int height, const int width, const int ksize_h,
- const int ksize_w, const int pad_h, const int pad_w,
- const int stride_h, const int stride_w,
- const int dilation_h, const int dilation_w,
- const int parallel_imgs, const int deformable_group,
- at::Tensor grad_im)
-{
-
- // todo: make sure parallel_imgs is passed in correctly
- int height_col = (height + 2 * pad_h - (dilation_h * (ksize_h - 1) + 1)) / stride_h + 1;
- int width_col = (width + 2 * pad_w - (dilation_w * (ksize_w - 1) + 1)) / stride_w + 1;
- int num_kernels = channels * ksize_h * ksize_w * height_col * width_col * parallel_imgs;
- int channel_per_deformable_group = channels / deformable_group;
-
- AT_DISPATCH_FLOATING_TYPES_AND_HALF(
- data_col.scalar_type(), "deformable_col2im_gpu", ([&] {
- const scalar_t *data_col_ = data_col.data_ptr();
- const scalar_t *data_offset_ = data_offset.data_ptr();
- scalar_t *grad_im_ = grad_im.data_ptr();
-
- deformable_col2im_gpu_kernel<<>>(
- num_kernels, data_col_, data_offset_, channels, height, width, ksize_h,
- ksize_w, pad_h, pad_w, stride_h, stride_w,
- dilation_h, dilation_w, channel_per_deformable_group,
- parallel_imgs, deformable_group, height_col, width_col, grad_im_);
- }));
-
- cudaError_t err = cudaGetLastError();
- if (err != cudaSuccess)
- {
- printf("error in deformable_col2im: %s\n", cudaGetErrorString(err));
- }
-}
-
-template
-__global__ void deformable_col2im_coord_gpu_kernel(const int n, const scalar_t *data_col,
- const scalar_t *data_im, const scalar_t *data_offset,
- const int channels, const int height, const int width,
- const int kernel_h, const int kernel_w,
- const int pad_h, const int pad_w,
- const int stride_h, const int stride_w,
- const int dilation_h, const int dilation_w,
- const int channel_per_deformable_group,
- const int batch_size, const int offset_channels, const int deformable_group,
- const int height_col, const int width_col, scalar_t *grad_offset)
-{
- CUDA_KERNEL_LOOP(index, n)
- {
- scalar_t val = 0;
- int w = index % width_col;
- int h = (index / width_col) % height_col;
- int c = (index / width_col / height_col) % offset_channels;
- int b = (index / width_col / height_col) / offset_channels;
- // compute the start and end of the output
-
- const int deformable_group_index = c / (2 * kernel_h * kernel_w);
- const int col_step = kernel_h * kernel_w;
- int cnt = 0;
- const scalar_t *data_col_ptr = data_col + deformable_group_index * channel_per_deformable_group *
- batch_size * width_col * height_col;
- const scalar_t *data_im_ptr = data_im + (b * deformable_group + deformable_group_index) *
- channel_per_deformable_group / kernel_h / kernel_w * height * width;
- const scalar_t *data_offset_ptr = data_offset + (b * deformable_group + deformable_group_index) * 2 *
- kernel_h * kernel_w * height_col * width_col;
-
- const int offset_c = c - deformable_group_index * 2 * kernel_h * kernel_w;
-
- for (int col_c = (offset_c / 2); col_c < channel_per_deformable_group; col_c += col_step)
- {
- const int col_pos = (((col_c * batch_size + b) * height_col) + h) * width_col + w;
- const int bp_dir = offset_c % 2;
-
- int j = (col_pos / width_col / height_col / batch_size) % kernel_w;
- int i = (col_pos / width_col / height_col / batch_size / kernel_w) % kernel_h;
- int w_out = col_pos % width_col;
- int h_out = (col_pos / width_col) % height_col;
- int w_in = w_out * stride_w - pad_w;
- int h_in = h_out * stride_h - pad_h;
- const int data_offset_h_ptr = (((2 * (i * kernel_w + j)) * height_col + h_out) * width_col + w_out);
- const int data_offset_w_ptr = (((2 * (i * kernel_w + j) + 1) * height_col + h_out) * width_col + w_out);
- const scalar_t offset_h = data_offset_ptr[data_offset_h_ptr];
- const scalar_t offset_w = data_offset_ptr[data_offset_w_ptr];
- scalar_t inv_h = h_in + i * dilation_h + offset_h;
- scalar_t inv_w = w_in + j * dilation_w + offset_w;
- if (inv_h <= -1 || inv_w <= -1 || inv_h >= height || inv_w >= width)
- {
- inv_h = inv_w = -2;
- }
- const scalar_t weight = get_coordinate_weight(
- inv_h, inv_w,
- height, width, data_im_ptr + cnt * height * width, width, bp_dir);
- val += weight * data_col_ptr[col_pos];
- cnt += 1;
- }
-
- grad_offset[index] = val;
- }
-}
-
-void deformable_col2im_coord(
- const at::Tensor data_col, const at::Tensor data_im, const at::Tensor data_offset,
- const int channels, const int height, const int width, const int ksize_h,
- const int ksize_w, const int pad_h, const int pad_w, const int stride_h,
- const int stride_w, const int dilation_h, const int dilation_w,
- const int parallel_imgs, const int deformable_group, at::Tensor grad_offset)
-{
-
- int height_col = (height + 2 * pad_h - (dilation_h * (ksize_h - 1) + 1)) / stride_h + 1;
- int width_col = (width + 2 * pad_w - (dilation_w * (ksize_w - 1) + 1)) / stride_w + 1;
- int num_kernels = height_col * width_col * 2 * ksize_h * ksize_w * deformable_group * parallel_imgs;
- int channel_per_deformable_group = channels * ksize_h * ksize_w / deformable_group;
-
- AT_DISPATCH_FLOATING_TYPES_AND_HALF(
- data_col.scalar_type(), "deformable_col2im_coord_gpu", ([&] {
- const scalar_t *data_col_ = data_col.data_ptr();
- const scalar_t *data_im_ = data_im.data_ptr();
- const scalar_t *data_offset_ = data_offset.data_ptr();
- scalar_t *grad_offset_ = grad_offset.data_ptr();
-
- deformable_col2im_coord_gpu_kernel<<>>(
- num_kernels, data_col_, data_im_, data_offset_, channels, height, width,
- ksize_h, ksize_w, pad_h, pad_w, stride_h, stride_w,
- dilation_h, dilation_w, channel_per_deformable_group,
- parallel_imgs, 2 * ksize_h * ksize_w * deformable_group, deformable_group,
- height_col, width_col, grad_offset_);
- }));
-}
-
-template
-__device__ scalar_t dmcn_im2col_bilinear(const scalar_t *bottom_data, const int data_width,
- const int height, const int width, scalar_t h, scalar_t w)
-{
- int h_low = floor(h);
- int w_low = floor(w);
- int h_high = h_low + 1;
- int w_high = w_low + 1;
-
- scalar_t lh = h - h_low;
- scalar_t lw = w - w_low;
- scalar_t hh = 1 - lh, hw = 1 - lw;
-
- scalar_t v1 = 0;
- if (h_low >= 0 && w_low >= 0)
- v1 = bottom_data[h_low * data_width + w_low];
- scalar_t v2 = 0;
- if (h_low >= 0 && w_high <= width - 1)
- v2 = bottom_data[h_low * data_width + w_high];
- scalar_t v3 = 0;
- if (h_high <= height - 1 && w_low >= 0)
- v3 = bottom_data[h_high * data_width + w_low];
- scalar_t v4 = 0;
- if (h_high <= height - 1 && w_high <= width - 1)
- v4 = bottom_data[h_high * data_width + w_high];
-
- scalar_t w1 = hh * hw, w2 = hh * lw, w3 = lh * hw, w4 = lh * lw;
-
- scalar_t val = (w1 * v1 + w2 * v2 + w3 * v3 + w4 * v4);
- return val;
-}
-
-template
-__device__ scalar_t dmcn_get_gradient_weight(scalar_t argmax_h, scalar_t argmax_w,
- const int h, const int w, const int height, const int width)
-{
- if (argmax_h <= -1 || argmax_h >= height || argmax_w <= -1 || argmax_w >= width)
- {
- //empty
- return 0;
- }
-
- int argmax_h_low = floor(argmax_h);
- int argmax_w_low = floor(argmax_w);
- int argmax_h_high = argmax_h_low + 1;
- int argmax_w_high = argmax_w_low + 1;
-
- scalar_t weight = 0;
- if (h == argmax_h_low && w == argmax_w_low)
- weight = (h + 1 - argmax_h) * (w + 1 - argmax_w);
- if (h == argmax_h_low && w == argmax_w_high)
- weight = (h + 1 - argmax_h) * (argmax_w + 1 - w);
- if (h == argmax_h_high && w == argmax_w_low)
- weight = (argmax_h + 1 - h) * (w + 1 - argmax_w);
- if (h == argmax_h_high && w == argmax_w_high)
- weight = (argmax_h + 1 - h) * (argmax_w + 1 - w);
- return weight;
-}
-
-template
-__device__ scalar_t dmcn_get_coordinate_weight(scalar_t argmax_h, scalar_t argmax_w,
- const int height, const int width, const scalar_t *im_data,
- const int data_width, const int bp_dir)
-{
- if (argmax_h <= -1 || argmax_h >= height || argmax_w <= -1 || argmax_w >= width)
- {
- //empty
- return 0;
- }
-
- int argmax_h_low = floor(argmax_h);
- int argmax_w_low = floor(argmax_w);
- int argmax_h_high = argmax_h_low + 1;
- int argmax_w_high = argmax_w_low + 1;
-
- scalar_t weight = 0;
-
- if (bp_dir == 0)
- {
- if (argmax_h_low >= 0 && argmax_w_low >= 0)
- weight += -1 * (argmax_w_low + 1 - argmax_w) * im_data[argmax_h_low * data_width + argmax_w_low];
- if (argmax_h_low >= 0 && argmax_w_high <= width - 1)
- weight += -1 * (argmax_w - argmax_w_low) * im_data[argmax_h_low * data_width + argmax_w_high];
- if (argmax_h_high <= height - 1 && argmax_w_low >= 0)
- weight += (argmax_w_low + 1 - argmax_w) * im_data[argmax_h_high * data_width + argmax_w_low];
- if (argmax_h_high <= height - 1 && argmax_w_high <= width - 1)
- weight += (argmax_w - argmax_w_low) * im_data[argmax_h_high * data_width + argmax_w_high];
- }
- else if (bp_dir == 1)
- {
- if (argmax_h_low >= 0 && argmax_w_low >= 0)
- weight += -1 * (argmax_h_low + 1 - argmax_h) * im_data[argmax_h_low * data_width + argmax_w_low];
- if (argmax_h_low >= 0 && argmax_w_high <= width - 1)
- weight += (argmax_h_low + 1 - argmax_h) * im_data[argmax_h_low * data_width + argmax_w_high];
- if (argmax_h_high <= height - 1 && argmax_w_low >= 0)
- weight += -1 * (argmax_h - argmax_h_low) * im_data[argmax_h_high * data_width + argmax_w_low];
- if (argmax_h_high <= height - 1 && argmax_w_high <= width - 1)
- weight += (argmax_h - argmax_h_low) * im_data[argmax_h_high * data_width + argmax_w_high];
- }
-
- return weight;
-}
-
-template
-__global__ void modulated_deformable_im2col_gpu_kernel(const int n,
- const scalar_t *data_im, const scalar_t *data_offset, const scalar_t *data_mask,
- const int height, const int width, const int kernel_h, const int kernel_w,
- const int pad_h, const int pad_w,
- const int stride_h, const int stride_w,
- const int dilation_h, const int dilation_w,
- const int channel_per_deformable_group,
- const int batch_size, const int num_channels, const int deformable_group,
- const int height_col, const int width_col,
- scalar_t *data_col)
-{
- CUDA_KERNEL_LOOP(index, n)
- {
- // index index of output matrix
- const int w_col = index % width_col;
- const int h_col = (index / width_col) % height_col;
- const int b_col = (index / width_col / height_col) % batch_size;
- const int c_im = (index / width_col / height_col) / batch_size;
- const int c_col = c_im * kernel_h * kernel_w;
-
- // compute deformable group index
- const int deformable_group_index = c_im / channel_per_deformable_group;
-
- const int h_in = h_col * stride_h - pad_h;
- const int w_in = w_col * stride_w - pad_w;
-
- scalar_t *data_col_ptr = data_col + ((c_col * batch_size + b_col) * height_col + h_col) * width_col + w_col;
- //const float* data_im_ptr = data_im + ((b_col * num_channels + c_im) * height + h_in) * width + w_in;
- const scalar_t *data_im_ptr = data_im + (b_col * num_channels + c_im) * height * width;
- const scalar_t *data_offset_ptr = data_offset + (b_col * deformable_group + deformable_group_index) * 2 * kernel_h * kernel_w * height_col * width_col;
-
- const scalar_t *data_mask_ptr = data_mask + (b_col * deformable_group + deformable_group_index) * kernel_h * kernel_w * height_col * width_col;
-
- for (int i = 0; i < kernel_h; ++i)
- {
- for (int j = 0; j < kernel_w; ++j)
- {
- const int data_offset_h_ptr = ((2 * (i * kernel_w + j)) * height_col + h_col) * width_col + w_col;
- const int data_offset_w_ptr = ((2 * (i * kernel_w + j) + 1) * height_col + h_col) * width_col + w_col;
- const int data_mask_hw_ptr = ((i * kernel_w + j) * height_col + h_col) * width_col + w_col;
- const scalar_t offset_h = data_offset_ptr[data_offset_h_ptr];
- const scalar_t offset_w = data_offset_ptr[data_offset_w_ptr];
- const scalar_t mask = data_mask_ptr[data_mask_hw_ptr];
- scalar_t val = static_cast(0);
- const scalar_t h_im = h_in + i * dilation_h + offset_h;
- const scalar_t w_im = w_in + j * dilation_w + offset_w;
- //if (h_im >= 0 && w_im >= 0 && h_im < height && w_im < width) {
- if (h_im > -1 && w_im > -1 && h_im < height && w_im < width)
- {
- //const float map_h = i * dilation_h + offset_h;
- //const float map_w = j * dilation_w + offset_w;
- //const int cur_height = height - h_in;
- //const int cur_width = width - w_in;
- //val = dmcn_im2col_bilinear(data_im_ptr, width, cur_height, cur_width, map_h, map_w);
- val = dmcn_im2col_bilinear(data_im_ptr, width, height, width, h_im, w_im);
- }
- *data_col_ptr = val * mask;
- data_col_ptr += batch_size * height_col * width_col;
- //data_col_ptr += height_col * width_col;
- }
- }
- }
-}
-
-template
-__global__ void modulated_deformable_col2im_gpu_kernel(const int n,
- const scalar_t *data_col, const scalar_t *data_offset, const scalar_t *data_mask,
- const int channels, const int height, const int width,
- const int kernel_h, const int kernel_w,
- const int pad_h, const int pad_w,
- const int stride_h, const int stride_w,
- const int dilation_h, const int dilation_w,
- const int channel_per_deformable_group,
- const int batch_size, const int deformable_group,
- const int height_col, const int width_col,
- scalar_t *grad_im)
-{
- CUDA_KERNEL_LOOP(index, n)
- {
- const int j = (index / width_col / height_col / batch_size) % kernel_w;
- const int i = (index / width_col / height_col / batch_size / kernel_w) % kernel_h;
- const int c = index / width_col / height_col / batch_size / kernel_w / kernel_h;
- // compute the start and end of the output
-
- const int deformable_group_index = c / channel_per_deformable_group;
-
- int w_out = index % width_col;
- int h_out = (index / width_col) % height_col;
- int b = (index / width_col / height_col) % batch_size;
- int w_in = w_out * stride_w - pad_w;
- int h_in = h_out * stride_h - pad_h;
-
- const scalar_t *data_offset_ptr = data_offset + (b * deformable_group + deformable_group_index) * 2 * kernel_h * kernel_w * height_col * width_col;
- const scalar_t *data_mask_ptr = data_mask + (b * deformable_group + deformable_group_index) * kernel_h * kernel_w * height_col * width_col;
- const int data_offset_h_ptr = ((2 * (i * kernel_w + j)) * height_col + h_out) * width_col + w_out;
- const int data_offset_w_ptr = ((2 * (i * kernel_w + j) + 1) * height_col + h_out) * width_col + w_out;
- const int data_mask_hw_ptr = ((i * kernel_w + j) * height_col + h_out) * width_col + w_out;
- const scalar_t offset_h = data_offset_ptr[data_offset_h_ptr];
- const scalar_t offset_w = data_offset_ptr[data_offset_w_ptr];
- const scalar_t mask = data_mask_ptr[data_mask_hw_ptr];
- const scalar_t cur_inv_h_data = h_in + i * dilation_h + offset_h;
- const scalar_t cur_inv_w_data = w_in + j * dilation_w + offset_w;
-
- const scalar_t cur_top_grad = data_col[index] * mask;
- const int cur_h = (int)cur_inv_h_data;
- const int cur_w = (int)cur_inv_w_data;
- for (int dy = -2; dy <= 2; dy++)
- {
- for (int dx = -2; dx <= 2; dx++)
- {
- if (cur_h + dy >= 0 && cur_h + dy < height &&
- cur_w + dx >= 0 && cur_w + dx < width &&
- abs(cur_inv_h_data - (cur_h + dy)) < 1 &&
- abs(cur_inv_w_data - (cur_w + dx)) < 1)
- {
- int cur_bottom_grad_pos = ((b * channels + c) * height + cur_h + dy) * width + cur_w + dx;
- scalar_t weight = dmcn_get_gradient_weight(cur_inv_h_data, cur_inv_w_data, cur_h + dy, cur_w + dx, height, width);
- atomicAdd(grad_im + cur_bottom_grad_pos, weight * cur_top_grad);
- }
- }
- }
- }
-}
-
-template
-__global__ void modulated_deformable_col2im_coord_gpu_kernel(const int n,
- const scalar_t *data_col, const scalar_t *data_im,
- const scalar_t *data_offset, const scalar_t *data_mask,
- const int channels, const int height, const int width,
- const int kernel_h, const int kernel_w,
- const int pad_h, const int pad_w,
- const int stride_h, const int stride_w,
- const int dilation_h, const int dilation_w,
- const int channel_per_deformable_group,
- const int batch_size, const int offset_channels, const int deformable_group,
- const int height_col, const int width_col,
- scalar_t *grad_offset, scalar_t *grad_mask)
-{
- CUDA_KERNEL_LOOP(index, n)
- {
- scalar_t val = 0, mval = 0;
- int w = index % width_col;
- int h = (index / width_col) % height_col;
- int c = (index / width_col / height_col) % offset_channels;
- int b = (index / width_col / height_col) / offset_channels;
- // compute the start and end of the output
-
- const int deformable_group_index = c / (2 * kernel_h * kernel_w);
- const int col_step = kernel_h * kernel_w;
- int cnt = 0;
- const scalar_t *data_col_ptr = data_col + deformable_group_index * channel_per_deformable_group * batch_size * width_col * height_col;
- const scalar_t *data_im_ptr = data_im + (b * deformable_group + deformable_group_index) * channel_per_deformable_group / kernel_h / kernel_w * height * width;
- const scalar_t *data_offset_ptr = data_offset + (b * deformable_group + deformable_group_index) * 2 * kernel_h * kernel_w * height_col * width_col;
- const scalar_t *data_mask_ptr = data_mask + (b * deformable_group + deformable_group_index) * kernel_h * kernel_w * height_col * width_col;
-
- const int offset_c = c - deformable_group_index * 2 * kernel_h * kernel_w;
-
- for (int col_c = (offset_c / 2); col_c < channel_per_deformable_group; col_c += col_step)
- {
- const int col_pos = (((col_c * batch_size + b) * height_col) + h) * width_col + w;
- const int bp_dir = offset_c % 2;
-
- int j = (col_pos / width_col / height_col / batch_size) % kernel_w;
- int i = (col_pos / width_col / height_col / batch_size / kernel_w) % kernel_h;
- int w_out = col_pos % width_col;
- int h_out = (col_pos / width_col) % height_col;
- int w_in = w_out * stride_w - pad_w;
- int h_in = h_out * stride_h - pad_h;
- const int data_offset_h_ptr = (((2 * (i * kernel_w + j)) * height_col + h_out) * width_col + w_out);
- const int data_offset_w_ptr = (((2 * (i * kernel_w + j) + 1) * height_col + h_out) * width_col + w_out);
- const int data_mask_hw_ptr = (((i * kernel_w + j) * height_col + h_out) * width_col + w_out);
- const scalar_t offset_h = data_offset_ptr[data_offset_h_ptr];
- const scalar_t offset_w = data_offset_ptr[data_offset_w_ptr];
- const scalar_t mask = data_mask_ptr[data_mask_hw_ptr];
- scalar_t inv_h = h_in + i * dilation_h + offset_h;
- scalar_t inv_w = w_in + j * dilation_w + offset_w;
- if (inv_h <= -1 || inv_w <= -1 || inv_h >= height || inv_w >= width)
- {
- inv_h = inv_w = -2;
- }
- else
- {
- mval += data_col_ptr[col_pos] * dmcn_im2col_bilinear(data_im_ptr + cnt * height * width, width, height, width, inv_h, inv_w);
- }
- const scalar_t weight = dmcn_get_coordinate_weight(
- inv_h, inv_w,
- height, width, data_im_ptr + cnt * height * width, width, bp_dir);
- val += weight * data_col_ptr[col_pos] * mask;
- cnt += 1;
- }
- // KERNEL_ASSIGN(grad_offset[index], offset_req, val);
- grad_offset[index] = val;
- if (offset_c % 2 == 0)
- // KERNEL_ASSIGN(grad_mask[(((b * deformable_group + deformable_group_index) * kernel_h * kernel_w + offset_c / 2) * height_col + h) * width_col + w], mask_req, mval);
- grad_mask[(((b * deformable_group + deformable_group_index) * kernel_h * kernel_w + offset_c / 2) * height_col + h) * width_col + w] = mval;
- }
-}
-
-void modulated_deformable_im2col_cuda(
- const at::Tensor data_im, const at::Tensor data_offset, const at::Tensor data_mask,
- const int batch_size, const int channels, const int height_im, const int width_im,
- const int height_col, const int width_col, const int kernel_h, const int kenerl_w,
- const int pad_h, const int pad_w, const int stride_h, const int stride_w,
- const int dilation_h, const int dilation_w,
- const int deformable_group, at::Tensor data_col)
-{
- // num_axes should be smaller than block size
- const int channel_per_deformable_group = channels / deformable_group;
- const int num_kernels = channels * batch_size * height_col * width_col;
-
- AT_DISPATCH_FLOATING_TYPES_AND_HALF(
- data_im.scalar_type(), "modulated_deformable_im2col_gpu", ([&] {
- const scalar_t *data_im_ = data_im.data_ptr();
- const scalar_t *data_offset_ = data_offset.data_ptr();
- const scalar_t *data_mask_ = data_mask.data_ptr();
- scalar_t *data_col_ = data_col.data_ptr();
-
- modulated_deformable_im2col_gpu_kernel<<>>(
- num_kernels, data_im_, data_offset_, data_mask_, height_im, width_im, kernel_h, kenerl_w,
- pad_h, pad_w, stride_h, stride_w, dilation_h, dilation_w, channel_per_deformable_group,
- batch_size, channels, deformable_group, height_col, width_col, data_col_);
- }));
-
- cudaError_t err = cudaGetLastError();
- if (err != cudaSuccess)
- {
- printf("error in modulated_deformable_im2col_cuda: %s\n", cudaGetErrorString(err));
- }
-}
-
-void modulated_deformable_col2im_cuda(
- const at::Tensor data_col, const at::Tensor data_offset, const at::Tensor data_mask,
- const int batch_size, const int channels, const int height_im, const int width_im,
- const int height_col, const int width_col, const int kernel_h, const int kernel_w,
- const int pad_h, const int pad_w, const int stride_h, const int stride_w,
- const int dilation_h, const int dilation_w,
- const int deformable_group, at::Tensor grad_im)
-{
-
- const int channel_per_deformable_group = channels / deformable_group;
- const int num_kernels = channels * kernel_h * kernel_w * batch_size * height_col * width_col;
-
- AT_DISPATCH_FLOATING_TYPES_AND_HALF(
- data_col.scalar_type(), "modulated_deformable_col2im_gpu", ([&] {
- const scalar_t *data_col_ = data_col.data_ptr();
- const scalar_t *data_offset_ = data_offset.data_ptr();
- const scalar_t *data_mask_ = data_mask.data_ptr();
- scalar_t *grad_im_ = grad_im.data_ptr();
-
- modulated_deformable_col2im_gpu_kernel<<>>(
- num_kernels, data_col_, data_offset_, data_mask_, channels, height_im, width_im,
- kernel_h, kernel_w, pad_h, pad_w, stride_h, stride_w,
- dilation_h, dilation_w, channel_per_deformable_group,
- batch_size, deformable_group, height_col, width_col, grad_im_);
- }));
-
- cudaError_t err = cudaGetLastError();
- if (err != cudaSuccess)
- {
- printf("error in modulated_deformable_col2im_cuda: %s\n", cudaGetErrorString(err));
- }
-}
-
-void modulated_deformable_col2im_coord_cuda(
- const at::Tensor data_col, const at::Tensor data_im, const at::Tensor data_offset, const at::Tensor data_mask,
- const int batch_size, const int channels, const int height_im, const int width_im,
- const int height_col, const int width_col, const int kernel_h, const int kernel_w,
- const int pad_h, const int pad_w, const int stride_h, const int stride_w,
- const int dilation_h, const int dilation_w,
- const int deformable_group,
- at::Tensor grad_offset, at::Tensor grad_mask)
-{
- const int num_kernels = batch_size * height_col * width_col * 2 * kernel_h * kernel_w * deformable_group;
- const int channel_per_deformable_group = channels * kernel_h * kernel_w / deformable_group;
-
- AT_DISPATCH_FLOATING_TYPES_AND_HALF(
- data_col.scalar_type(), "modulated_deformable_col2im_coord_gpu", ([&] {
- const scalar_t *data_col_ = data_col.data_ptr();
- const scalar_t *data_im_ = data_im.data_ptr();
- const scalar_t *data_offset_ = data_offset.data_ptr();
- const scalar_t *data_mask_ = data_mask.data_ptr();
- scalar_t *grad_offset_ = grad_offset.data_ptr();
- scalar_t *grad_mask_ = grad_mask.data_ptr();
-
- modulated_deformable_col2im_coord_gpu_kernel<<>>(
- num_kernels, data_col_, data_im_, data_offset_, data_mask_, channels, height_im, width_im,
- kernel_h, kernel_w, pad_h, pad_w, stride_h, stride_w,
- dilation_h, dilation_w, channel_per_deformable_group,
- batch_size, 2 * kernel_h * kernel_w * deformable_group, deformable_group, height_col, width_col,
- grad_offset_, grad_mask_);
- }));
- cudaError_t err = cudaGetLastError();
- if (err != cudaSuccess)
- {
- printf("error in modulated_deformable_col2im_coord_cuda: %s\n", cudaGetErrorString(err));
- }
-}
diff --git a/CodeFormer/CodeFormer/basicsr/ops/dcn/src/deform_conv_ext.cpp b/CodeFormer/CodeFormer/basicsr/ops/dcn/src/deform_conv_ext.cpp
deleted file mode 100644
index 41c6df6f721bd95a525fd6a03dd9882e863de042..0000000000000000000000000000000000000000
--- a/CodeFormer/CodeFormer/basicsr/ops/dcn/src/deform_conv_ext.cpp
+++ /dev/null
@@ -1,164 +0,0 @@
-// modify from
-// https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/blob/mmdetection/mmdet/ops/dcn/src/deform_conv_cuda.c
-
-#include
-#include
-
-#include
-#include
-
-#define WITH_CUDA // always use cuda
-#ifdef WITH_CUDA
-int deform_conv_forward_cuda(at::Tensor input, at::Tensor weight,
- at::Tensor offset, at::Tensor output,
- at::Tensor columns, at::Tensor ones, int kW,
- int kH, int dW, int dH, int padW, int padH,
- int dilationW, int dilationH, int group,
- int deformable_group, int im2col_step);
-
-int deform_conv_backward_input_cuda(at::Tensor input, at::Tensor offset,
- at::Tensor gradOutput, at::Tensor gradInput,
- at::Tensor gradOffset, at::Tensor weight,
- at::Tensor columns, int kW, int kH, int dW,
- int dH, int padW, int padH, int dilationW,
- int dilationH, int group,
- int deformable_group, int im2col_step);
-
-int deform_conv_backward_parameters_cuda(
- at::Tensor input, at::Tensor offset, at::Tensor gradOutput,
- at::Tensor gradWeight, // at::Tensor gradBias,
- at::Tensor columns, at::Tensor ones, int kW, int kH, int dW, int dH,
- int padW, int padH, int dilationW, int dilationH, int group,
- int deformable_group, float scale, int im2col_step);
-
-void modulated_deform_conv_cuda_forward(
- at::Tensor input, at::Tensor weight, at::Tensor bias, at::Tensor ones,
- at::Tensor offset, at::Tensor mask, at::Tensor output, at::Tensor columns,
- int kernel_h, int kernel_w, const int stride_h, const int stride_w,
- const int pad_h, const int pad_w, const int dilation_h,
- const int dilation_w, const int group, const int deformable_group,
- const bool with_bias);
-
-void modulated_deform_conv_cuda_backward(
- at::Tensor input, at::Tensor weight, at::Tensor bias, at::Tensor ones,
- at::Tensor offset, at::Tensor mask, at::Tensor columns,
- at::Tensor grad_input, at::Tensor grad_weight, at::Tensor grad_bias,
- at::Tensor grad_offset, at::Tensor grad_mask, at::Tensor grad_output,
- int kernel_h, int kernel_w, int stride_h, int stride_w, int pad_h,
- int pad_w, int dilation_h, int dilation_w, int group, int deformable_group,
- const bool with_bias);
-#endif
-
-int deform_conv_forward(at::Tensor input, at::Tensor weight,
- at::Tensor offset, at::Tensor output,
- at::Tensor columns, at::Tensor ones, int kW,
- int kH, int dW, int dH, int padW, int padH,
- int dilationW, int dilationH, int group,
- int deformable_group, int im2col_step) {
- if (input.device().is_cuda()) {
-#ifdef WITH_CUDA
- return deform_conv_forward_cuda(input, weight, offset, output, columns,
- ones, kW, kH, dW, dH, padW, padH, dilationW, dilationH, group,
- deformable_group, im2col_step);
-#else
- AT_ERROR("deform conv is not compiled with GPU support");
-#endif
- }
- AT_ERROR("deform conv is not implemented on CPU");
-}
-
-int deform_conv_backward_input(at::Tensor input, at::Tensor offset,
- at::Tensor gradOutput, at::Tensor gradInput,
- at::Tensor gradOffset, at::Tensor weight,
- at::Tensor columns, int kW, int kH, int dW,
- int dH, int padW, int padH, int dilationW,
- int dilationH, int group,
- int deformable_group, int im2col_step) {
- if (input.device().is_cuda()) {
-#ifdef WITH_CUDA
- return deform_conv_backward_input_cuda(input, offset, gradOutput,
- gradInput, gradOffset, weight, columns, kW, kH, dW, dH, padW, padH,
- dilationW, dilationH, group, deformable_group, im2col_step);
-#else
- AT_ERROR("deform conv is not compiled with GPU support");
-#endif
- }
- AT_ERROR("deform conv is not implemented on CPU");
-}
-
-int deform_conv_backward_parameters(
- at::Tensor input, at::Tensor offset, at::Tensor gradOutput,
- at::Tensor gradWeight, // at::Tensor gradBias,
- at::Tensor columns, at::Tensor ones, int kW, int kH, int dW, int dH,
- int padW, int padH, int dilationW, int dilationH, int group,
- int deformable_group, float scale, int im2col_step) {
- if (input.device().is_cuda()) {
-#ifdef WITH_CUDA
- return deform_conv_backward_parameters_cuda(input, offset, gradOutput,
- gradWeight, columns, ones, kW, kH, dW, dH, padW, padH, dilationW,
- dilationH, group, deformable_group, scale, im2col_step);
-#else
- AT_ERROR("deform conv is not compiled with GPU support");
-#endif
- }
- AT_ERROR("deform conv is not implemented on CPU");
-}
-
-void modulated_deform_conv_forward(
- at::Tensor input, at::Tensor weight, at::Tensor bias, at::Tensor ones,
- at::Tensor offset, at::Tensor mask, at::Tensor output, at::Tensor columns,
- int kernel_h, int kernel_w, const int stride_h, const int stride_w,
- const int pad_h, const int pad_w, const int dilation_h,
- const int dilation_w, const int group, const int deformable_group,
- const bool with_bias) {
- if (input.device().is_cuda()) {
-#ifdef WITH_CUDA
- return modulated_deform_conv_cuda_forward(input, weight, bias, ones,
- offset, mask, output, columns, kernel_h, kernel_w, stride_h,
- stride_w, pad_h, pad_w, dilation_h, dilation_w, group,
- deformable_group, with_bias);
-#else
- AT_ERROR("modulated deform conv is not compiled with GPU support");
-#endif
- }
- AT_ERROR("modulated deform conv is not implemented on CPU");
-}
-
-void modulated_deform_conv_backward(
- at::Tensor input, at::Tensor weight, at::Tensor bias, at::Tensor ones,
- at::Tensor offset, at::Tensor mask, at::Tensor columns,
- at::Tensor grad_input, at::Tensor grad_weight, at::Tensor grad_bias,
- at::Tensor grad_offset, at::Tensor grad_mask, at::Tensor grad_output,
- int kernel_h, int kernel_w, int stride_h, int stride_w, int pad_h,
- int pad_w, int dilation_h, int dilation_w, int group, int deformable_group,
- const bool with_bias) {
- if (input.device().is_cuda()) {
-#ifdef WITH_CUDA
- return modulated_deform_conv_cuda_backward(input, weight, bias, ones,
- offset, mask, columns, grad_input, grad_weight, grad_bias, grad_offset,
- grad_mask, grad_output, kernel_h, kernel_w, stride_h, stride_w,
- pad_h, pad_w, dilation_h, dilation_w, group, deformable_group,
- with_bias);
-#else
- AT_ERROR("modulated deform conv is not compiled with GPU support");
-#endif
- }
- AT_ERROR("modulated deform conv is not implemented on CPU");
-}
-
-
-PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
- m.def("deform_conv_forward", &deform_conv_forward,
- "deform forward");
- m.def("deform_conv_backward_input", &deform_conv_backward_input,
- "deform_conv_backward_input");
- m.def("deform_conv_backward_parameters",
- &deform_conv_backward_parameters,
- "deform_conv_backward_parameters");
- m.def("modulated_deform_conv_forward",
- &modulated_deform_conv_forward,
- "modulated deform conv forward");
- m.def("modulated_deform_conv_backward",
- &modulated_deform_conv_backward,
- "modulated deform conv backward");
-}
diff --git a/CodeFormer/CodeFormer/basicsr/ops/fused_act/__init__.py b/CodeFormer/CodeFormer/basicsr/ops/fused_act/__init__.py
deleted file mode 100644
index 241dc0754fae7d88dbbd9a02e665ca30a73c7422..0000000000000000000000000000000000000000
--- a/CodeFormer/CodeFormer/basicsr/ops/fused_act/__init__.py
+++ /dev/null
@@ -1,3 +0,0 @@
-from .fused_act import FusedLeakyReLU, fused_leaky_relu
-
-__all__ = ['FusedLeakyReLU', 'fused_leaky_relu']
diff --git a/CodeFormer/CodeFormer/basicsr/ops/fused_act/fused_act.py b/CodeFormer/CodeFormer/basicsr/ops/fused_act/fused_act.py
deleted file mode 100644
index 588f815e596ab0fc83ab0f9d21426c22ec5ed7c3..0000000000000000000000000000000000000000
--- a/CodeFormer/CodeFormer/basicsr/ops/fused_act/fused_act.py
+++ /dev/null
@@ -1,89 +0,0 @@
-# modify from https://github.com/rosinality/stylegan2-pytorch/blob/master/op/fused_act.py # noqa:E501
-
-import torch
-from torch import nn
-from torch.autograd import Function
-
-try:
- from . import fused_act_ext
-except ImportError:
- import os
- BASICSR_JIT = os.getenv('BASICSR_JIT')
- if BASICSR_JIT == 'True':
- from torch.utils.cpp_extension import load
- module_path = os.path.dirname(__file__)
- fused_act_ext = load(
- 'fused',
- sources=[
- os.path.join(module_path, 'src', 'fused_bias_act.cpp'),
- os.path.join(module_path, 'src', 'fused_bias_act_kernel.cu'),
- ],
- )
-
-
-class FusedLeakyReLUFunctionBackward(Function):
-
- @staticmethod
- def forward(ctx, grad_output, out, negative_slope, scale):
- ctx.save_for_backward(out)
- ctx.negative_slope = negative_slope
- ctx.scale = scale
-
- empty = grad_output.new_empty(0)
-
- grad_input = fused_act_ext.fused_bias_act(grad_output, empty, out, 3, 1, negative_slope, scale)
-
- dim = [0]
-
- if grad_input.ndim > 2:
- dim += list(range(2, grad_input.ndim))
-
- grad_bias = grad_input.sum(dim).detach()
-
- return grad_input, grad_bias
-
- @staticmethod
- def backward(ctx, gradgrad_input, gradgrad_bias):
- out, = ctx.saved_tensors
- gradgrad_out = fused_act_ext.fused_bias_act(gradgrad_input, gradgrad_bias, out, 3, 1, ctx.negative_slope,
- ctx.scale)
-
- return gradgrad_out, None, None, None
-
-
-class FusedLeakyReLUFunction(Function):
-
- @staticmethod
- def forward(ctx, input, bias, negative_slope, scale):
- empty = input.new_empty(0)
- out = fused_act_ext.fused_bias_act(input, bias, empty, 3, 0, negative_slope, scale)
- ctx.save_for_backward(out)
- ctx.negative_slope = negative_slope
- ctx.scale = scale
-
- return out
-
- @staticmethod
- def backward(ctx, grad_output):
- out, = ctx.saved_tensors
-
- grad_input, grad_bias = FusedLeakyReLUFunctionBackward.apply(grad_output, out, ctx.negative_slope, ctx.scale)
-
- return grad_input, grad_bias, None, None
-
-
-class FusedLeakyReLU(nn.Module):
-
- def __init__(self, channel, negative_slope=0.2, scale=2**0.5):
- super().__init__()
-
- self.bias = nn.Parameter(torch.zeros(channel))
- self.negative_slope = negative_slope
- self.scale = scale
-
- def forward(self, input):
- return fused_leaky_relu(input, self.bias, self.negative_slope, self.scale)
-
-
-def fused_leaky_relu(input, bias, negative_slope=0.2, scale=2**0.5):
- return FusedLeakyReLUFunction.apply(input, bias, negative_slope, scale)
diff --git a/CodeFormer/CodeFormer/basicsr/ops/fused_act/src/fused_bias_act.cpp b/CodeFormer/CodeFormer/basicsr/ops/fused_act/src/fused_bias_act.cpp
deleted file mode 100644
index 85ed0a79fb9c75f83470ac834090f03608d998ee..0000000000000000000000000000000000000000
--- a/CodeFormer/CodeFormer/basicsr/ops/fused_act/src/fused_bias_act.cpp
+++ /dev/null
@@ -1,26 +0,0 @@
-// from https://github.com/rosinality/stylegan2-pytorch/blob/master/op/fused_bias_act.cpp
-#include
-
-
-torch::Tensor fused_bias_act_op(const torch::Tensor& input,
- const torch::Tensor& bias,
- const torch::Tensor& refer,
- int act, int grad, float alpha, float scale);
-
-#define CHECK_CUDA(x) TORCH_CHECK(x.type().is_cuda(), #x " must be a CUDA tensor")
-#define CHECK_CONTIGUOUS(x) TORCH_CHECK(x.is_contiguous(), #x " must be contiguous")
-#define CHECK_INPUT(x) CHECK_CUDA(x); CHECK_CONTIGUOUS(x)
-
-torch::Tensor fused_bias_act(const torch::Tensor& input,
- const torch::Tensor& bias,
- const torch::Tensor& refer,
- int act, int grad, float alpha, float scale) {
- CHECK_CUDA(input);
- CHECK_CUDA(bias);
-
- return fused_bias_act_op(input, bias, refer, act, grad, alpha, scale);
-}
-
-PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
- m.def("fused_bias_act", &fused_bias_act, "fused bias act (CUDA)");
-}
diff --git a/CodeFormer/CodeFormer/basicsr/ops/fused_act/src/fused_bias_act_kernel.cu b/CodeFormer/CodeFormer/basicsr/ops/fused_act/src/fused_bias_act_kernel.cu
deleted file mode 100644
index 54c7ff53ce8306db2b3c582ec7fa6696a38b4df0..0000000000000000000000000000000000000000
--- a/CodeFormer/CodeFormer/basicsr/ops/fused_act/src/fused_bias_act_kernel.cu
+++ /dev/null
@@ -1,100 +0,0 @@
-// from https://github.com/rosinality/stylegan2-pytorch/blob/master/op/fused_bias_act_kernel.cu
-// Copyright (c) 2019, NVIDIA Corporation. All rights reserved.
-//
-// This work is made available under the Nvidia Source Code License-NC.
-// To view a copy of this license, visit
-// https://nvlabs.github.io/stylegan2/license.html
-
-#include
-
-#include
-#include
-#include
-#include
-
-#include
-#include
-
-
-template
-static __global__ void fused_bias_act_kernel(scalar_t* out, const scalar_t* p_x, const scalar_t* p_b, const scalar_t* p_ref,
- int act, int grad, scalar_t alpha, scalar_t scale, int loop_x, int size_x, int step_b, int size_b, int use_bias, int use_ref) {
- int xi = blockIdx.x * loop_x * blockDim.x + threadIdx.x;
-
- scalar_t zero = 0.0;
-
- for (int loop_idx = 0; loop_idx < loop_x && xi < size_x; loop_idx++, xi += blockDim.x) {
- scalar_t x = p_x[xi];
-
- if (use_bias) {
- x += p_b[(xi / step_b) % size_b];
- }
-
- scalar_t ref = use_ref ? p_ref[xi] : zero;
-
- scalar_t y;
-
- switch (act * 10 + grad) {
- default:
- case 10: y = x; break;
- case 11: y = x; break;
- case 12: y = 0.0; break;
-
- case 30: y = (x > 0.0) ? x : x * alpha; break;
- case 31: y = (ref > 0.0) ? x : x * alpha; break;
- case 32: y = 0.0; break;
- }
-
- out[xi] = y * scale;
- }
-}
-
-
-torch::Tensor fused_bias_act_op(const torch::Tensor& input, const torch::Tensor& bias, const torch::Tensor& refer,
- int act, int grad, float alpha, float scale) {
- int curDevice = -1;
- cudaGetDevice(&curDevice);
- cudaStream_t stream = at::cuda::getCurrentCUDAStream(curDevice);
-
- auto x = input.contiguous();
- auto b = bias.contiguous();
- auto ref = refer.contiguous();
-
- int use_bias = b.numel() ? 1 : 0;
- int use_ref = ref.numel() ? 1 : 0;
-
- int size_x = x.numel();
- int size_b = b.numel();
- int step_b = 1;
-
- for (int i = 1 + 1; i < x.dim(); i++) {
- step_b *= x.size(i);
- }
-
- int loop_x = 4;
- int block_size = 4 * 32;
- int grid_size = (size_x - 1) / (loop_x * block_size) + 1;
-
- auto y = torch::empty_like(x);
-
- AT_DISPATCH_FLOATING_TYPES_AND_HALF(x.scalar_type(), "fused_bias_act_kernel", [&] {
- fused_bias_act_kernel<<>>(
- y.data_ptr(),
- x.data_ptr(),
- b.data_ptr(),
- ref.data_ptr(),
- act,
- grad,
- alpha,
- scale,
- loop_x,
- size_x,
- step_b,
- size_b,
- use_bias,
- use_ref
- );
- });
-
- return y;
-}
diff --git a/CodeFormer/CodeFormer/basicsr/ops/upfirdn2d/__init__.py b/CodeFormer/CodeFormer/basicsr/ops/upfirdn2d/__init__.py
deleted file mode 100644
index 397e85bea063e97fc4c12ad4d3e15669b69290bd..0000000000000000000000000000000000000000
--- a/CodeFormer/CodeFormer/basicsr/ops/upfirdn2d/__init__.py
+++ /dev/null
@@ -1,3 +0,0 @@
-from .upfirdn2d import upfirdn2d
-
-__all__ = ['upfirdn2d']
diff --git a/CodeFormer/CodeFormer/basicsr/ops/upfirdn2d/src/upfirdn2d.cpp b/CodeFormer/CodeFormer/basicsr/ops/upfirdn2d/src/upfirdn2d.cpp
deleted file mode 100644
index 43d0b6783a5b512b55815a291fcac2bebeea31e0..0000000000000000000000000000000000000000
--- a/CodeFormer/CodeFormer/basicsr/ops/upfirdn2d/src/upfirdn2d.cpp
+++ /dev/null
@@ -1,24 +0,0 @@
-// from https://github.com/rosinality/stylegan2-pytorch/blob/master/op/upfirdn2d.cpp
-#include
-
-
-torch::Tensor upfirdn2d_op(const torch::Tensor& input, const torch::Tensor& kernel,
- int up_x, int up_y, int down_x, int down_y,
- int pad_x0, int pad_x1, int pad_y0, int pad_y1);
-
-#define CHECK_CUDA(x) TORCH_CHECK(x.type().is_cuda(), #x " must be a CUDA tensor")
-#define CHECK_CONTIGUOUS(x) TORCH_CHECK(x.is_contiguous(), #x " must be contiguous")
-#define CHECK_INPUT(x) CHECK_CUDA(x); CHECK_CONTIGUOUS(x)
-
-torch::Tensor upfirdn2d(const torch::Tensor& input, const torch::Tensor& kernel,
- int up_x, int up_y, int down_x, int down_y,
- int pad_x0, int pad_x1, int pad_y0, int pad_y1) {
- CHECK_CUDA(input);
- CHECK_CUDA(kernel);
-
- return upfirdn2d_op(input, kernel, up_x, up_y, down_x, down_y, pad_x0, pad_x1, pad_y0, pad_y1);
-}
-
-PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
- m.def("upfirdn2d", &upfirdn2d, "upfirdn2d (CUDA)");
-}
diff --git a/CodeFormer/CodeFormer/basicsr/ops/upfirdn2d/src/upfirdn2d_kernel.cu b/CodeFormer/CodeFormer/basicsr/ops/upfirdn2d/src/upfirdn2d_kernel.cu
deleted file mode 100644
index 8870063bae4468deab2e721f0978fe9facfb01b1..0000000000000000000000000000000000000000
--- a/CodeFormer/CodeFormer/basicsr/ops/upfirdn2d/src/upfirdn2d_kernel.cu
+++ /dev/null
@@ -1,370 +0,0 @@
-// from https://github.com/rosinality/stylegan2-pytorch/blob/master/op/upfirdn2d_kernel.cu
-// Copyright (c) 2019, NVIDIA Corporation. All rights reserved.
-//
-// This work is made available under the Nvidia Source Code License-NC.
-// To view a copy of this license, visit
-// https://nvlabs.github.io/stylegan2/license.html
-
-#include
-
-#include
-#include
-#include
-#include
-
-#include
-#include
-
-static __host__ __device__ __forceinline__ int floor_div(int a, int b) {
- int c = a / b;
-
- if (c * b > a) {
- c--;
- }
-
- return c;
-}
-
-struct UpFirDn2DKernelParams {
- int up_x;
- int up_y;
- int down_x;
- int down_y;
- int pad_x0;
- int pad_x1;
- int pad_y0;
- int pad_y1;
-
- int major_dim;
- int in_h;
- int in_w;
- int minor_dim;
- int kernel_h;
- int kernel_w;
- int out_h;
- int out_w;
- int loop_major;
- int loop_x;
-};
-
-template
-__global__ void upfirdn2d_kernel_large(scalar_t *out, const scalar_t *input,
- const scalar_t *kernel,
- const UpFirDn2DKernelParams p) {
- int minor_idx = blockIdx.x * blockDim.x + threadIdx.x;
- int out_y = minor_idx / p.minor_dim;
- minor_idx -= out_y * p.minor_dim;
- int out_x_base = blockIdx.y * p.loop_x * blockDim.y + threadIdx.y;
- int major_idx_base = blockIdx.z * p.loop_major;
-
- if (out_x_base >= p.out_w || out_y >= p.out_h ||
- major_idx_base >= p.major_dim) {
- return;
- }
-
- int mid_y = out_y * p.down_y + p.up_y - 1 - p.pad_y0;
- int in_y = min(max(floor_div(mid_y, p.up_y), 0), p.in_h);
- int h = min(max(floor_div(mid_y + p.kernel_h, p.up_y), 0), p.in_h) - in_y;
- int kernel_y = mid_y + p.kernel_h - (in_y + 1) * p.up_y;
-
- for (int loop_major = 0, major_idx = major_idx_base;
- loop_major < p.loop_major && major_idx < p.major_dim;
- loop_major++, major_idx++) {
- for (int loop_x = 0, out_x = out_x_base;
- loop_x < p.loop_x && out_x < p.out_w; loop_x++, out_x += blockDim.y) {
- int mid_x = out_x * p.down_x + p.up_x - 1 - p.pad_x0;
- int in_x = min(max(floor_div(mid_x, p.up_x), 0), p.in_w);
- int w = min(max(floor_div(mid_x + p.kernel_w, p.up_x), 0), p.in_w) - in_x;
- int kernel_x = mid_x + p.kernel_w - (in_x + 1) * p.up_x;
-
- const scalar_t *x_p =
- &input[((major_idx * p.in_h + in_y) * p.in_w + in_x) * p.minor_dim +
- minor_idx];
- const scalar_t *k_p = &kernel[kernel_y * p.kernel_w + kernel_x];
- int x_px = p.minor_dim;
- int k_px = -p.up_x;
- int x_py = p.in_w * p.minor_dim;
- int k_py = -p.up_y * p.kernel_w;
-
- scalar_t v = 0.0f;
-
- for (int y = 0; y < h; y++) {
- for (int x = 0; x < w; x++) {
- v += static_cast(*x_p) * static_cast(*k_p);
- x_p += x_px;
- k_p += k_px;
- }
-
- x_p += x_py - w * x_px;
- k_p += k_py - w * k_px;
- }
-
- out[((major_idx * p.out_h + out_y) * p.out_w + out_x) * p.minor_dim +
- minor_idx] = v;
- }
- }
-}
-
-template
-__global__ void upfirdn2d_kernel(scalar_t *out, const scalar_t *input,
- const scalar_t *kernel,
- const UpFirDn2DKernelParams p) {
- const int tile_in_h = ((tile_out_h - 1) * down_y + kernel_h - 1) / up_y + 1;
- const int tile_in_w = ((tile_out_w - 1) * down_x + kernel_w - 1) / up_x + 1;
-
- __shared__ volatile float sk[kernel_h][kernel_w];
- __shared__ volatile float sx[tile_in_h][tile_in_w];
-
- int minor_idx = blockIdx.x;
- int tile_out_y = minor_idx / p.minor_dim;
- minor_idx -= tile_out_y * p.minor_dim;
- tile_out_y *= tile_out_h;
- int tile_out_x_base = blockIdx.y * p.loop_x * tile_out_w;
- int major_idx_base = blockIdx.z * p.loop_major;
-
- if (tile_out_x_base >= p.out_w | tile_out_y >= p.out_h |
- major_idx_base >= p.major_dim) {
- return;
- }
-
- for (int tap_idx = threadIdx.x; tap_idx < kernel_h * kernel_w;
- tap_idx += blockDim.x) {
- int ky = tap_idx / kernel_w;
- int kx = tap_idx - ky * kernel_w;
- scalar_t v = 0.0;
-
- if (kx < p.kernel_w & ky < p.kernel_h) {
- v = kernel[(p.kernel_h - 1 - ky) * p.kernel_w + (p.kernel_w - 1 - kx)];
- }
-
- sk[ky][kx] = v;
- }
-
- for (int loop_major = 0, major_idx = major_idx_base;
- loop_major < p.loop_major & major_idx < p.major_dim;
- loop_major++, major_idx++) {
- for (int loop_x = 0, tile_out_x = tile_out_x_base;
- loop_x < p.loop_x & tile_out_x < p.out_w;
- loop_x++, tile_out_x += tile_out_w) {
- int tile_mid_x = tile_out_x * down_x + up_x - 1 - p.pad_x0;
- int tile_mid_y = tile_out_y * down_y + up_y - 1 - p.pad_y0;
- int tile_in_x = floor_div(tile_mid_x, up_x);
- int tile_in_y = floor_div(tile_mid_y, up_y);
-
- __syncthreads();
-
- for (int in_idx = threadIdx.x; in_idx < tile_in_h * tile_in_w;
- in_idx += blockDim.x) {
- int rel_in_y = in_idx / tile_in_w;
- int rel_in_x = in_idx - rel_in_y * tile_in_w;
- int in_x = rel_in_x + tile_in_x;
- int in_y = rel_in_y + tile_in_y;
-
- scalar_t v = 0.0;
-
- if (in_x >= 0 & in_y >= 0 & in_x < p.in_w & in_y < p.in_h) {
- v = input[((major_idx * p.in_h + in_y) * p.in_w + in_x) *
- p.minor_dim +
- minor_idx];
- }
-
- sx[rel_in_y][rel_in_x] = v;
- }
-
- __syncthreads();
- for (int out_idx = threadIdx.x; out_idx < tile_out_h * tile_out_w;
- out_idx += blockDim.x) {
- int rel_out_y = out_idx / tile_out_w;
- int rel_out_x = out_idx - rel_out_y * tile_out_w;
- int out_x = rel_out_x + tile_out_x;
- int out_y = rel_out_y + tile_out_y;
-
- int mid_x = tile_mid_x + rel_out_x * down_x;
- int mid_y = tile_mid_y + rel_out_y * down_y;
- int in_x = floor_div(mid_x, up_x);
- int in_y = floor_div(mid_y, up_y);
- int rel_in_x = in_x - tile_in_x;
- int rel_in_y = in_y - tile_in_y;
- int kernel_x = (in_x + 1) * up_x - mid_x - 1;
- int kernel_y = (in_y + 1) * up_y - mid_y - 1;
-
- scalar_t v = 0.0;
-
-#pragma unroll
- for (int y = 0; y < kernel_h / up_y; y++)
-#pragma unroll
- for (int x = 0; x < kernel_w / up_x; x++)
- v += sx[rel_in_y + y][rel_in_x + x] *
- sk[kernel_y + y * up_y][kernel_x + x * up_x];
-
- if (out_x < p.out_w & out_y < p.out_h) {
- out[((major_idx * p.out_h + out_y) * p.out_w + out_x) * p.minor_dim +
- minor_idx] = v;
- }
- }
- }
- }
-}
-
-torch::Tensor upfirdn2d_op(const torch::Tensor &input,
- const torch::Tensor &kernel, int up_x, int up_y,
- int down_x, int down_y, int pad_x0, int pad_x1,
- int pad_y0, int pad_y1) {
- int curDevice = -1;
- cudaGetDevice(&curDevice);
- cudaStream_t stream = at::cuda::getCurrentCUDAStream(curDevice);
-
- UpFirDn2DKernelParams p;
-
- auto x = input.contiguous();
- auto k = kernel.contiguous();
-
- p.major_dim = x.size(0);
- p.in_h = x.size(1);
- p.in_w = x.size(2);
- p.minor_dim = x.size(3);
- p.kernel_h = k.size(0);
- p.kernel_w = k.size(1);
- p.up_x = up_x;
- p.up_y = up_y;
- p.down_x = down_x;
- p.down_y = down_y;
- p.pad_x0 = pad_x0;
- p.pad_x1 = pad_x1;
- p.pad_y0 = pad_y0;
- p.pad_y1 = pad_y1;
-
- p.out_h = (p.in_h * p.up_y + p.pad_y0 + p.pad_y1 - p.kernel_h + p.down_y) /
- p.down_y;
- p.out_w = (p.in_w * p.up_x + p.pad_x0 + p.pad_x1 - p.kernel_w + p.down_x) /
- p.down_x;
-
- auto out =
- at::empty({p.major_dim, p.out_h, p.out_w, p.minor_dim}, x.options());
-
- int mode = -1;
-
- int tile_out_h = -1;
- int tile_out_w = -1;
-
- if (p.up_x == 1 && p.up_y == 1 && p.down_x == 1 && p.down_y == 1 &&
- p.kernel_h <= 4 && p.kernel_w <= 4) {
- mode = 1;
- tile_out_h = 16;
- tile_out_w = 64;
- }
-
- if (p.up_x == 1 && p.up_y == 1 && p.down_x == 1 && p.down_y == 1 &&
- p.kernel_h <= 3 && p.kernel_w <= 3) {
- mode = 2;
- tile_out_h = 16;
- tile_out_w = 64;
- }
-
- if (p.up_x == 2 && p.up_y == 2 && p.down_x == 1 && p.down_y == 1 &&
- p.kernel_h <= 4 && p.kernel_w <= 4) {
- mode = 3;
- tile_out_h = 16;
- tile_out_w = 64;
- }
-
- if (p.up_x == 2 && p.up_y == 2 && p.down_x == 1 && p.down_y == 1 &&
- p.kernel_h <= 2 && p.kernel_w <= 2) {
- mode = 4;
- tile_out_h = 16;
- tile_out_w = 64;
- }
-
- if (p.up_x == 1 && p.up_y == 1 && p.down_x == 2 && p.down_y == 2 &&
- p.kernel_h <= 4 && p.kernel_w <= 4) {
- mode = 5;
- tile_out_h = 8;
- tile_out_w = 32;
- }
-
- if (p.up_x == 1 && p.up_y == 1 && p.down_x == 2 && p.down_y == 2 &&
- p.kernel_h <= 2 && p.kernel_w <= 2) {
- mode = 6;
- tile_out_h = 8;
- tile_out_w = 32;
- }
-
- dim3 block_size;
- dim3 grid_size;
-
- if (tile_out_h > 0 && tile_out_w > 0) {
- p.loop_major = (p.major_dim - 1) / 16384 + 1;
- p.loop_x = 1;
- block_size = dim3(32 * 8, 1, 1);
- grid_size = dim3(((p.out_h - 1) / tile_out_h + 1) * p.minor_dim,
- (p.out_w - 1) / (p.loop_x * tile_out_w) + 1,
- (p.major_dim - 1) / p.loop_major + 1);
- } else {
- p.loop_major = (p.major_dim - 1) / 16384 + 1;
- p.loop_x = 4;
- block_size = dim3(4, 32, 1);
- grid_size = dim3((p.out_h * p.minor_dim - 1) / block_size.x + 1,
- (p.out_w - 1) / (p.loop_x * block_size.y) + 1,
- (p.major_dim - 1) / p.loop_major + 1);
- }
-
- AT_DISPATCH_FLOATING_TYPES_AND_HALF(x.scalar_type(), "upfirdn2d_cuda", [&] {
- switch (mode) {
- case 1:
- upfirdn2d_kernel
- <<>>(out.data_ptr(),
- x.data_ptr(),
- k.data_ptr(), p);
-
- break;
-
- case 2:
- upfirdn2d_kernel
- <<>>(out.data_ptr(),
- x.data_ptr(),
- k.data_ptr(), p);
-
- break;
-
- case 3:
- upfirdn2d_kernel
- <<>>(out.data_ptr(),
- x.data_ptr(),
- k.data_ptr(), p);
-
- break;
-
- case 4:
- upfirdn2d_kernel
- <<>>(out.data_ptr(),
- x.data_ptr(),
- k.data_ptr(), p);
-
- break;
-
- case 5:
- upfirdn2d_kernel
- <<>>(out.data_ptr(),
- x.data_ptr(),
- k.data_ptr(), p);
-
- break;
-
- case 6:
- upfirdn2d_kernel
- <<>>(out.data_ptr(),
- x.data_ptr(),
- k.data_ptr(), p);
-
- break;
-
- default:
- upfirdn2d_kernel_large<<>>(
- out.data_ptr(), x.data_ptr(),
- k.data_ptr(), p);
- }
- });
-
- return out;
-}
diff --git a/CodeFormer/CodeFormer/basicsr/ops/upfirdn2d/upfirdn2d.py b/CodeFormer/CodeFormer/basicsr/ops/upfirdn2d/upfirdn2d.py
deleted file mode 100644
index 667f96e1ded35d48f163f37e21d1ed8ff191aac3..0000000000000000000000000000000000000000
--- a/CodeFormer/CodeFormer/basicsr/ops/upfirdn2d/upfirdn2d.py
+++ /dev/null
@@ -1,186 +0,0 @@
-# modify from https://github.com/rosinality/stylegan2-pytorch/blob/master/op/upfirdn2d.py # noqa:E501
-
-import torch
-from torch.autograd import Function
-from torch.nn import functional as F
-
-try:
- from . import upfirdn2d_ext
-except ImportError:
- import os
- BASICSR_JIT = os.getenv('BASICSR_JIT')
- if BASICSR_JIT == 'True':
- from torch.utils.cpp_extension import load
- module_path = os.path.dirname(__file__)
- upfirdn2d_ext = load(
- 'upfirdn2d',
- sources=[
- os.path.join(module_path, 'src', 'upfirdn2d.cpp'),
- os.path.join(module_path, 'src', 'upfirdn2d_kernel.cu'),
- ],
- )
-
-
-class UpFirDn2dBackward(Function):
-
- @staticmethod
- def forward(ctx, grad_output, kernel, grad_kernel, up, down, pad, g_pad, in_size, out_size):
-
- up_x, up_y = up
- down_x, down_y = down
- g_pad_x0, g_pad_x1, g_pad_y0, g_pad_y1 = g_pad
-
- grad_output = grad_output.reshape(-1, out_size[0], out_size[1], 1)
-
- grad_input = upfirdn2d_ext.upfirdn2d(
- grad_output,
- grad_kernel,
- down_x,
- down_y,
- up_x,
- up_y,
- g_pad_x0,
- g_pad_x1,
- g_pad_y0,
- g_pad_y1,
- )
- grad_input = grad_input.view(in_size[0], in_size[1], in_size[2], in_size[3])
-
- ctx.save_for_backward(kernel)
-
- pad_x0, pad_x1, pad_y0, pad_y1 = pad
-
- ctx.up_x = up_x
- ctx.up_y = up_y
- ctx.down_x = down_x
- ctx.down_y = down_y
- ctx.pad_x0 = pad_x0
- ctx.pad_x1 = pad_x1
- ctx.pad_y0 = pad_y0
- ctx.pad_y1 = pad_y1
- ctx.in_size = in_size
- ctx.out_size = out_size
-
- return grad_input
-
- @staticmethod
- def backward(ctx, gradgrad_input):
- kernel, = ctx.saved_tensors
-
- gradgrad_input = gradgrad_input.reshape(-1, ctx.in_size[2], ctx.in_size[3], 1)
-
- gradgrad_out = upfirdn2d_ext.upfirdn2d(
- gradgrad_input,
- kernel,
- ctx.up_x,
- ctx.up_y,
- ctx.down_x,
- ctx.down_y,
- ctx.pad_x0,
- ctx.pad_x1,
- ctx.pad_y0,
- ctx.pad_y1,
- )
- # gradgrad_out = gradgrad_out.view(ctx.in_size[0], ctx.out_size[0],
- # ctx.out_size[1], ctx.in_size[3])
- gradgrad_out = gradgrad_out.view(ctx.in_size[0], ctx.in_size[1], ctx.out_size[0], ctx.out_size[1])
-
- return gradgrad_out, None, None, None, None, None, None, None, None
-
-
-class UpFirDn2d(Function):
-
- @staticmethod
- def forward(ctx, input, kernel, up, down, pad):
- up_x, up_y = up
- down_x, down_y = down
- pad_x0, pad_x1, pad_y0, pad_y1 = pad
-
- kernel_h, kernel_w = kernel.shape
- batch, channel, in_h, in_w = input.shape
- ctx.in_size = input.shape
-
- input = input.reshape(-1, in_h, in_w, 1)
-
- ctx.save_for_backward(kernel, torch.flip(kernel, [0, 1]))
-
- out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h) // down_y + 1
- out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w) // down_x + 1
- ctx.out_size = (out_h, out_w)
-
- ctx.up = (up_x, up_y)
- ctx.down = (down_x, down_y)
- ctx.pad = (pad_x0, pad_x1, pad_y0, pad_y1)
-
- g_pad_x0 = kernel_w - pad_x0 - 1
- g_pad_y0 = kernel_h - pad_y0 - 1
- g_pad_x1 = in_w * up_x - out_w * down_x + pad_x0 - up_x + 1
- g_pad_y1 = in_h * up_y - out_h * down_y + pad_y0 - up_y + 1
-
- ctx.g_pad = (g_pad_x0, g_pad_x1, g_pad_y0, g_pad_y1)
-
- out = upfirdn2d_ext.upfirdn2d(input, kernel, up_x, up_y, down_x, down_y, pad_x0, pad_x1, pad_y0, pad_y1)
- # out = out.view(major, out_h, out_w, minor)
- out = out.view(-1, channel, out_h, out_w)
-
- return out
-
- @staticmethod
- def backward(ctx, grad_output):
- kernel, grad_kernel = ctx.saved_tensors
-
- grad_input = UpFirDn2dBackward.apply(
- grad_output,
- kernel,
- grad_kernel,
- ctx.up,
- ctx.down,
- ctx.pad,
- ctx.g_pad,
- ctx.in_size,
- ctx.out_size,
- )
-
- return grad_input, None, None, None, None
-
-
-def upfirdn2d(input, kernel, up=1, down=1, pad=(0, 0)):
- if input.device.type == 'cpu':
- out = upfirdn2d_native(input, kernel, up, up, down, down, pad[0], pad[1], pad[0], pad[1])
- else:
- out = UpFirDn2d.apply(input, kernel, (up, up), (down, down), (pad[0], pad[1], pad[0], pad[1]))
-
- return out
-
-
-def upfirdn2d_native(input, kernel, up_x, up_y, down_x, down_y, pad_x0, pad_x1, pad_y0, pad_y1):
- _, channel, in_h, in_w = input.shape
- input = input.reshape(-1, in_h, in_w, 1)
-
- _, in_h, in_w, minor = input.shape
- kernel_h, kernel_w = kernel.shape
-
- out = input.view(-1, in_h, 1, in_w, 1, minor)
- out = F.pad(out, [0, 0, 0, up_x - 1, 0, 0, 0, up_y - 1])
- out = out.view(-1, in_h * up_y, in_w * up_x, minor)
-
- out = F.pad(out, [0, 0, max(pad_x0, 0), max(pad_x1, 0), max(pad_y0, 0), max(pad_y1, 0)])
- out = out[:, max(-pad_y0, 0):out.shape[1] - max(-pad_y1, 0), max(-pad_x0, 0):out.shape[2] - max(-pad_x1, 0), :, ]
-
- out = out.permute(0, 3, 1, 2)
- out = out.reshape([-1, 1, in_h * up_y + pad_y0 + pad_y1, in_w * up_x + pad_x0 + pad_x1])
- w = torch.flip(kernel, [0, 1]).view(1, 1, kernel_h, kernel_w)
- out = F.conv2d(out, w)
- out = out.reshape(
- -1,
- minor,
- in_h * up_y + pad_y0 + pad_y1 - kernel_h + 1,
- in_w * up_x + pad_x0 + pad_x1 - kernel_w + 1,
- )
- out = out.permute(0, 2, 3, 1)
- out = out[:, ::down_y, ::down_x, :]
-
- out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h) // down_y + 1
- out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w) // down_x + 1
-
- return out.view(-1, channel, out_h, out_w)
diff --git a/CodeFormer/CodeFormer/basicsr/setup.py b/CodeFormer/CodeFormer/basicsr/setup.py
deleted file mode 100644
index 382a2aa1006e581eaf31dbb3155d4b0ba3b31140..0000000000000000000000000000000000000000
--- a/CodeFormer/CodeFormer/basicsr/setup.py
+++ /dev/null
@@ -1,165 +0,0 @@
-#!/usr/bin/env python
-
-from setuptools import find_packages, setup
-
-import os
-import subprocess
-import sys
-import time
-import torch
-from torch.utils.cpp_extension import BuildExtension, CppExtension, CUDAExtension
-
-version_file = './basicsr/version.py'
-
-
-def readme():
- with open('README.md', encoding='utf-8') as f:
- content = f.read()
- return content
-
-
-def get_git_hash():
-
- def _minimal_ext_cmd(cmd):
- # construct minimal environment
- env = {}
- for k in ['SYSTEMROOT', 'PATH', 'HOME']:
- v = os.environ.get(k)
- if v is not None:
- env[k] = v
- # LANGUAGE is used on win32
- env['LANGUAGE'] = 'C'
- env['LANG'] = 'C'
- env['LC_ALL'] = 'C'
- out = subprocess.Popen(cmd, stdout=subprocess.PIPE, env=env).communicate()[0]
- return out
-
- try:
- out = _minimal_ext_cmd(['git', 'rev-parse', 'HEAD'])
- sha = out.strip().decode('ascii')
- except OSError:
- sha = 'unknown'
-
- return sha
-
-
-def get_hash():
- if os.path.exists('.git'):
- sha = get_git_hash()[:7]
- elif os.path.exists(version_file):
- try:
- from version import __version__
- sha = __version__.split('+')[-1]
- except ImportError:
- raise ImportError('Unable to get git version')
- else:
- sha = 'unknown'
-
- return sha
-
-
-def write_version_py():
- content = """# GENERATED VERSION FILE
-# TIME: {}
-__version__ = '{}'
-__gitsha__ = '{}'
-version_info = ({})
-"""
- sha = get_hash()
- with open('./basicsr/VERSION', 'r') as f:
- SHORT_VERSION = f.read().strip()
- VERSION_INFO = ', '.join([x if x.isdigit() else f'"{x}"' for x in SHORT_VERSION.split('.')])
-
- version_file_str = content.format(time.asctime(), SHORT_VERSION, sha, VERSION_INFO)
- with open(version_file, 'w') as f:
- f.write(version_file_str)
-
-
-def get_version():
- with open(version_file, 'r') as f:
- exec(compile(f.read(), version_file, 'exec'))
- return locals()['__version__']
-
-
-def make_cuda_ext(name, module, sources, sources_cuda=None):
- if sources_cuda is None:
- sources_cuda = []
- define_macros = []
- extra_compile_args = {'cxx': []}
-
- if torch.cuda.is_available() or os.getenv('FORCE_CUDA', '0') == '1':
- define_macros += [('WITH_CUDA', None)]
- extension = CUDAExtension
- extra_compile_args['nvcc'] = [
- '-D__CUDA_NO_HALF_OPERATORS__',
- '-D__CUDA_NO_HALF_CONVERSIONS__',
- '-D__CUDA_NO_HALF2_OPERATORS__',
- ]
- sources += sources_cuda
- else:
- print(f'Compiling {name} without CUDA')
- extension = CppExtension
-
- return extension(
- name=f'{module}.{name}',
- sources=[os.path.join(*module.split('.'), p) for p in sources],
- define_macros=define_macros,
- extra_compile_args=extra_compile_args)
-
-
-def get_requirements(filename='requirements.txt'):
- with open(os.path.join('.', filename), 'r') as f:
- requires = [line.replace('\n', '') for line in f.readlines()]
- return requires
-
-
-if __name__ == '__main__':
- if '--cuda_ext' in sys.argv:
- ext_modules = [
- make_cuda_ext(
- name='deform_conv_ext',
- module='ops.dcn',
- sources=['src/deform_conv_ext.cpp'],
- sources_cuda=['src/deform_conv_cuda.cpp', 'src/deform_conv_cuda_kernel.cu']),
- make_cuda_ext(
- name='fused_act_ext',
- module='ops.fused_act',
- sources=['src/fused_bias_act.cpp'],
- sources_cuda=['src/fused_bias_act_kernel.cu']),
- make_cuda_ext(
- name='upfirdn2d_ext',
- module='ops.upfirdn2d',
- sources=['src/upfirdn2d.cpp'],
- sources_cuda=['src/upfirdn2d_kernel.cu']),
- ]
- sys.argv.remove('--cuda_ext')
- else:
- ext_modules = []
-
- write_version_py()
- setup(
- name='basicsr',
- version=get_version(),
- description='Open Source Image and Video Super-Resolution Toolbox',
- long_description=readme(),
- long_description_content_type='text/markdown',
- author='Xintao Wang',
- author_email='xintao.wang@outlook.com',
- keywords='computer vision, restoration, super resolution',
- url='https://github.com/xinntao/BasicSR',
- include_package_data=True,
- packages=find_packages(exclude=('options', 'datasets', 'experiments', 'results', 'tb_logger', 'wandb')),
- classifiers=[
- 'Development Status :: 4 - Beta',
- 'License :: OSI Approved :: Apache Software License',
- 'Operating System :: OS Independent',
- 'Programming Language :: Python :: 3',
- 'Programming Language :: Python :: 3.7',
- 'Programming Language :: Python :: 3.8',
- ],
- license='Apache License 2.0',
- setup_requires=['cython', 'numpy'],
- install_requires=get_requirements(),
- ext_modules=ext_modules,
- cmdclass={'build_ext': BuildExtension},
- zip_safe=False)
diff --git a/CodeFormer/CodeFormer/basicsr/train.py b/CodeFormer/CodeFormer/basicsr/train.py
deleted file mode 100644
index a01c0dfccdb8b02283100ec5b792c33afaf22f5e..0000000000000000000000000000000000000000
--- a/CodeFormer/CodeFormer/basicsr/train.py
+++ /dev/null
@@ -1,225 +0,0 @@
-import argparse
-import datetime
-import logging
-import math
-import copy
-import random
-import time
-import torch
-from os import path as osp
-
-from basicsr.data import build_dataloader, build_dataset
-from basicsr.data.data_sampler import EnlargedSampler
-from basicsr.data.prefetch_dataloader import CPUPrefetcher, CUDAPrefetcher
-from basicsr.models import build_model
-from basicsr.utils import (MessageLogger, check_resume, get_env_info, get_root_logger, init_tb_logger,
- init_wandb_logger, make_exp_dirs, mkdir_and_rename, set_random_seed)
-from basicsr.utils.dist_util import get_dist_info, init_dist
-from basicsr.utils.options import dict2str, parse
-
-import warnings
-# ignore UserWarning: Detected call of `lr_scheduler.step()` before `optimizer.step()`.
-warnings.filterwarnings("ignore", category=UserWarning)
-
-def parse_options(root_path, is_train=True):
- parser = argparse.ArgumentParser()
- parser.add_argument('-opt', type=str, required=True, help='Path to option YAML file.')
- parser.add_argument('--launcher', choices=['none', 'pytorch', 'slurm'], default='none', help='job launcher')
- parser.add_argument('--local_rank', type=int, default=0)
- args = parser.parse_args()
- opt = parse(args.opt, root_path, is_train=is_train)
-
- # distributed settings
- if args.launcher == 'none':
- opt['dist'] = False
- print('Disable distributed.', flush=True)
- else:
- opt['dist'] = True
- if args.launcher == 'slurm' and 'dist_params' in opt:
- init_dist(args.launcher, **opt['dist_params'])
- else:
- init_dist(args.launcher)
-
- opt['rank'], opt['world_size'] = get_dist_info()
-
- # random seed
- seed = opt.get('manual_seed')
- if seed is None:
- seed = random.randint(1, 10000)
- opt['manual_seed'] = seed
- set_random_seed(seed + opt['rank'])
-
- return opt
-
-
-def init_loggers(opt):
- log_file = osp.join(opt['path']['log'], f"train_{opt['name']}.log")
- logger = get_root_logger(logger_name='basicsr', log_level=logging.INFO, log_file=log_file)
- logger.info(get_env_info())
- logger.info(dict2str(opt))
-
- # initialize wandb logger before tensorboard logger to allow proper sync:
- if (opt['logger'].get('wandb') is not None) and (opt['logger']['wandb'].get('project') is not None):
- assert opt['logger'].get('use_tb_logger') is True, ('should turn on tensorboard when using wandb')
- init_wandb_logger(opt)
- tb_logger = None
- if opt['logger'].get('use_tb_logger'):
- tb_logger = init_tb_logger(log_dir=osp.join('tb_logger', opt['name']))
- return logger, tb_logger
-
-
-def create_train_val_dataloader(opt, logger):
- # create train and val dataloaders
- train_loader, val_loader = None, None
- for phase, dataset_opt in opt['datasets'].items():
- if phase == 'train':
- dataset_enlarge_ratio = dataset_opt.get('dataset_enlarge_ratio', 1)
- train_set = build_dataset(dataset_opt)
- train_sampler = EnlargedSampler(train_set, opt['world_size'], opt['rank'], dataset_enlarge_ratio)
- train_loader = build_dataloader(
- train_set,
- dataset_opt,
- num_gpu=opt['num_gpu'],
- dist=opt['dist'],
- sampler=train_sampler,
- seed=opt['manual_seed'])
-
- num_iter_per_epoch = math.ceil(
- len(train_set) * dataset_enlarge_ratio / (dataset_opt['batch_size_per_gpu'] * opt['world_size']))
- total_iters = int(opt['train']['total_iter'])
- total_epochs = math.ceil(total_iters / (num_iter_per_epoch))
- logger.info('Training statistics:'
- f'\n\tNumber of train images: {len(train_set)}'
- f'\n\tDataset enlarge ratio: {dataset_enlarge_ratio}'
- f'\n\tBatch size per gpu: {dataset_opt["batch_size_per_gpu"]}'
- f'\n\tWorld size (gpu number): {opt["world_size"]}'
- f'\n\tRequire iter number per epoch: {num_iter_per_epoch}'
- f'\n\tTotal epochs: {total_epochs}; iters: {total_iters}.')
-
- elif phase == 'val':
- val_set = build_dataset(dataset_opt)
- val_loader = build_dataloader(
- val_set, dataset_opt, num_gpu=opt['num_gpu'], dist=opt['dist'], sampler=None, seed=opt['manual_seed'])
- logger.info(f'Number of val images/folders in {dataset_opt["name"]}: ' f'{len(val_set)}')
- else:
- raise ValueError(f'Dataset phase {phase} is not recognized.')
-
- return train_loader, train_sampler, val_loader, total_epochs, total_iters
-
-
-def train_pipeline(root_path):
- # parse options, set distributed setting, set ramdom seed
- opt = parse_options(root_path, is_train=True)
-
- torch.backends.cudnn.benchmark = True
- # torch.backends.cudnn.deterministic = True
-
- # load resume states if necessary
- if opt['path'].get('resume_state'):
- device_id = torch.cuda.current_device()
- resume_state = torch.load(
- opt['path']['resume_state'], map_location=lambda storage, loc: storage.cuda(device_id))
- else:
- resume_state = None
-
- # mkdir for experiments and logger
- if resume_state is None:
- make_exp_dirs(opt)
- if opt['logger'].get('use_tb_logger') and opt['rank'] == 0:
- mkdir_and_rename(osp.join('tb_logger', opt['name']))
-
- # initialize loggers
- logger, tb_logger = init_loggers(opt)
-
- # create train and validation dataloaders
- result = create_train_val_dataloader(opt, logger)
- train_loader, train_sampler, val_loader, total_epochs, total_iters = result
-
- # create model
- if resume_state: # resume training
- check_resume(opt, resume_state['iter'])
- model = build_model(opt)
- model.resume_training(resume_state) # handle optimizers and schedulers
- logger.info(f"Resuming training from epoch: {resume_state['epoch']}, " f"iter: {resume_state['iter']}.")
- start_epoch = resume_state['epoch']
- current_iter = resume_state['iter']
- else:
- model = build_model(opt)
- start_epoch = 0
- current_iter = 0
-
- # create message logger (formatted outputs)
- msg_logger = MessageLogger(opt, current_iter, tb_logger)
-
- # dataloader prefetcher
- prefetch_mode = opt['datasets']['train'].get('prefetch_mode')
- if prefetch_mode is None or prefetch_mode == 'cpu':
- prefetcher = CPUPrefetcher(train_loader)
- elif prefetch_mode == 'cuda':
- prefetcher = CUDAPrefetcher(train_loader, opt)
- logger.info(f'Use {prefetch_mode} prefetch dataloader')
- if opt['datasets']['train'].get('pin_memory') is not True:
- raise ValueError('Please set pin_memory=True for CUDAPrefetcher.')
- else:
- raise ValueError(f'Wrong prefetch_mode {prefetch_mode}.' "Supported ones are: None, 'cuda', 'cpu'.")
-
- # training
- logger.info(f'Start training from epoch: {start_epoch}, iter: {current_iter+1}')
- data_time, iter_time = time.time(), time.time()
- start_time = time.time()
-
- for epoch in range(start_epoch, total_epochs + 1):
- train_sampler.set_epoch(epoch)
- prefetcher.reset()
- train_data = prefetcher.next()
-
- while train_data is not None:
- data_time = time.time() - data_time
-
- current_iter += 1
- if current_iter > total_iters:
- break
- # update learning rate
- model.update_learning_rate(current_iter, warmup_iter=opt['train'].get('warmup_iter', -1))
- # training
- model.feed_data(train_data)
- model.optimize_parameters(current_iter)
- iter_time = time.time() - iter_time
- # log
- if current_iter % opt['logger']['print_freq'] == 0:
- log_vars = {'epoch': epoch, 'iter': current_iter}
- log_vars.update({'lrs': model.get_current_learning_rate()})
- log_vars.update({'time': iter_time, 'data_time': data_time})
- log_vars.update(model.get_current_log())
- msg_logger(log_vars)
-
- # save models and training states
- if current_iter % opt['logger']['save_checkpoint_freq'] == 0:
- logger.info('Saving models and training states.')
- model.save(epoch, current_iter)
-
- # validation
- if opt.get('val') is not None and opt['datasets'].get('val') is not None \
- and (current_iter % opt['val']['val_freq'] == 0):
- model.validation(val_loader, current_iter, tb_logger, opt['val']['save_img'])
-
- data_time = time.time()
- iter_time = time.time()
- train_data = prefetcher.next()
- # end of iter
-
- # end of epoch
-
- consumed_time = str(datetime.timedelta(seconds=int(time.time() - start_time)))
- logger.info(f'End of training. Time consumed: {consumed_time}')
- logger.info('Save the latest model.')
- model.save(epoch=-1, current_iter=-1) # -1 stands for the latest
- if opt.get('val') is not None and opt['datasets'].get('val'):
- model.validation(val_loader, current_iter, tb_logger, opt['val']['save_img'])
- if tb_logger:
- tb_logger.close()
-
-
-if __name__ == '__main__':
- root_path = osp.abspath(osp.join(__file__, osp.pardir, osp.pardir))
- train_pipeline(root_path)
diff --git a/CodeFormer/CodeFormer/basicsr/utils/__init__.py b/CodeFormer/CodeFormer/basicsr/utils/__init__.py
deleted file mode 100644
index 5fcc1d540462712387523d1e326d1dfc2bcfbf32..0000000000000000000000000000000000000000
--- a/CodeFormer/CodeFormer/basicsr/utils/__init__.py
+++ /dev/null
@@ -1,29 +0,0 @@
-from .file_client import FileClient
-from .img_util import crop_border, imfrombytes, img2tensor, imwrite, tensor2img
-from .logger import MessageLogger, get_env_info, get_root_logger, init_tb_logger, init_wandb_logger
-from .misc import check_resume, get_time_str, make_exp_dirs, mkdir_and_rename, scandir, set_random_seed, sizeof_fmt
-
-__all__ = [
- # file_client.py
- 'FileClient',
- # img_util.py
- 'img2tensor',
- 'tensor2img',
- 'imfrombytes',
- 'imwrite',
- 'crop_border',
- # logger.py
- 'MessageLogger',
- 'init_tb_logger',
- 'init_wandb_logger',
- 'get_root_logger',
- 'get_env_info',
- # misc.py
- 'set_random_seed',
- 'get_time_str',
- 'mkdir_and_rename',
- 'make_exp_dirs',
- 'scandir',
- 'check_resume',
- 'sizeof_fmt'
-]
diff --git a/CodeFormer/CodeFormer/basicsr/utils/__pycache__/__init__.cpython-310.pyc b/CodeFormer/CodeFormer/basicsr/utils/__pycache__/__init__.cpython-310.pyc
deleted file mode 100644
index 76c92bd89a443acd886ddc4303c323267e7a1dd3..0000000000000000000000000000000000000000
Binary files a/CodeFormer/CodeFormer/basicsr/utils/__pycache__/__init__.cpython-310.pyc and /dev/null differ
diff --git a/CodeFormer/CodeFormer/basicsr/utils/__pycache__/dist_util.cpython-310.pyc b/CodeFormer/CodeFormer/basicsr/utils/__pycache__/dist_util.cpython-310.pyc
deleted file mode 100644
index 0c96ed888fdc2fbbd337d8070dfb4d310a5df587..0000000000000000000000000000000000000000
Binary files a/CodeFormer/CodeFormer/basicsr/utils/__pycache__/dist_util.cpython-310.pyc and /dev/null differ
diff --git a/CodeFormer/CodeFormer/basicsr/utils/__pycache__/download_util.cpython-310.pyc b/CodeFormer/CodeFormer/basicsr/utils/__pycache__/download_util.cpython-310.pyc
deleted file mode 100644
index 808f00a39acc05970b31826214775a2e2671eab3..0000000000000000000000000000000000000000
Binary files a/CodeFormer/CodeFormer/basicsr/utils/__pycache__/download_util.cpython-310.pyc and /dev/null differ
diff --git a/CodeFormer/CodeFormer/basicsr/utils/__pycache__/file_client.cpython-310.pyc b/CodeFormer/CodeFormer/basicsr/utils/__pycache__/file_client.cpython-310.pyc
deleted file mode 100644
index 0e1643a0d2911863a736e5977d3a6672e0eec63d..0000000000000000000000000000000000000000
Binary files a/CodeFormer/CodeFormer/basicsr/utils/__pycache__/file_client.cpython-310.pyc and /dev/null differ
diff --git a/CodeFormer/CodeFormer/basicsr/utils/__pycache__/img_util.cpython-310.pyc b/CodeFormer/CodeFormer/basicsr/utils/__pycache__/img_util.cpython-310.pyc
deleted file mode 100644
index 4b6d80f0b1225fbb70bf08d6b032d0e53c5a0e19..0000000000000000000000000000000000000000
Binary files a/CodeFormer/CodeFormer/basicsr/utils/__pycache__/img_util.cpython-310.pyc and /dev/null differ
diff --git a/CodeFormer/CodeFormer/basicsr/utils/__pycache__/logger.cpython-310.pyc b/CodeFormer/CodeFormer/basicsr/utils/__pycache__/logger.cpython-310.pyc
deleted file mode 100644
index 7efee53a43080e2e28a4c67f8bb35f09e168712f..0000000000000000000000000000000000000000
Binary files a/CodeFormer/CodeFormer/basicsr/utils/__pycache__/logger.cpython-310.pyc and /dev/null differ
diff --git a/CodeFormer/CodeFormer/basicsr/utils/__pycache__/matlab_functions.cpython-310.pyc b/CodeFormer/CodeFormer/basicsr/utils/__pycache__/matlab_functions.cpython-310.pyc
deleted file mode 100644
index a80007d2140a779a03e745db1f95a72f1e57ac4b..0000000000000000000000000000000000000000
Binary files a/CodeFormer/CodeFormer/basicsr/utils/__pycache__/matlab_functions.cpython-310.pyc and /dev/null differ
diff --git a/CodeFormer/CodeFormer/basicsr/utils/__pycache__/misc.cpython-310.pyc b/CodeFormer/CodeFormer/basicsr/utils/__pycache__/misc.cpython-310.pyc
deleted file mode 100644
index a71b9f64a53afd493a0ed0110c3c17dc97600864..0000000000000000000000000000000000000000
Binary files a/CodeFormer/CodeFormer/basicsr/utils/__pycache__/misc.cpython-310.pyc and /dev/null differ
diff --git a/CodeFormer/CodeFormer/basicsr/utils/__pycache__/options.cpython-310.pyc b/CodeFormer/CodeFormer/basicsr/utils/__pycache__/options.cpython-310.pyc
deleted file mode 100644
index 39242d4ee7a2320334f3586f4d9e79e41d2cc79a..0000000000000000000000000000000000000000
Binary files a/CodeFormer/CodeFormer/basicsr/utils/__pycache__/options.cpython-310.pyc and /dev/null differ
diff --git a/CodeFormer/CodeFormer/basicsr/utils/__pycache__/realesrgan_utils.cpython-310.pyc b/CodeFormer/CodeFormer/basicsr/utils/__pycache__/realesrgan_utils.cpython-310.pyc
deleted file mode 100644
index a94d285bd192673f1ee2fdafe5fca9760ec56084..0000000000000000000000000000000000000000
Binary files a/CodeFormer/CodeFormer/basicsr/utils/__pycache__/realesrgan_utils.cpython-310.pyc and /dev/null differ
diff --git a/CodeFormer/CodeFormer/basicsr/utils/__pycache__/registry.cpython-310.pyc b/CodeFormer/CodeFormer/basicsr/utils/__pycache__/registry.cpython-310.pyc
deleted file mode 100644
index 0f7523c25ffe4a7cc6ed97653771cc87d644fc88..0000000000000000000000000000000000000000
Binary files a/CodeFormer/CodeFormer/basicsr/utils/__pycache__/registry.cpython-310.pyc and /dev/null differ
diff --git a/CodeFormer/CodeFormer/basicsr/utils/dist_util.py b/CodeFormer/CodeFormer/basicsr/utils/dist_util.py
deleted file mode 100644
index 0fab887b2cb1ce8533d2e8fdee72ae0c24f68fd0..0000000000000000000000000000000000000000
--- a/CodeFormer/CodeFormer/basicsr/utils/dist_util.py
+++ /dev/null
@@ -1,82 +0,0 @@
-# Modified from https://github.com/open-mmlab/mmcv/blob/master/mmcv/runner/dist_utils.py # noqa: E501
-import functools
-import os
-import subprocess
-import torch
-import torch.distributed as dist
-import torch.multiprocessing as mp
-
-
-def init_dist(launcher, backend='nccl', **kwargs):
- if mp.get_start_method(allow_none=True) is None:
- mp.set_start_method('spawn')
- if launcher == 'pytorch':
- _init_dist_pytorch(backend, **kwargs)
- elif launcher == 'slurm':
- _init_dist_slurm(backend, **kwargs)
- else:
- raise ValueError(f'Invalid launcher type: {launcher}')
-
-
-def _init_dist_pytorch(backend, **kwargs):
- rank = int(os.environ['RANK'])
- num_gpus = torch.cuda.device_count()
- torch.cuda.set_device(rank % num_gpus)
- dist.init_process_group(backend=backend, **kwargs)
-
-
-def _init_dist_slurm(backend, port=None):
- """Initialize slurm distributed training environment.
-
- If argument ``port`` is not specified, then the master port will be system
- environment variable ``MASTER_PORT``. If ``MASTER_PORT`` is not in system
- environment variable, then a default port ``29500`` will be used.
-
- Args:
- backend (str): Backend of torch.distributed.
- port (int, optional): Master port. Defaults to None.
- """
- proc_id = int(os.environ['SLURM_PROCID'])
- ntasks = int(os.environ['SLURM_NTASKS'])
- node_list = os.environ['SLURM_NODELIST']
- num_gpus = torch.cuda.device_count()
- torch.cuda.set_device(proc_id % num_gpus)
- addr = subprocess.getoutput(f'scontrol show hostname {node_list} | head -n1')
- # specify master port
- if port is not None:
- os.environ['MASTER_PORT'] = str(port)
- elif 'MASTER_PORT' in os.environ:
- pass # use MASTER_PORT in the environment variable
- else:
- # 29500 is torch.distributed default port
- os.environ['MASTER_PORT'] = '29500'
- os.environ['MASTER_ADDR'] = addr
- os.environ['WORLD_SIZE'] = str(ntasks)
- os.environ['LOCAL_RANK'] = str(proc_id % num_gpus)
- os.environ['RANK'] = str(proc_id)
- dist.init_process_group(backend=backend)
-
-
-def get_dist_info():
- if dist.is_available():
- initialized = dist.is_initialized()
- else:
- initialized = False
- if initialized:
- rank = dist.get_rank()
- world_size = dist.get_world_size()
- else:
- rank = 0
- world_size = 1
- return rank, world_size
-
-
-def master_only(func):
-
- @functools.wraps(func)
- def wrapper(*args, **kwargs):
- rank, _ = get_dist_info()
- if rank == 0:
- return func(*args, **kwargs)
-
- return wrapper
diff --git a/CodeFormer/CodeFormer/basicsr/utils/download_util.py b/CodeFormer/CodeFormer/basicsr/utils/download_util.py
deleted file mode 100644
index 2a267915743ee3f3232bc8fe992466b52468979a..0000000000000000000000000000000000000000
--- a/CodeFormer/CodeFormer/basicsr/utils/download_util.py
+++ /dev/null
@@ -1,95 +0,0 @@
-import math
-import os
-import requests
-from torch.hub import download_url_to_file, get_dir
-from tqdm import tqdm
-from urllib.parse import urlparse
-
-from .misc import sizeof_fmt
-
-
-def download_file_from_google_drive(file_id, save_path):
- """Download files from google drive.
- Ref:
- https://stackoverflow.com/questions/25010369/wget-curl-large-file-from-google-drive # noqa E501
- Args:
- file_id (str): File id.
- save_path (str): Save path.
- """
-
- session = requests.Session()
- URL = 'https://docs.google.com/uc?export=download'
- params = {'id': file_id}
-
- response = session.get(URL, params=params, stream=True)
- token = get_confirm_token(response)
- if token:
- params['confirm'] = token
- response = session.get(URL, params=params, stream=True)
-
- # get file size
- response_file_size = session.get(URL, params=params, stream=True, headers={'Range': 'bytes=0-2'})
- print(response_file_size)
- if 'Content-Range' in response_file_size.headers:
- file_size = int(response_file_size.headers['Content-Range'].split('/')[1])
- else:
- file_size = None
-
- save_response_content(response, save_path, file_size)
-
-
-def get_confirm_token(response):
- for key, value in response.cookies.items():
- if key.startswith('download_warning'):
- return value
- return None
-
-
-def save_response_content(response, destination, file_size=None, chunk_size=32768):
- if file_size is not None:
- pbar = tqdm(total=math.ceil(file_size / chunk_size), unit='chunk')
-
- readable_file_size = sizeof_fmt(file_size)
- else:
- pbar = None
-
- with open(destination, 'wb') as f:
- downloaded_size = 0
- for chunk in response.iter_content(chunk_size):
- downloaded_size += chunk_size
- if pbar is not None:
- pbar.update(1)
- pbar.set_description(f'Download {sizeof_fmt(downloaded_size)} / {readable_file_size}')
- if chunk: # filter out keep-alive new chunks
- f.write(chunk)
- if pbar is not None:
- pbar.close()
-
-
-def load_file_from_url(url, model_dir=None, progress=True, file_name=None):
- """Load file form http url, will download models if necessary.
- Ref:https://github.com/1adrianb/face-alignment/blob/master/face_alignment/utils.py
- Args:
- url (str): URL to be downloaded.
- model_dir (str): The path to save the downloaded model. Should be a full path. If None, use pytorch hub_dir.
- Default: None.
- progress (bool): Whether to show the download progress. Default: True.
- file_name (str): The downloaded file name. If None, use the file name in the url. Default: None.
- Returns:
- str: The path to the downloaded file.
- """
- if model_dir is None: # use the pytorch hub_dir
- hub_dir = get_dir()
- model_dir = os.path.join(hub_dir, 'checkpoints')
-
- os.makedirs(model_dir, exist_ok=True)
-
- parts = urlparse(url)
- filename = os.path.basename(parts.path)
- if file_name is not None:
- filename = file_name
- cached_file = os.path.abspath(os.path.join(model_dir, filename))
- if not os.path.exists(cached_file):
- print(f'Downloading: "{url}" to {cached_file}\n')
- download_url_to_file(url, cached_file, hash_prefix=None, progress=progress)
- return cached_file
\ No newline at end of file
diff --git a/CodeFormer/CodeFormer/basicsr/utils/file_client.py b/CodeFormer/CodeFormer/basicsr/utils/file_client.py
deleted file mode 100644
index 7f38d9796da3899048924f2f803d1088927966b0..0000000000000000000000000000000000000000
--- a/CodeFormer/CodeFormer/basicsr/utils/file_client.py
+++ /dev/null
@@ -1,167 +0,0 @@
-# Modified from https://github.com/open-mmlab/mmcv/blob/master/mmcv/fileio/file_client.py # noqa: E501
-from abc import ABCMeta, abstractmethod
-
-
-class BaseStorageBackend(metaclass=ABCMeta):
- """Abstract class of storage backends.
-
- All backends need to implement two apis: ``get()`` and ``get_text()``.
- ``get()`` reads the file as a byte stream and ``get_text()`` reads the file
- as texts.
- """
-
- @abstractmethod
- def get(self, filepath):
- pass
-
- @abstractmethod
- def get_text(self, filepath):
- pass
-
-
-class MemcachedBackend(BaseStorageBackend):
- """Memcached storage backend.
-
- Attributes:
- server_list_cfg (str): Config file for memcached server list.
- client_cfg (str): Config file for memcached client.
- sys_path (str | None): Additional path to be appended to `sys.path`.
- Default: None.
- """
-
- def __init__(self, server_list_cfg, client_cfg, sys_path=None):
- if sys_path is not None:
- import sys
- sys.path.append(sys_path)
- try:
- import mc
- except ImportError:
- raise ImportError('Please install memcached to enable MemcachedBackend.')
-
- self.server_list_cfg = server_list_cfg
- self.client_cfg = client_cfg
- self._client = mc.MemcachedClient.GetInstance(self.server_list_cfg, self.client_cfg)
- # mc.pyvector servers as a point which points to a memory cache
- self._mc_buffer = mc.pyvector()
-
- def get(self, filepath):
- filepath = str(filepath)
- import mc
- self._client.Get(filepath, self._mc_buffer)
- value_buf = mc.ConvertBuffer(self._mc_buffer)
- return value_buf
-
- def get_text(self, filepath):
- raise NotImplementedError
-
-
-class HardDiskBackend(BaseStorageBackend):
- """Raw hard disks storage backend."""
-
- def get(self, filepath):
- filepath = str(filepath)
- with open(filepath, 'rb') as f:
- value_buf = f.read()
- return value_buf
-
- def get_text(self, filepath):
- filepath = str(filepath)
- with open(filepath, 'r') as f:
- value_buf = f.read()
- return value_buf
-
-
-class LmdbBackend(BaseStorageBackend):
- """Lmdb storage backend.
-
- Args:
- db_paths (str | list[str]): Lmdb database paths.
- client_keys (str | list[str]): Lmdb client keys. Default: 'default'.
- readonly (bool, optional): Lmdb environment parameter. If True,
- disallow any write operations. Default: True.
- lock (bool, optional): Lmdb environment parameter. If False, when
- concurrent access occurs, do not lock the database. Default: False.
- readahead (bool, optional): Lmdb environment parameter. If False,
- disable the OS filesystem readahead mechanism, which may improve
- random read performance when a database is larger than RAM.
- Default: False.
-
- Attributes:
- db_paths (list): Lmdb database path.
- _client (list): A list of several lmdb envs.
- """
-
- def __init__(self, db_paths, client_keys='default', readonly=True, lock=False, readahead=False, **kwargs):
- try:
- import lmdb
- except ImportError:
- raise ImportError('Please install lmdb to enable LmdbBackend.')
-
- if isinstance(client_keys, str):
- client_keys = [client_keys]
-
- if isinstance(db_paths, list):
- self.db_paths = [str(v) for v in db_paths]
- elif isinstance(db_paths, str):
- self.db_paths = [str(db_paths)]
- assert len(client_keys) == len(self.db_paths), ('client_keys and db_paths should have the same length, '
- f'but received {len(client_keys)} and {len(self.db_paths)}.')
-
- self._client = {}
- for client, path in zip(client_keys, self.db_paths):
- self._client[client] = lmdb.open(path, readonly=readonly, lock=lock, readahead=readahead, **kwargs)
-
- def get(self, filepath, client_key):
- """Get values according to the filepath from one lmdb named client_key.
-
- Args:
- filepath (str | obj:`Path`): Here, filepath is the lmdb key.
- client_key (str): Used for distinguishing differnet lmdb envs.
- """
- filepath = str(filepath)
- assert client_key in self._client, (f'client_key {client_key} is not ' 'in lmdb clients.')
- client = self._client[client_key]
- with client.begin(write=False) as txn:
- value_buf = txn.get(filepath.encode('ascii'))
- return value_buf
-
- def get_text(self, filepath):
- raise NotImplementedError
-
-
-class FileClient(object):
- """A general file client to access files in different backend.
-
- The client loads a file or text in a specified backend from its path
- and return it as a binary file. it can also register other backend
- accessor with a given name and backend class.
-
- Attributes:
- backend (str): The storage backend type. Options are "disk",
- "memcached" and "lmdb".
- client (:obj:`BaseStorageBackend`): The backend object.
- """
-
- _backends = {
- 'disk': HardDiskBackend,
- 'memcached': MemcachedBackend,
- 'lmdb': LmdbBackend,
- }
-
- def __init__(self, backend='disk', **kwargs):
- if backend not in self._backends:
- raise ValueError(f'Backend {backend} is not supported. Currently supported ones'
- f' are {list(self._backends.keys())}')
- self.backend = backend
- self.client = self._backends[backend](**kwargs)
-
- def get(self, filepath, client_key='default'):
- # client_key is used only for lmdb, where different fileclients have
- # different lmdb environments.
- if self.backend == 'lmdb':
- return self.client.get(filepath, client_key)
- else:
- return self.client.get(filepath)
-
- def get_text(self, filepath):
- return self.client.get_text(filepath)
diff --git a/CodeFormer/CodeFormer/basicsr/utils/img_util.py b/CodeFormer/CodeFormer/basicsr/utils/img_util.py
deleted file mode 100644
index d409a132ff216e6943a276fb5d8cd5f410824883..0000000000000000000000000000000000000000
--- a/CodeFormer/CodeFormer/basicsr/utils/img_util.py
+++ /dev/null
@@ -1,170 +0,0 @@
-import cv2
-import math
-import numpy as np
-import os
-import torch
-from torchvision.utils import make_grid
-
-
-def img2tensor(imgs, bgr2rgb=True, float32=True):
- """Numpy array to tensor.
-
- Args:
- imgs (list[ndarray] | ndarray): Input images.
- bgr2rgb (bool): Whether to change bgr to rgb.
- float32 (bool): Whether to change to float32.
-
- Returns:
- list[tensor] | tensor: Tensor images. If returned results only have
- one element, just return tensor.
- """
-
- def _totensor(img, bgr2rgb, float32):
- if img.shape[2] == 3 and bgr2rgb:
- if img.dtype == 'float64':
- img = img.astype('float32')
- img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
- img = torch.from_numpy(img.transpose(2, 0, 1))
- if float32:
- img = img.float()
- return img
-
- if isinstance(imgs, list):
- return [_totensor(img, bgr2rgb, float32) for img in imgs]
- else:
- return _totensor(imgs, bgr2rgb, float32)
-
-
-def tensor2img(tensor, rgb2bgr=True, out_type=np.uint8, min_max=(0, 1)):
- """Convert torch Tensors into image numpy arrays.
-
- After clamping to [min, max], values will be normalized to [0, 1].
-
- Args:
- tensor (Tensor or list[Tensor]): Accept shapes:
- 1) 4D mini-batch Tensor of shape (B x 3/1 x H x W);
- 2) 3D Tensor of shape (3/1 x H x W);
- 3) 2D Tensor of shape (H x W).
- Tensor channel should be in RGB order.
- rgb2bgr (bool): Whether to change rgb to bgr.
- out_type (numpy type): output types. If ``np.uint8``, transform outputs
- to uint8 type with range [0, 255]; otherwise, float type with
- range [0, 1]. Default: ``np.uint8``.
- min_max (tuple[int]): min and max values for clamp.
-
- Returns:
- (Tensor or list): 3D ndarray of shape (H x W x C) OR 2D ndarray of
- shape (H x W). The channel order is BGR.
- """
- if not (torch.is_tensor(tensor) or (isinstance(tensor, list) and all(torch.is_tensor(t) for t in tensor))):
- raise TypeError(f'tensor or list of tensors expected, got {type(tensor)}')
-
- if torch.is_tensor(tensor):
- tensor = [tensor]
- result = []
- for _tensor in tensor:
- _tensor = _tensor.squeeze(0).float().detach().cpu().clamp_(*min_max)
- _tensor = (_tensor - min_max[0]) / (min_max[1] - min_max[0])
-
- n_dim = _tensor.dim()
- if n_dim == 4:
- img_np = make_grid(_tensor, nrow=int(math.sqrt(_tensor.size(0))), normalize=False).numpy()
- img_np = img_np.transpose(1, 2, 0)
- if rgb2bgr:
- img_np = cv2.cvtColor(img_np, cv2.COLOR_RGB2BGR)
- elif n_dim == 3:
- img_np = _tensor.numpy()
- img_np = img_np.transpose(1, 2, 0)
- if img_np.shape[2] == 1: # gray image
- img_np = np.squeeze(img_np, axis=2)
- else:
- if rgb2bgr:
- img_np = cv2.cvtColor(img_np, cv2.COLOR_RGB2BGR)
- elif n_dim == 2:
- img_np = _tensor.numpy()
- else:
- raise TypeError('Only support 4D, 3D or 2D tensor. ' f'But received with dimension: {n_dim}')
- if out_type == np.uint8:
- # Unlike MATLAB, numpy.unit8() WILL NOT round by default.
- img_np = (img_np * 255.0).round()
- img_np = img_np.astype(out_type)
- result.append(img_np)
- if len(result) == 1:
- result = result[0]
- return result
-
-
-def tensor2img_fast(tensor, rgb2bgr=True, min_max=(0, 1)):
- """This implementation is slightly faster than tensor2img.
- It now only supports torch tensor with shape (1, c, h, w).
-
- Args:
- tensor (Tensor): Now only support torch tensor with (1, c, h, w).
- rgb2bgr (bool): Whether to change rgb to bgr. Default: True.
- min_max (tuple[int]): min and max values for clamp.
- """
- output = tensor.squeeze(0).detach().clamp_(*min_max).permute(1, 2, 0)
- output = (output - min_max[0]) / (min_max[1] - min_max[0]) * 255
- output = output.type(torch.uint8).cpu().numpy()
- if rgb2bgr:
- output = cv2.cvtColor(output, cv2.COLOR_RGB2BGR)
- return output
-
-
-def imfrombytes(content, flag='color', float32=False):
- """Read an image from bytes.
-
- Args:
- content (bytes): Image bytes got from files or other streams.
- flag (str): Flags specifying the color type of a loaded image,
- candidates are `color`, `grayscale` and `unchanged`.
- float32 (bool): Whether to change to float32., If True, will also norm
- to [0, 1]. Default: False.
-
- Returns:
- ndarray: Loaded image array.
- """
- img_np = np.frombuffer(content, np.uint8)
- imread_flags = {'color': cv2.IMREAD_COLOR, 'grayscale': cv2.IMREAD_GRAYSCALE, 'unchanged': cv2.IMREAD_UNCHANGED}
- img = cv2.imdecode(img_np, imread_flags[flag])
- if float32:
- img = img.astype(np.float32) / 255.
- return img
-
-
-def imwrite(img, file_path, params=None, auto_mkdir=True):
- """Write image to file.
-
- Args:
- img (ndarray): Image array to be written.
- file_path (str): Image file path.
- params (None or list): Same as opencv's :func:`imwrite` interface.
- auto_mkdir (bool): If the parent folder of `file_path` does not exist,
- whether to create it automatically.
-
- Returns:
- bool: Successful or not.
- """
- if auto_mkdir:
- dir_name = os.path.abspath(os.path.dirname(file_path))
- os.makedirs(dir_name, exist_ok=True)
- return cv2.imwrite(file_path, img, params)
-
-
-def crop_border(imgs, crop_border):
- """Crop borders of images.
-
- Args:
- imgs (list[ndarray] | ndarray): Images with shape (h, w, c).
- crop_border (int): Crop border for each end of height and weight.
-
- Returns:
- list[ndarray]: Cropped images.
- """
- if crop_border == 0:
- return imgs
- else:
- if isinstance(imgs, list):
- return [v[crop_border:-crop_border, crop_border:-crop_border, ...] for v in imgs]
- else:
- return imgs[crop_border:-crop_border, crop_border:-crop_border, ...]
diff --git a/CodeFormer/CodeFormer/basicsr/utils/lmdb_util.py b/CodeFormer/CodeFormer/basicsr/utils/lmdb_util.py
deleted file mode 100644
index e0a10f60ffca2e36ac5f5564aafd70e79d06a723..0000000000000000000000000000000000000000
--- a/CodeFormer/CodeFormer/basicsr/utils/lmdb_util.py
+++ /dev/null
@@ -1,196 +0,0 @@
-import cv2
-import lmdb
-import sys
-from multiprocessing import Pool
-from os import path as osp
-from tqdm import tqdm
-
-
-def make_lmdb_from_imgs(data_path,
- lmdb_path,
- img_path_list,
- keys,
- batch=5000,
- compress_level=1,
- multiprocessing_read=False,
- n_thread=40,
- map_size=None):
- """Make lmdb from images.
-
- Contents of lmdb. The file structure is:
- example.lmdb
- ├── data.mdb
- ├── lock.mdb
- ├── meta_info.txt
-
- The data.mdb and lock.mdb are standard lmdb files and you can refer to
- https://lmdb.readthedocs.io/en/release/ for more details.
-
- The meta_info.txt is a specified txt file to record the meta information
- of our datasets. It will be automatically created when preparing
- datasets by our provided dataset tools.
- Each line in the txt file records 1)image name (with extension),
- 2)image shape, and 3)compression level, separated by a white space.
-
- For example, the meta information could be:
- `000_00000000.png (720,1280,3) 1`, which means:
- 1) image name (with extension): 000_00000000.png;
- 2) image shape: (720,1280,3);
- 3) compression level: 1
-
- We use the image name without extension as the lmdb key.
-
- If `multiprocessing_read` is True, it will read all the images to memory
- using multiprocessing. Thus, your server needs to have enough memory.
-
- Args:
- data_path (str): Data path for reading images.
- lmdb_path (str): Lmdb save path.
- img_path_list (str): Image path list.
- keys (str): Used for lmdb keys.
- batch (int): After processing batch images, lmdb commits.
- Default: 5000.
- compress_level (int): Compress level when encoding images. Default: 1.
- multiprocessing_read (bool): Whether use multiprocessing to read all
- the images to memory. Default: False.
- n_thread (int): For multiprocessing.
- map_size (int | None): Map size for lmdb env. If None, use the
- estimated size from images. Default: None
- """
-
- assert len(img_path_list) == len(keys), ('img_path_list and keys should have the same length, '
- f'but got {len(img_path_list)} and {len(keys)}')
- print(f'Create lmdb for {data_path}, save to {lmdb_path}...')
- print(f'Totoal images: {len(img_path_list)}')
- if not lmdb_path.endswith('.lmdb'):
- raise ValueError("lmdb_path must end with '.lmdb'.")
- if osp.exists(lmdb_path):
- print(f'Folder {lmdb_path} already exists. Exit.')
- sys.exit(1)
-
- if multiprocessing_read:
- # read all the images to memory (multiprocessing)
- dataset = {} # use dict to keep the order for multiprocessing
- shapes = {}
- print(f'Read images with multiprocessing, #thread: {n_thread} ...')
- pbar = tqdm(total=len(img_path_list), unit='image')
-
- def callback(arg):
- """get the image data and update pbar."""
- key, dataset[key], shapes[key] = arg
- pbar.update(1)
- pbar.set_description(f'Read {key}')
-
- pool = Pool(n_thread)
- for path, key in zip(img_path_list, keys):
- pool.apply_async(read_img_worker, args=(osp.join(data_path, path), key, compress_level), callback=callback)
- pool.close()
- pool.join()
- pbar.close()
- print(f'Finish reading {len(img_path_list)} images.')
-
- # create lmdb environment
- if map_size is None:
- # obtain data size for one image
- img = cv2.imread(osp.join(data_path, img_path_list[0]), cv2.IMREAD_UNCHANGED)
- _, img_byte = cv2.imencode('.png', img, [cv2.IMWRITE_PNG_COMPRESSION, compress_level])
- data_size_per_img = img_byte.nbytes
- print('Data size per image is: ', data_size_per_img)
- data_size = data_size_per_img * len(img_path_list)
- map_size = data_size * 10
-
- env = lmdb.open(lmdb_path, map_size=map_size)
-
- # write data to lmdb
- pbar = tqdm(total=len(img_path_list), unit='chunk')
- txn = env.begin(write=True)
- txt_file = open(osp.join(lmdb_path, 'meta_info.txt'), 'w')
- for idx, (path, key) in enumerate(zip(img_path_list, keys)):
- pbar.update(1)
- pbar.set_description(f'Write {key}')
- key_byte = key.encode('ascii')
- if multiprocessing_read:
- img_byte = dataset[key]
- h, w, c = shapes[key]
- else:
- _, img_byte, img_shape = read_img_worker(osp.join(data_path, path), key, compress_level)
- h, w, c = img_shape
-
- txn.put(key_byte, img_byte)
- # write meta information
- txt_file.write(f'{key}.png ({h},{w},{c}) {compress_level}\n')
- if idx % batch == 0:
- txn.commit()
- txn = env.begin(write=True)
- pbar.close()
- txn.commit()
- env.close()
- txt_file.close()
- print('\nFinish writing lmdb.')
-
-
-def read_img_worker(path, key, compress_level):
- """Read image worker.
-
- Args:
- path (str): Image path.
- key (str): Image key.
- compress_level (int): Compress level when encoding images.
-
- Returns:
- str: Image key.
- byte: Image byte.
- tuple[int]: Image shape.
- """
-
- img = cv2.imread(path, cv2.IMREAD_UNCHANGED)
- if img.ndim == 2:
- h, w = img.shape
- c = 1
- else:
- h, w, c = img.shape
- _, img_byte = cv2.imencode('.png', img, [cv2.IMWRITE_PNG_COMPRESSION, compress_level])
- return (key, img_byte, (h, w, c))
-
-
-class LmdbMaker():
- """LMDB Maker.
-
- Args:
- lmdb_path (str): Lmdb save path.
- map_size (int): Map size for lmdb env. Default: 1024 ** 4, 1TB.
- batch (int): After processing batch images, lmdb commits.
- Default: 5000.
- compress_level (int): Compress level when encoding images. Default: 1.
- """
-
- def __init__(self, lmdb_path, map_size=1024**4, batch=5000, compress_level=1):
- if not lmdb_path.endswith('.lmdb'):
- raise ValueError("lmdb_path must end with '.lmdb'.")
- if osp.exists(lmdb_path):
- print(f'Folder {lmdb_path} already exists. Exit.')
- sys.exit(1)
-
- self.lmdb_path = lmdb_path
- self.batch = batch
- self.compress_level = compress_level
- self.env = lmdb.open(lmdb_path, map_size=map_size)
- self.txn = self.env.begin(write=True)
- self.txt_file = open(osp.join(lmdb_path, 'meta_info.txt'), 'w')
- self.counter = 0
-
- def put(self, img_byte, key, img_shape):
- self.counter += 1
- key_byte = key.encode('ascii')
- self.txn.put(key_byte, img_byte)
- # write meta information
- h, w, c = img_shape
- self.txt_file.write(f'{key}.png ({h},{w},{c}) {self.compress_level}\n')
- if self.counter % self.batch == 0:
- self.txn.commit()
- self.txn = self.env.begin(write=True)
-
- def close(self):
- self.txn.commit()
- self.env.close()
- self.txt_file.close()
diff --git a/CodeFormer/CodeFormer/basicsr/utils/logger.py b/CodeFormer/CodeFormer/basicsr/utils/logger.py
deleted file mode 100644
index 9714bf59c30fc82de24c1ee58d9118d0864b3572..0000000000000000000000000000000000000000
--- a/CodeFormer/CodeFormer/basicsr/utils/logger.py
+++ /dev/null
@@ -1,169 +0,0 @@
-import datetime
-import logging
-import time
-
-from .dist_util import get_dist_info, master_only
-
-initialized_logger = {}
-
-
-class MessageLogger():
- """Message logger for printing.
- Args:
- opt (dict): Config. It contains the following keys:
- name (str): Exp name.
- logger (dict): Contains 'print_freq' (str) for logger interval.
- train (dict): Contains 'total_iter' (int) for total iters.
- use_tb_logger (bool): Use tensorboard logger.
- start_iter (int): Start iter. Default: 1.
- tb_logger (obj:`tb_logger`): Tensorboard logger. Default: None.
- """
-
- def __init__(self, opt, start_iter=1, tb_logger=None):
- self.exp_name = opt['name']
- self.interval = opt['logger']['print_freq']
- self.start_iter = start_iter
- self.max_iters = opt['train']['total_iter']
- self.use_tb_logger = opt['logger']['use_tb_logger']
- self.tb_logger = tb_logger
- self.start_time = time.time()
- self.logger = get_root_logger()
-
- @master_only
- def __call__(self, log_vars):
- """Format logging message.
- Args:
- log_vars (dict): It contains the following keys:
- epoch (int): Epoch number.
- iter (int): Current iter.
- lrs (list): List for learning rates.
- time (float): Iter time.
- data_time (float): Data time for each iter.
- """
- # epoch, iter, learning rates
- epoch = log_vars.pop('epoch')
- current_iter = log_vars.pop('iter')
- lrs = log_vars.pop('lrs')
-
- message = (f'[{self.exp_name[:5]}..][epoch:{epoch:3d}, ' f'iter:{current_iter:8,d}, lr:(')
- for v in lrs:
- message += f'{v:.3e},'
- message += ')] '
-
- # time and estimated time
- if 'time' in log_vars.keys():
- iter_time = log_vars.pop('time')
- data_time = log_vars.pop('data_time')
-
- total_time = time.time() - self.start_time
- time_sec_avg = total_time / (current_iter - self.start_iter + 1)
- eta_sec = time_sec_avg * (self.max_iters - current_iter - 1)
- eta_str = str(datetime.timedelta(seconds=int(eta_sec)))
- message += f'[eta: {eta_str}, '
- message += f'time (data): {iter_time:.3f} ({data_time:.3f})] '
-
- # other items, especially losses
- for k, v in log_vars.items():
- message += f'{k}: {v:.4e} '
- # tensorboard logger
- if self.use_tb_logger:
- if k.startswith('l_'):
- self.tb_logger.add_scalar(f'losses/{k}', v, current_iter)
- else:
- self.tb_logger.add_scalar(k, v, current_iter)
- self.logger.info(message)
-
-
-@master_only
-def init_tb_logger(log_dir):
- from torch.utils.tensorboard import SummaryWriter
- tb_logger = SummaryWriter(log_dir=log_dir)
- return tb_logger
-
-
-@master_only
-def init_wandb_logger(opt):
- """We now only use wandb to sync tensorboard log."""
- import wandb
- logger = logging.getLogger('basicsr')
-
- project = opt['logger']['wandb']['project']
- resume_id = opt['logger']['wandb'].get('resume_id')
- if resume_id:
- wandb_id = resume_id
- resume = 'allow'
- logger.warning(f'Resume wandb logger with id={wandb_id}.')
- else:
- wandb_id = wandb.util.generate_id()
- resume = 'never'
-
- wandb.init(id=wandb_id, resume=resume, name=opt['name'], config=opt, project=project, sync_tensorboard=True)
-
- logger.info(f'Use wandb logger with id={wandb_id}; project={project}.')
-
-
-def get_root_logger(logger_name='basicsr', log_level=logging.INFO, log_file=None):
- """Get the root logger.
- The logger will be initialized if it has not been initialized. By default a
- StreamHandler will be added. If `log_file` is specified, a FileHandler will
- also be added.
- Args:
- logger_name (str): root logger name. Default: 'basicsr'.
- log_file (str | None): The log filename. If specified, a FileHandler
- will be added to the root logger.
- log_level (int): The root logger level. Note that only the process of
- rank 0 is affected, while other processes will set the level to
- "Error" and be silent most of the time.
- Returns:
- logging.Logger: The root logger.
- """
- logger = logging.getLogger(logger_name)
- # if the logger has been initialized, just return it
- if logger_name in initialized_logger:
- return logger
-
- format_str = '%(asctime)s %(levelname)s: %(message)s'
- stream_handler = logging.StreamHandler()
- stream_handler.setFormatter(logging.Formatter(format_str))
- logger.addHandler(stream_handler)
- logger.propagate = False
- rank, _ = get_dist_info()
- if rank != 0:
- logger.setLevel('ERROR')
- elif log_file is not None:
- logger.setLevel(log_level)
- # add file handler
- # file_handler = logging.FileHandler(log_file, 'w')
- file_handler = logging.FileHandler(log_file, 'a') #Shangchen: keep the previous log
- file_handler.setFormatter(logging.Formatter(format_str))
- file_handler.setLevel(log_level)
- logger.addHandler(file_handler)
- initialized_logger[logger_name] = True
- return logger
-
-
-def get_env_info():
- """Get environment information.
- Currently, only log the software version.
- """
- import torch
- import torchvision
-
- from basicsr.version import __version__
- msg = r"""
- ____ _ _____ ____
- / __ ) ____ _ _____ (_)_____/ ___/ / __ \
- / __ |/ __ `// ___// // ___/\__ \ / /_/ /
- / /_/ // /_/ /(__ )/ // /__ ___/ // _, _/
- /_____/ \__,_//____//_/ \___//____//_/ |_|
- ______ __ __ __ __
- / ____/____ ____ ____/ / / / __ __ _____ / /__ / /
- / / __ / __ \ / __ \ / __ / / / / / / // ___// //_/ / /
- / /_/ // /_/ // /_/ // /_/ / / /___/ /_/ // /__ / /< /_/
- \____/ \____/ \____/ \____/ /_____/\____/ \___//_/|_| (_)
- """
- msg += ('\nVersion Information: '
- f'\n\tBasicSR: {__version__}'
- f'\n\tPyTorch: {torch.__version__}'
- f'\n\tTorchVision: {torchvision.__version__}')
- return msg
\ No newline at end of file
diff --git a/CodeFormer/CodeFormer/basicsr/utils/matlab_functions.py b/CodeFormer/CodeFormer/basicsr/utils/matlab_functions.py
deleted file mode 100644
index c6ce1004a2c9f8521505c4b5889d3c24a909c70d..0000000000000000000000000000000000000000
--- a/CodeFormer/CodeFormer/basicsr/utils/matlab_functions.py
+++ /dev/null
@@ -1,347 +0,0 @@
-import math
-import numpy as np
-import torch
-
-
-def cubic(x):
- """cubic function used for calculate_weights_indices."""
- absx = torch.abs(x)
- absx2 = absx**2
- absx3 = absx**3
- return (1.5 * absx3 - 2.5 * absx2 + 1) * (
- (absx <= 1).type_as(absx)) + (-0.5 * absx3 + 2.5 * absx2 - 4 * absx + 2) * (((absx > 1) *
- (absx <= 2)).type_as(absx))
-
-
-def calculate_weights_indices(in_length, out_length, scale, kernel, kernel_width, antialiasing):
- """Calculate weights and indices, used for imresize function.
-
- Args:
- in_length (int): Input length.
- out_length (int): Output length.
- scale (float): Scale factor.
- kernel_width (int): Kernel width.
- antialisaing (bool): Whether to apply anti-aliasing when downsampling.
- """
-
- if (scale < 1) and antialiasing:
- # Use a modified kernel (larger kernel width) to simultaneously
- # interpolate and antialias
- kernel_width = kernel_width / scale
-
- # Output-space coordinates
- x = torch.linspace(1, out_length, out_length)
-
- # Input-space coordinates. Calculate the inverse mapping such that 0.5
- # in output space maps to 0.5 in input space, and 0.5 + scale in output
- # space maps to 1.5 in input space.
- u = x / scale + 0.5 * (1 - 1 / scale)
-
- # What is the left-most pixel that can be involved in the computation?
- left = torch.floor(u - kernel_width / 2)
-
- # What is the maximum number of pixels that can be involved in the
- # computation? Note: it's OK to use an extra pixel here; if the
- # corresponding weights are all zero, it will be eliminated at the end
- # of this function.
- p = math.ceil(kernel_width) + 2
-
- # The indices of the input pixels involved in computing the k-th output
- # pixel are in row k of the indices matrix.
- indices = left.view(out_length, 1).expand(out_length, p) + torch.linspace(0, p - 1, p).view(1, p).expand(
- out_length, p)
-
- # The weights used to compute the k-th output pixel are in row k of the
- # weights matrix.
- distance_to_center = u.view(out_length, 1).expand(out_length, p) - indices
-
- # apply cubic kernel
- if (scale < 1) and antialiasing:
- weights = scale * cubic(distance_to_center * scale)
- else:
- weights = cubic(distance_to_center)
-
- # Normalize the weights matrix so that each row sums to 1.
- weights_sum = torch.sum(weights, 1).view(out_length, 1)
- weights = weights / weights_sum.expand(out_length, p)
-
- # If a column in weights is all zero, get rid of it. only consider the
- # first and last column.
- weights_zero_tmp = torch.sum((weights == 0), 0)
- if not math.isclose(weights_zero_tmp[0], 0, rel_tol=1e-6):
- indices = indices.narrow(1, 1, p - 2)
- weights = weights.narrow(1, 1, p - 2)
- if not math.isclose(weights_zero_tmp[-1], 0, rel_tol=1e-6):
- indices = indices.narrow(1, 0, p - 2)
- weights = weights.narrow(1, 0, p - 2)
- weights = weights.contiguous()
- indices = indices.contiguous()
- sym_len_s = -indices.min() + 1
- sym_len_e = indices.max() - in_length
- indices = indices + sym_len_s - 1
- return weights, indices, int(sym_len_s), int(sym_len_e)
-
-
-@torch.no_grad()
-def imresize(img, scale, antialiasing=True):
- """imresize function same as MATLAB.
-
- It now only supports bicubic.
- The same scale applies for both height and width.
-
- Args:
- img (Tensor | Numpy array):
- Tensor: Input image with shape (c, h, w), [0, 1] range.
- Numpy: Input image with shape (h, w, c), [0, 1] range.
- scale (float): Scale factor. The same scale applies for both height
- and width.
- antialisaing (bool): Whether to apply anti-aliasing when downsampling.
- Default: True.
-
- Returns:
- Tensor: Output image with shape (c, h, w), [0, 1] range, w/o round.
- """
- if type(img).__module__ == np.__name__: # numpy type
- numpy_type = True
- img = torch.from_numpy(img.transpose(2, 0, 1)).float()
- else:
- numpy_type = False
-
- in_c, in_h, in_w = img.size()
- out_h, out_w = math.ceil(in_h * scale), math.ceil(in_w * scale)
- kernel_width = 4
- kernel = 'cubic'
-
- # get weights and indices
- weights_h, indices_h, sym_len_hs, sym_len_he = calculate_weights_indices(in_h, out_h, scale, kernel, kernel_width,
- antialiasing)
- weights_w, indices_w, sym_len_ws, sym_len_we = calculate_weights_indices(in_w, out_w, scale, kernel, kernel_width,
- antialiasing)
- # process H dimension
- # symmetric copying
- img_aug = torch.FloatTensor(in_c, in_h + sym_len_hs + sym_len_he, in_w)
- img_aug.narrow(1, sym_len_hs, in_h).copy_(img)
-
- sym_patch = img[:, :sym_len_hs, :]
- inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long()
- sym_patch_inv = sym_patch.index_select(1, inv_idx)
- img_aug.narrow(1, 0, sym_len_hs).copy_(sym_patch_inv)
-
- sym_patch = img[:, -sym_len_he:, :]
- inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long()
- sym_patch_inv = sym_patch.index_select(1, inv_idx)
- img_aug.narrow(1, sym_len_hs + in_h, sym_len_he).copy_(sym_patch_inv)
-
- out_1 = torch.FloatTensor(in_c, out_h, in_w)
- kernel_width = weights_h.size(1)
- for i in range(out_h):
- idx = int(indices_h[i][0])
- for j in range(in_c):
- out_1[j, i, :] = img_aug[j, idx:idx + kernel_width, :].transpose(0, 1).mv(weights_h[i])
-
- # process W dimension
- # symmetric copying
- out_1_aug = torch.FloatTensor(in_c, out_h, in_w + sym_len_ws + sym_len_we)
- out_1_aug.narrow(2, sym_len_ws, in_w).copy_(out_1)
-
- sym_patch = out_1[:, :, :sym_len_ws]
- inv_idx = torch.arange(sym_patch.size(2) - 1, -1, -1).long()
- sym_patch_inv = sym_patch.index_select(2, inv_idx)
- out_1_aug.narrow(2, 0, sym_len_ws).copy_(sym_patch_inv)
-
- sym_patch = out_1[:, :, -sym_len_we:]
- inv_idx = torch.arange(sym_patch.size(2) - 1, -1, -1).long()
- sym_patch_inv = sym_patch.index_select(2, inv_idx)
- out_1_aug.narrow(2, sym_len_ws + in_w, sym_len_we).copy_(sym_patch_inv)
-
- out_2 = torch.FloatTensor(in_c, out_h, out_w)
- kernel_width = weights_w.size(1)
- for i in range(out_w):
- idx = int(indices_w[i][0])
- for j in range(in_c):
- out_2[j, :, i] = out_1_aug[j, :, idx:idx + kernel_width].mv(weights_w[i])
-
- if numpy_type:
- out_2 = out_2.numpy().transpose(1, 2, 0)
- return out_2
-
-
-def rgb2ycbcr(img, y_only=False):
- """Convert a RGB image to YCbCr image.
-
- This function produces the same results as Matlab's `rgb2ycbcr` function.
- It implements the ITU-R BT.601 conversion for standard-definition
- television. See more details in
- https://en.wikipedia.org/wiki/YCbCr#ITU-R_BT.601_conversion.
-
- It differs from a similar function in cv2.cvtColor: `RGB <-> YCrCb`.
- In OpenCV, it implements a JPEG conversion. See more details in
- https://en.wikipedia.org/wiki/YCbCr#JPEG_conversion.
-
- Args:
- img (ndarray): The input image. It accepts:
- 1. np.uint8 type with range [0, 255];
- 2. np.float32 type with range [0, 1].
- y_only (bool): Whether to only return Y channel. Default: False.
-
- Returns:
- ndarray: The converted YCbCr image. The output image has the same type
- and range as input image.
- """
- img_type = img.dtype
- img = _convert_input_type_range(img)
- if y_only:
- out_img = np.dot(img, [65.481, 128.553, 24.966]) + 16.0
- else:
- out_img = np.matmul(
- img, [[65.481, -37.797, 112.0], [128.553, -74.203, -93.786], [24.966, 112.0, -18.214]]) + [16, 128, 128]
- out_img = _convert_output_type_range(out_img, img_type)
- return out_img
-
-
-def bgr2ycbcr(img, y_only=False):
- """Convert a BGR image to YCbCr image.
-
- The bgr version of rgb2ycbcr.
- It implements the ITU-R BT.601 conversion for standard-definition
- television. See more details in
- https://en.wikipedia.org/wiki/YCbCr#ITU-R_BT.601_conversion.
-
- It differs from a similar function in cv2.cvtColor: `BGR <-> YCrCb`.
- In OpenCV, it implements a JPEG conversion. See more details in
- https://en.wikipedia.org/wiki/YCbCr#JPEG_conversion.
-
- Args:
- img (ndarray): The input image. It accepts:
- 1. np.uint8 type with range [0, 255];
- 2. np.float32 type with range [0, 1].
- y_only (bool): Whether to only return Y channel. Default: False.
-
- Returns:
- ndarray: The converted YCbCr image. The output image has the same type
- and range as input image.
- """
- img_type = img.dtype
- img = _convert_input_type_range(img)
- if y_only:
- out_img = np.dot(img, [24.966, 128.553, 65.481]) + 16.0
- else:
- out_img = np.matmul(
- img, [[24.966, 112.0, -18.214], [128.553, -74.203, -93.786], [65.481, -37.797, 112.0]]) + [16, 128, 128]
- out_img = _convert_output_type_range(out_img, img_type)
- return out_img
-
-
-def ycbcr2rgb(img):
- """Convert a YCbCr image to RGB image.
-
- This function produces the same results as Matlab's ycbcr2rgb function.
- It implements the ITU-R BT.601 conversion for standard-definition
- television. See more details in
- https://en.wikipedia.org/wiki/YCbCr#ITU-R_BT.601_conversion.
-
- It differs from a similar function in cv2.cvtColor: `YCrCb <-> RGB`.
- In OpenCV, it implements a JPEG conversion. See more details in
- https://en.wikipedia.org/wiki/YCbCr#JPEG_conversion.
-
- Args:
- img (ndarray): The input image. It accepts:
- 1. np.uint8 type with range [0, 255];
- 2. np.float32 type with range [0, 1].
-
- Returns:
- ndarray: The converted RGB image. The output image has the same type
- and range as input image.
- """
- img_type = img.dtype
- img = _convert_input_type_range(img) * 255
- out_img = np.matmul(img, [[0.00456621, 0.00456621, 0.00456621], [0, -0.00153632, 0.00791071],
- [0.00625893, -0.00318811, 0]]) * 255.0 + [-222.921, 135.576, -276.836] # noqa: E126
- out_img = _convert_output_type_range(out_img, img_type)
- return out_img
-
-
-def ycbcr2bgr(img):
- """Convert a YCbCr image to BGR image.
-
- The bgr version of ycbcr2rgb.
- It implements the ITU-R BT.601 conversion for standard-definition
- television. See more details in
- https://en.wikipedia.org/wiki/YCbCr#ITU-R_BT.601_conversion.
-
- It differs from a similar function in cv2.cvtColor: `YCrCb <-> BGR`.
- In OpenCV, it implements a JPEG conversion. See more details in
- https://en.wikipedia.org/wiki/YCbCr#JPEG_conversion.
-
- Args:
- img (ndarray): The input image. It accepts:
- 1. np.uint8 type with range [0, 255];
- 2. np.float32 type with range [0, 1].
-
- Returns:
- ndarray: The converted BGR image. The output image has the same type
- and range as input image.
- """
- img_type = img.dtype
- img = _convert_input_type_range(img) * 255
- out_img = np.matmul(img, [[0.00456621, 0.00456621, 0.00456621], [0.00791071, -0.00153632, 0],
- [0, -0.00318811, 0.00625893]]) * 255.0 + [-276.836, 135.576, -222.921] # noqa: E126
- out_img = _convert_output_type_range(out_img, img_type)
- return out_img
-
-
-def _convert_input_type_range(img):
- """Convert the type and range of the input image.
-
- It converts the input image to np.float32 type and range of [0, 1].
- It is mainly used for pre-processing the input image in colorspace
- convertion functions such as rgb2ycbcr and ycbcr2rgb.
-
- Args:
- img (ndarray): The input image. It accepts:
- 1. np.uint8 type with range [0, 255];
- 2. np.float32 type with range [0, 1].
-
- Returns:
- (ndarray): The converted image with type of np.float32 and range of
- [0, 1].
- """
- img_type = img.dtype
- img = img.astype(np.float32)
- if img_type == np.float32:
- pass
- elif img_type == np.uint8:
- img /= 255.
- else:
- raise TypeError('The img type should be np.float32 or np.uint8, ' f'but got {img_type}')
- return img
-
-
-def _convert_output_type_range(img, dst_type):
- """Convert the type and range of the image according to dst_type.
-
- It converts the image to desired type and range. If `dst_type` is np.uint8,
- images will be converted to np.uint8 type with range [0, 255]. If
- `dst_type` is np.float32, it converts the image to np.float32 type with
- range [0, 1].
- It is mainly used for post-processing images in colorspace convertion
- functions such as rgb2ycbcr and ycbcr2rgb.
-
- Args:
- img (ndarray): The image to be converted with np.float32 type and
- range [0, 255].
- dst_type (np.uint8 | np.float32): If dst_type is np.uint8, it
- converts the image to np.uint8 type with range [0, 255]. If
- dst_type is np.float32, it converts the image to np.float32 type
- with range [0, 1].
-
- Returns:
- (ndarray): The converted image with desired type and range.
- """
- if dst_type not in (np.uint8, np.float32):
- raise TypeError('The dst_type should be np.float32 or np.uint8, ' f'but got {dst_type}')
- if dst_type == np.uint8:
- img = img.round()
- else:
- img /= 255.
- return img.astype(dst_type)
diff --git a/CodeFormer/CodeFormer/basicsr/utils/misc.py b/CodeFormer/CodeFormer/basicsr/utils/misc.py
deleted file mode 100644
index 3b444ff3b950e38f43a5451d1330ff1b65951a9e..0000000000000000000000000000000000000000
--- a/CodeFormer/CodeFormer/basicsr/utils/misc.py
+++ /dev/null
@@ -1,134 +0,0 @@
-import numpy as np
-import os
-import random
-import time
-import torch
-from os import path as osp
-
-from .dist_util import master_only
-from .logger import get_root_logger
-
-
-def set_random_seed(seed):
- """Set random seeds."""
- random.seed(seed)
- np.random.seed(seed)
- torch.manual_seed(seed)
- torch.cuda.manual_seed(seed)
- torch.cuda.manual_seed_all(seed)
-
-
-def get_time_str():
- return time.strftime('%Y%m%d_%H%M%S', time.localtime())
-
-
-def mkdir_and_rename(path):
- """mkdirs. If path exists, rename it with timestamp and create a new one.
-
- Args:
- path (str): Folder path.
- """
- if osp.exists(path):
- new_name = path + '_archived_' + get_time_str()
- print(f'Path already exists. Rename it to {new_name}', flush=True)
- os.rename(path, new_name)
- os.makedirs(path, exist_ok=True)
-
-
-@master_only
-def make_exp_dirs(opt):
- """Make dirs for experiments."""
- path_opt = opt['path'].copy()
- if opt['is_train']:
- mkdir_and_rename(path_opt.pop('experiments_root'))
- else:
- mkdir_and_rename(path_opt.pop('results_root'))
- for key, path in path_opt.items():
- if ('strict_load' not in key) and ('pretrain_network' not in key) and ('resume' not in key):
- os.makedirs(path, exist_ok=True)
-
-
-def scandir(dir_path, suffix=None, recursive=False, full_path=False):
- """Scan a directory to find the interested files.
-
- Args:
- dir_path (str): Path of the directory.
- suffix (str | tuple(str), optional): File suffix that we are
- interested in. Default: None.
- recursive (bool, optional): If set to True, recursively scan the
- directory. Default: False.
- full_path (bool, optional): If set to True, include the dir_path.
- Default: False.
-
- Returns:
- A generator for all the interested files with relative pathes.
- """
-
- if (suffix is not None) and not isinstance(suffix, (str, tuple)):
- raise TypeError('"suffix" must be a string or tuple of strings')
-
- root = dir_path
-
- def _scandir(dir_path, suffix, recursive):
- for entry in os.scandir(dir_path):
- if not entry.name.startswith('.') and entry.is_file():
- if full_path:
- return_path = entry.path
- else:
- return_path = osp.relpath(entry.path, root)
-
- if suffix is None:
- yield return_path
- elif return_path.endswith(suffix):
- yield return_path
- else:
- if recursive:
- yield from _scandir(entry.path, suffix=suffix, recursive=recursive)
- else:
- continue
-
- return _scandir(dir_path, suffix=suffix, recursive=recursive)
-
-
-def check_resume(opt, resume_iter):
- """Check resume states and pretrain_network paths.
-
- Args:
- opt (dict): Options.
- resume_iter (int): Resume iteration.
- """
- logger = get_root_logger()
- if opt['path']['resume_state']:
- # get all the networks
- networks = [key for key in opt.keys() if key.startswith('network_')]
- flag_pretrain = False
- for network in networks:
- if opt['path'].get(f'pretrain_{network}') is not None:
- flag_pretrain = True
- if flag_pretrain:
- logger.warning('pretrain_network path will be ignored during resuming.')
- # set pretrained model paths
- for network in networks:
- name = f'pretrain_{network}'
- basename = network.replace('network_', '')
- if opt['path'].get('ignore_resume_networks') is None or (basename
- not in opt['path']['ignore_resume_networks']):
- opt['path'][name] = osp.join(opt['path']['models'], f'net_{basename}_{resume_iter}.pth')
- logger.info(f"Set {name} to {opt['path'][name]}")
-
-
-def sizeof_fmt(size, suffix='B'):
- """Get human readable file size.
-
- Args:
- size (int): File size.
- suffix (str): Suffix. Default: 'B'.
-
- Return:
- str: Formated file siz.
- """
- for unit in ['', 'K', 'M', 'G', 'T', 'P', 'E', 'Z']:
- if abs(size) < 1024.0:
- return f'{size:3.1f} {unit}{suffix}'
- size /= 1024.0
- return f'{size:3.1f} Y{suffix}'
diff --git a/CodeFormer/CodeFormer/basicsr/utils/options.py b/CodeFormer/CodeFormer/basicsr/utils/options.py
deleted file mode 100644
index db490e4aa52e26fde31959fd74c2cef3af2ecf76..0000000000000000000000000000000000000000
--- a/CodeFormer/CodeFormer/basicsr/utils/options.py
+++ /dev/null
@@ -1,108 +0,0 @@
-import yaml
-import time
-from collections import OrderedDict
-from os import path as osp
-from basicsr.utils.misc import get_time_str
-
-def ordered_yaml():
- """Support OrderedDict for yaml.
-
- Returns:
- yaml Loader and Dumper.
- """
- try:
- from yaml import CDumper as Dumper
- from yaml import CLoader as Loader
- except ImportError:
- from yaml import Dumper, Loader
-
- _mapping_tag = yaml.resolver.BaseResolver.DEFAULT_MAPPING_TAG
-
- def dict_representer(dumper, data):
- return dumper.represent_dict(data.items())
-
- def dict_constructor(loader, node):
- return OrderedDict(loader.construct_pairs(node))
-
- Dumper.add_representer(OrderedDict, dict_representer)
- Loader.add_constructor(_mapping_tag, dict_constructor)
- return Loader, Dumper
-
-
-def parse(opt_path, root_path, is_train=True):
- """Parse option file.
-
- Args:
- opt_path (str): Option file path.
- is_train (str): Indicate whether in training or not. Default: True.
-
- Returns:
- (dict): Options.
- """
- with open(opt_path, mode='r') as f:
- Loader, _ = ordered_yaml()
- opt = yaml.load(f, Loader=Loader)
-
- opt['is_train'] = is_train
-
- # opt['name'] = f"{get_time_str()}_{opt['name']}"
- if opt['path'].get('resume_state', None): # Shangchen added
- resume_state_path = opt['path'].get('resume_state')
- opt['name'] = resume_state_path.split("/")[-3]
- else:
- opt['name'] = f"{get_time_str()}_{opt['name']}"
-
-
- # datasets
- for phase, dataset in opt['datasets'].items():
- # for several datasets, e.g., test_1, test_2
- phase = phase.split('_')[0]
- dataset['phase'] = phase
- if 'scale' in opt:
- dataset['scale'] = opt['scale']
- if dataset.get('dataroot_gt') is not None:
- dataset['dataroot_gt'] = osp.expanduser(dataset['dataroot_gt'])
- if dataset.get('dataroot_lq') is not None:
- dataset['dataroot_lq'] = osp.expanduser(dataset['dataroot_lq'])
-
- # paths
- for key, val in opt['path'].items():
- if (val is not None) and ('resume_state' in key or 'pretrain_network' in key):
- opt['path'][key] = osp.expanduser(val)
-
- if is_train:
- experiments_root = osp.join(root_path, 'experiments', opt['name'])
- opt['path']['experiments_root'] = experiments_root
- opt['path']['models'] = osp.join(experiments_root, 'models')
- opt['path']['training_states'] = osp.join(experiments_root, 'training_states')
- opt['path']['log'] = experiments_root
- opt['path']['visualization'] = osp.join(experiments_root, 'visualization')
-
- else: # test
- results_root = osp.join(root_path, 'results', opt['name'])
- opt['path']['results_root'] = results_root
- opt['path']['log'] = results_root
- opt['path']['visualization'] = osp.join(results_root, 'visualization')
-
- return opt
-
-
-def dict2str(opt, indent_level=1):
- """dict to string for printing options.
-
- Args:
- opt (dict): Option dict.
- indent_level (int): Indent level. Default: 1.
-
- Return:
- (str): Option string for printing.
- """
- msg = '\n'
- for k, v in opt.items():
- if isinstance(v, dict):
- msg += ' ' * (indent_level * 2) + k + ':['
- msg += dict2str(v, indent_level + 1)
- msg += ' ' * (indent_level * 2) + ']\n'
- else:
- msg += ' ' * (indent_level * 2) + k + ': ' + str(v) + '\n'
- return msg
diff --git a/CodeFormer/CodeFormer/basicsr/utils/realesrgan_utils.py b/CodeFormer/CodeFormer/basicsr/utils/realesrgan_utils.py
deleted file mode 100644
index 5a7b159b697d9e1ca0c51900ec1fe01f9feeb18f..0000000000000000000000000000000000000000
--- a/CodeFormer/CodeFormer/basicsr/utils/realesrgan_utils.py
+++ /dev/null
@@ -1,301 +0,0 @@
-import cv2
-import math
-import numpy as np
-import os
-import queue
-import threading
-import torch
-from basicsr.utils.download_util import load_file_from_url
-from torch.nn import functional as F
-
-# ROOT_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
-
-
-class RealESRGANer():
- """A helper class for upsampling images with RealESRGAN.
-
- Args:
- scale (int): Upsampling scale factor used in the networks. It is usually 2 or 4.
- model_path (str): The path to the pretrained model. It can be urls (will first download it automatically).
- model (nn.Module): The defined network. Default: None.
- tile (int): As too large images result in the out of GPU memory issue, so this tile option will first crop
- input images into tiles, and then process each of them. Finally, they will be merged into one image.
- 0 denotes for do not use tile. Default: 0.
- tile_pad (int): The pad size for each tile, to remove border artifacts. Default: 10.
- pre_pad (int): Pad the input images to avoid border artifacts. Default: 10.
- half (float): Whether to use half precision during inference. Default: False.
- """
-
- def __init__(self,
- scale,
- model_path,
- model=None,
- tile=0,
- tile_pad=10,
- pre_pad=10,
- half=False,
- device=None,
- gpu_id=None):
- self.scale = scale
- self.tile_size = tile
- self.tile_pad = tile_pad
- self.pre_pad = pre_pad
- self.mod_scale = None
- self.half = half
-
- # initialize model
- if gpu_id:
- self.device = torch.device(
- f'cuda:{gpu_id}' if torch.cuda.is_available() else 'cpu') if device is None else device
- else:
- self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') if device is None else device
- # if the model_path starts with https, it will first download models to the folder: realesrgan/weights
- if model_path.startswith('https://'):
- model_path = load_file_from_url(
- url=model_path, model_dir=os.path.join('weights/realesrgan'), progress=True, file_name=None)
- loadnet = torch.load(model_path, map_location=torch.device('cpu'))
- # prefer to use params_ema
- if 'params_ema' in loadnet:
- keyname = 'params_ema'
- else:
- keyname = 'params'
- model.load_state_dict(loadnet[keyname], strict=True)
- model.eval()
- self.model = model.to(self.device)
- if self.half:
- self.model = self.model.half()
-
- def pre_process(self, img):
- """Pre-process, such as pre-pad and mod pad, so that the images can be divisible
- """
- img = torch.from_numpy(np.transpose(img, (2, 0, 1))).float()
- self.img = img.unsqueeze(0).to(self.device)
- if self.half:
- self.img = self.img.half()
-
- # pre_pad
- self.img_pre_pad = self.img.clone()
- if self.pre_pad != 0:
- self.img = F.pad(self.img, (0, self.pre_pad, 0, self.pre_pad), 'reflect')
- # mod pad for divisible borders
- if self.scale == 2:
- self.mod_scale = 2
- elif self.scale == 1:
- self.mod_scale = 4
- if self.mod_scale is not None:
- self.mod_pad_h, self.mod_pad_w = 0, 0
- _, _, h, w = self.img.size()
- if (h % self.mod_scale != 0):
- self.mod_pad_h = (self.mod_scale - h % self.mod_scale)
- if (w % self.mod_scale != 0):
- self.mod_pad_w = (self.mod_scale - w % self.mod_scale)
- self.img = F.pad(self.img, (0, self.mod_pad_w, 0, self.mod_pad_h), 'reflect')
-
- def process(self):
- # model inference
- self.output = self.model(self.img)
-
- def tile_process(self):
- """It will first crop input images to tiles, and then process each tile.
- Finally, all the processed tiles are merged into one images.
-
- Modified from: https://github.com/ata4/esrgan-launcher
- """
- batch, channel, height, width = self.img.shape
- output_height = height * self.scale
- output_width = width * self.scale
- output_shape = (batch, channel, output_height, output_width)
-
- # start with black image
- self.output = self.img.new_zeros(output_shape)
- tiles_x = math.ceil(width / self.tile_size)
- tiles_y = math.ceil(height / self.tile_size)
-
- # loop over all tiles
- for y in range(tiles_y):
- for x in range(tiles_x):
- # extract tile from input image
- ofs_x = x * self.tile_size
- ofs_y = y * self.tile_size
- # input tile area on total image
- input_start_x = ofs_x
- input_end_x = min(ofs_x + self.tile_size, width)
- input_start_y = ofs_y
- input_end_y = min(ofs_y + self.tile_size, height)
-
- # input tile area on total image with padding
- input_start_x_pad = max(input_start_x - self.tile_pad, 0)
- input_end_x_pad = min(input_end_x + self.tile_pad, width)
- input_start_y_pad = max(input_start_y - self.tile_pad, 0)
- input_end_y_pad = min(input_end_y + self.tile_pad, height)
-
- # input tile dimensions
- input_tile_width = input_end_x - input_start_x
- input_tile_height = input_end_y - input_start_y
- tile_idx = y * tiles_x + x + 1
- input_tile = self.img[:, :, input_start_y_pad:input_end_y_pad, input_start_x_pad:input_end_x_pad]
-
- # upscale tile
- try:
- with torch.no_grad():
- output_tile = self.model(input_tile)
- except RuntimeError as error:
- print('Error', error)
- # print(f'\tTile {tile_idx}/{tiles_x * tiles_y}')
-
- # output tile area on total image
- output_start_x = input_start_x * self.scale
- output_end_x = input_end_x * self.scale
- output_start_y = input_start_y * self.scale
- output_end_y = input_end_y * self.scale
-
- # output tile area without padding
- output_start_x_tile = (input_start_x - input_start_x_pad) * self.scale
- output_end_x_tile = output_start_x_tile + input_tile_width * self.scale
- output_start_y_tile = (input_start_y - input_start_y_pad) * self.scale
- output_end_y_tile = output_start_y_tile + input_tile_height * self.scale
-
- # put tile into output image
- self.output[:, :, output_start_y:output_end_y,
- output_start_x:output_end_x] = output_tile[:, :, output_start_y_tile:output_end_y_tile,
- output_start_x_tile:output_end_x_tile]
-
- def post_process(self):
- # remove extra pad
- if self.mod_scale is not None:
- _, _, h, w = self.output.size()
- self.output = self.output[:, :, 0:h - self.mod_pad_h * self.scale, 0:w - self.mod_pad_w * self.scale]
- # remove prepad
- if self.pre_pad != 0:
- _, _, h, w = self.output.size()
- self.output = self.output[:, :, 0:h - self.pre_pad * self.scale, 0:w - self.pre_pad * self.scale]
- return self.output
-
- @torch.no_grad()
- def enhance(self, img, outscale=None, alpha_upsampler='realesrgan'):
- h_input, w_input = img.shape[0:2]
- # img: numpy
- img = img.astype(np.float32)
- if np.max(img) > 256: # 16-bit image
- max_range = 65535
- print('\tInput is a 16-bit image')
- else:
- max_range = 255
- img = img / max_range
- if len(img.shape) == 2: # gray image
- img_mode = 'L'
- img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB)
- elif img.shape[2] == 4: # RGBA image with alpha channel
- img_mode = 'RGBA'
- alpha = img[:, :, 3]
- img = img[:, :, 0:3]
- img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
- if alpha_upsampler == 'realesrgan':
- alpha = cv2.cvtColor(alpha, cv2.COLOR_GRAY2RGB)
- else:
- img_mode = 'RGB'
- img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
-
- # ------------------- process image (without the alpha channel) ------------------- #
- try:
- with torch.no_grad():
- self.pre_process(img)
- if self.tile_size > 0:
- self.tile_process()
- else:
- self.process()
- output_img_t = self.post_process()
- output_img = output_img_t.data.squeeze().float().cpu().clamp_(0, 1).numpy()
- output_img = np.transpose(output_img[[2, 1, 0], :, :], (1, 2, 0))
- if img_mode == 'L':
- output_img = cv2.cvtColor(output_img, cv2.COLOR_BGR2GRAY)
- del output_img_t
- torch.cuda.empty_cache()
- except RuntimeError as error:
- output_img = cv2.resize(self.img_pre_pad, (w_input * self.scale, h_input * self.scale), interpolation=cv2.INTER_LINEAR)
- print(f"Failed inference for RealESRGAN: {error}")
-
- # ------------------- process the alpha channel if necessary ------------------- #
- if img_mode == 'RGBA':
- if alpha_upsampler == 'realesrgan':
- self.pre_process(alpha)
- if self.tile_size > 0:
- self.tile_process()
- else:
- self.process()
- output_alpha = self.post_process()
- output_alpha = output_alpha.data.squeeze().float().cpu().clamp_(0, 1).numpy()
- output_alpha = np.transpose(output_alpha[[2, 1, 0], :, :], (1, 2, 0))
- output_alpha = cv2.cvtColor(output_alpha, cv2.COLOR_BGR2GRAY)
- else: # use the cv2 resize for alpha channel
- h, w = alpha.shape[0:2]
- output_alpha = cv2.resize(alpha, (w * self.scale, h * self.scale), interpolation=cv2.INTER_LINEAR)
-
- # merge the alpha channel
- output_img = cv2.cvtColor(output_img, cv2.COLOR_BGR2BGRA)
- output_img[:, :, 3] = output_alpha
-
- # ------------------------------ return ------------------------------ #
- if max_range == 65535: # 16-bit image
- output = (output_img * 65535.0).round().astype(np.uint16)
- else:
- output = (output_img * 255.0).round().astype(np.uint8)
-
- if outscale is not None and outscale != float(self.scale):
- output = cv2.resize(
- output, (
- int(w_input * outscale),
- int(h_input * outscale),
- ), interpolation=cv2.INTER_LANCZOS4)
-
- return output, img_mode
-
-
-class PrefetchReader(threading.Thread):
- """Prefetch images.
-
- Args:
- img_list (list[str]): A image list of image paths to be read.
- num_prefetch_queue (int): Number of prefetch queue.
- """
-
- def __init__(self, img_list, num_prefetch_queue):
- super().__init__()
- self.que = queue.Queue(num_prefetch_queue)
- self.img_list = img_list
-
- def run(self):
- for img_path in self.img_list:
- img = cv2.imread(img_path, cv2.IMREAD_UNCHANGED)
- self.que.put(img)
-
- self.que.put(None)
-
- def __next__(self):
- next_item = self.que.get()
- if next_item is None:
- raise StopIteration
- return next_item
-
- def __iter__(self):
- return self
-
-
-class IOConsumer(threading.Thread):
-
- def __init__(self, opt, que, qid):
- super().__init__()
- self._queue = que
- self.qid = qid
- self.opt = opt
-
- def run(self):
- while True:
- msg = self._queue.get()
- if isinstance(msg, str) and msg == 'quit':
- break
-
- output = msg['output']
- save_path = msg['save_path']
- cv2.imwrite(save_path, output)
- print(f'IO worker {self.qid} is done.')
\ No newline at end of file
diff --git a/CodeFormer/CodeFormer/basicsr/utils/registry.py b/CodeFormer/CodeFormer/basicsr/utils/registry.py
deleted file mode 100644
index 655753b3b9cbd0cfe73fe93a77cf1fcc3db6d827..0000000000000000000000000000000000000000
--- a/CodeFormer/CodeFormer/basicsr/utils/registry.py
+++ /dev/null
@@ -1,82 +0,0 @@
-# Modified from: https://github.com/facebookresearch/fvcore/blob/master/fvcore/common/registry.py # noqa: E501
-
-
-class Registry():
- """
- The registry that provides name -> object mapping, to support third-party
- users' custom modules.
-
- To create a registry (e.g. a backbone registry):
-
- .. code-block:: python
-
- BACKBONE_REGISTRY = Registry('BACKBONE')
-
- To register an object:
-
- .. code-block:: python
-
- @BACKBONE_REGISTRY.register()
- class MyBackbone():
- ...
-
- Or:
-
- .. code-block:: python
-
- BACKBONE_REGISTRY.register(MyBackbone)
- """
-
- def __init__(self, name):
- """
- Args:
- name (str): the name of this registry
- """
- self._name = name
- self._obj_map = {}
-
- def _do_register(self, name, obj):
- assert (name not in self._obj_map), (f"An object named '{name}' was already registered "
- f"in '{self._name}' registry!")
- self._obj_map[name] = obj
-
- def register(self, obj=None):
- """
- Register the given object under the the name `obj.__name__`.
- Can be used as either a decorator or not.
- See docstring of this class for usage.
- """
- if obj is None:
- # used as a decorator
- def deco(func_or_class):
- name = func_or_class.__name__
- self._do_register(name, func_or_class)
- return func_or_class
-
- return deco
-
- # used as a function call
- name = obj.__name__
- self._do_register(name, obj)
-
- def get(self, name):
- ret = self._obj_map.get(name)
- if ret is None:
- raise KeyError(f"No object named '{name}' found in '{self._name}' registry!")
- return ret
-
- def __contains__(self, name):
- return name in self._obj_map
-
- def __iter__(self):
- return iter(self._obj_map.items())
-
- def keys(self):
- return self._obj_map.keys()
-
-
-DATASET_REGISTRY = Registry('dataset')
-ARCH_REGISTRY = Registry('arch')
-MODEL_REGISTRY = Registry('model')
-LOSS_REGISTRY = Registry('loss')
-METRIC_REGISTRY = Registry('metric')
diff --git a/CodeFormer/CodeFormer/basicsr/version.py b/CodeFormer/CodeFormer/basicsr/version.py
deleted file mode 100644
index 3c30a9a5d2c3af85b06034f080d6f9f7e0a53e7e..0000000000000000000000000000000000000000
--- a/CodeFormer/CodeFormer/basicsr/version.py
+++ /dev/null
@@ -1,5 +0,0 @@
-# GENERATED VERSION FILE
-# TIME: Sun Aug 7 15:14:26 2022
-__version__ = '1.3.2'
-__gitsha__ = '6f94023'
-version_info = (1, 3, 2)
diff --git a/CodeFormer/CodeFormer/facelib/detection/__init__.py b/CodeFormer/CodeFormer/facelib/detection/__init__.py
deleted file mode 100644
index 296262d4e2e29eaa2afba7bda1f0399d77da24f6..0000000000000000000000000000000000000000
--- a/CodeFormer/CodeFormer/facelib/detection/__init__.py
+++ /dev/null
@@ -1,100 +0,0 @@
-import os
-import torch
-from torch import nn
-from copy import deepcopy
-
-from facelib.utils import load_file_from_url
-from facelib.utils import download_pretrained_models
-from facelib.detection.yolov5face.models.common import Conv
-
-from .retinaface.retinaface import RetinaFace
-from .yolov5face.face_detector import YoloDetector
-
-
-def init_detection_model(model_name, half=False, device='cuda'):
- if 'retinaface' in model_name:
- model = init_retinaface_model(model_name, half, device)
- elif 'YOLOv5' in model_name:
- model = init_yolov5face_model(model_name, device)
- else:
- raise NotImplementedError(f'{model_name} is not implemented.')
-
- return model
-
-
-def init_retinaface_model(model_name, half=False, device='cuda'):
- if model_name == 'retinaface_resnet50':
- model = RetinaFace(network_name='resnet50', half=half)
- model_url = 'https://github.com/xinntao/facexlib/releases/download/v0.1.0/detection_Resnet50_Final.pth'
- elif model_name == 'retinaface_mobile0.25':
- model = RetinaFace(network_name='mobile0.25', half=half)
- model_url = 'https://github.com/xinntao/facexlib/releases/download/v0.1.0/detection_mobilenet0.25_Final.pth'
- else:
- raise NotImplementedError(f'{model_name} is not implemented.')
-
- model_path = load_file_from_url(url=model_url, model_dir='weights/facelib', progress=True, file_name=None)
- load_net = torch.load(model_path, map_location=lambda storage, loc: storage)
- # remove unnecessary 'module.'
- for k, v in deepcopy(load_net).items():
- if k.startswith('module.'):
- load_net[k[7:]] = v
- load_net.pop(k)
- model.load_state_dict(load_net, strict=True)
- model.eval()
- model = model.to(device)
-
- return model
-
-
-def init_yolov5face_model(model_name, device='cuda'):
- if model_name == 'YOLOv5l':
- model = YoloDetector(config_name='facelib/detection/yolov5face/models/yolov5l.yaml', device=device)
- model_url = 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/yolov5l-face.pth'
- elif model_name == 'YOLOv5n':
- model = YoloDetector(config_name='facelib/detection/yolov5face/models/yolov5n.yaml', device=device)
- model_url = 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/yolov5n-face.pth'
- else:
- raise NotImplementedError(f'{model_name} is not implemented.')
-
- model_path = load_file_from_url(url=model_url, model_dir='weights/facelib', progress=True, file_name=None)
- load_net = torch.load(model_path, map_location=lambda storage, loc: storage)
- model.detector.load_state_dict(load_net, strict=True)
- model.detector.eval()
- model.detector = model.detector.to(device).float()
-
- for m in model.detector.modules():
- if type(m) in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU]:
- m.inplace = True # pytorch 1.7.0 compatibility
- elif isinstance(m, Conv):
- m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatibility
-
- return model
-
-
-# Download from Google Drive
-# def init_yolov5face_model(model_name, device='cuda'):
-# if model_name == 'YOLOv5l':
-# model = YoloDetector(config_name='facelib/detection/yolov5face/models/yolov5l.yaml', device=device)
-# f_id = {'yolov5l-face.pth': '131578zMA6B2x8VQHyHfa6GEPtulMCNzV'}
-# elif model_name == 'YOLOv5n':
-# model = YoloDetector(config_name='facelib/detection/yolov5face/models/yolov5n.yaml', device=device)
-# f_id = {'yolov5n-face.pth': '1fhcpFvWZqghpGXjYPIne2sw1Fy4yhw6o'}
-# else:
-# raise NotImplementedError(f'{model_name} is not implemented.')
-
-# model_path = os.path.join('weights/facelib', list(f_id.keys())[0])
-# if not os.path.exists(model_path):
-# download_pretrained_models(file_ids=f_id, save_path_root='weights/facelib')
-
-# load_net = torch.load(model_path, map_location=lambda storage, loc: storage)
-# model.detector.load_state_dict(load_net, strict=True)
-# model.detector.eval()
-# model.detector = model.detector.to(device).float()
-
-# for m in model.detector.modules():
-# if type(m) in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU]:
-# m.inplace = True # pytorch 1.7.0 compatibility
-# elif isinstance(m, Conv):
-# m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatibility
-
-# return model
\ No newline at end of file
diff --git a/CodeFormer/CodeFormer/facelib/detection/__pycache__/__init__.cpython-310.pyc b/CodeFormer/CodeFormer/facelib/detection/__pycache__/__init__.cpython-310.pyc
deleted file mode 100644
index 8831860c88b9d0d6dfdc6f162b96f13950a3a2f9..0000000000000000000000000000000000000000
Binary files a/CodeFormer/CodeFormer/facelib/detection/__pycache__/__init__.cpython-310.pyc and /dev/null differ
diff --git a/CodeFormer/CodeFormer/facelib/detection/__pycache__/align_trans.cpython-310.pyc b/CodeFormer/CodeFormer/facelib/detection/__pycache__/align_trans.cpython-310.pyc
deleted file mode 100644
index d07bb449d11d3218516df8f328aaa531a0b094e2..0000000000000000000000000000000000000000
Binary files a/CodeFormer/CodeFormer/facelib/detection/__pycache__/align_trans.cpython-310.pyc and /dev/null differ
diff --git a/CodeFormer/CodeFormer/facelib/detection/__pycache__/matlab_cp2tform.cpython-310.pyc b/CodeFormer/CodeFormer/facelib/detection/__pycache__/matlab_cp2tform.cpython-310.pyc
deleted file mode 100644
index dc87ef24f65f00b456df246fa501e683b27dadbb..0000000000000000000000000000000000000000
Binary files a/CodeFormer/CodeFormer/facelib/detection/__pycache__/matlab_cp2tform.cpython-310.pyc and /dev/null differ
diff --git a/CodeFormer/CodeFormer/facelib/detection/align_trans.py b/CodeFormer/CodeFormer/facelib/detection/align_trans.py
deleted file mode 100644
index 07f1eb365462c2ec5bbac6d1854c786b6fd6be90..0000000000000000000000000000000000000000
--- a/CodeFormer/CodeFormer/facelib/detection/align_trans.py
+++ /dev/null
@@ -1,219 +0,0 @@
-import cv2
-import numpy as np
-
-from .matlab_cp2tform import get_similarity_transform_for_cv2
-
-# reference facial points, a list of coordinates (x,y)
-REFERENCE_FACIAL_POINTS = [[30.29459953, 51.69630051], [65.53179932, 51.50139999], [48.02519989, 71.73660278],
- [33.54930115, 92.3655014], [62.72990036, 92.20410156]]
-
-DEFAULT_CROP_SIZE = (96, 112)
-
-
-class FaceWarpException(Exception):
-
- def __str__(self):
- return 'In File {}:{}'.format(__file__, super.__str__(self))
-
-
-def get_reference_facial_points(output_size=None, inner_padding_factor=0.0, outer_padding=(0, 0), default_square=False):
- """
- Function:
- ----------
- get reference 5 key points according to crop settings:
- 0. Set default crop_size:
- if default_square:
- crop_size = (112, 112)
- else:
- crop_size = (96, 112)
- 1. Pad the crop_size by inner_padding_factor in each side;
- 2. Resize crop_size into (output_size - outer_padding*2),
- pad into output_size with outer_padding;
- 3. Output reference_5point;
- Parameters:
- ----------
- @output_size: (w, h) or None
- size of aligned face image
- @inner_padding_factor: (w_factor, h_factor)
- padding factor for inner (w, h)
- @outer_padding: (w_pad, h_pad)
- each row is a pair of coordinates (x, y)
- @default_square: True or False
- if True:
- default crop_size = (112, 112)
- else:
- default crop_size = (96, 112);
- !!! make sure, if output_size is not None:
- (output_size - outer_padding)
- = some_scale * (default crop_size * (1.0 +
- inner_padding_factor))
- Returns:
- ----------
- @reference_5point: 5x2 np.array
- each row is a pair of transformed coordinates (x, y)
- """
-
- tmp_5pts = np.array(REFERENCE_FACIAL_POINTS)
- tmp_crop_size = np.array(DEFAULT_CROP_SIZE)
-
- # 0) make the inner region a square
- if default_square:
- size_diff = max(tmp_crop_size) - tmp_crop_size
- tmp_5pts += size_diff / 2
- tmp_crop_size += size_diff
-
- if (output_size and output_size[0] == tmp_crop_size[0] and output_size[1] == tmp_crop_size[1]):
-
- return tmp_5pts
-
- if (inner_padding_factor == 0 and outer_padding == (0, 0)):
- if output_size is None:
- return tmp_5pts
- else:
- raise FaceWarpException('No paddings to do, output_size must be None or {}'.format(tmp_crop_size))
-
- # check output size
- if not (0 <= inner_padding_factor <= 1.0):
- raise FaceWarpException('Not (0 <= inner_padding_factor <= 1.0)')
-
- if ((inner_padding_factor > 0 or outer_padding[0] > 0 or outer_padding[1] > 0) and output_size is None):
- output_size = tmp_crop_size * \
- (1 + inner_padding_factor * 2).astype(np.int32)
- output_size += np.array(outer_padding)
- if not (outer_padding[0] < output_size[0] and outer_padding[1] < output_size[1]):
- raise FaceWarpException('Not (outer_padding[0] < output_size[0] and outer_padding[1] < output_size[1])')
-
- # 1) pad the inner region according inner_padding_factor
- if inner_padding_factor > 0:
- size_diff = tmp_crop_size * inner_padding_factor * 2
- tmp_5pts += size_diff / 2
- tmp_crop_size += np.round(size_diff).astype(np.int32)
-
- # 2) resize the padded inner region
- size_bf_outer_pad = np.array(output_size) - np.array(outer_padding) * 2
-
- if size_bf_outer_pad[0] * tmp_crop_size[1] != size_bf_outer_pad[1] * tmp_crop_size[0]:
- raise FaceWarpException('Must have (output_size - outer_padding)'
- '= some_scale * (crop_size * (1.0 + inner_padding_factor)')
-
- scale_factor = size_bf_outer_pad[0].astype(np.float32) / tmp_crop_size[0]
- tmp_5pts = tmp_5pts * scale_factor
- # size_diff = tmp_crop_size * (scale_factor - min(scale_factor))
- # tmp_5pts = tmp_5pts + size_diff / 2
- tmp_crop_size = size_bf_outer_pad
-
- # 3) add outer_padding to make output_size
- reference_5point = tmp_5pts + np.array(outer_padding)
- tmp_crop_size = output_size
-
- return reference_5point
-
-
-def get_affine_transform_matrix(src_pts, dst_pts):
- """
- Function:
- ----------
- get affine transform matrix 'tfm' from src_pts to dst_pts
- Parameters:
- ----------
- @src_pts: Kx2 np.array
- source points matrix, each row is a pair of coordinates (x, y)
- @dst_pts: Kx2 np.array
- destination points matrix, each row is a pair of coordinates (x, y)
- Returns:
- ----------
- @tfm: 2x3 np.array
- transform matrix from src_pts to dst_pts
- """
-
- tfm = np.float32([[1, 0, 0], [0, 1, 0]])
- n_pts = src_pts.shape[0]
- ones = np.ones((n_pts, 1), src_pts.dtype)
- src_pts_ = np.hstack([src_pts, ones])
- dst_pts_ = np.hstack([dst_pts, ones])
-
- A, res, rank, s = np.linalg.lstsq(src_pts_, dst_pts_)
-
- if rank == 3:
- tfm = np.float32([[A[0, 0], A[1, 0], A[2, 0]], [A[0, 1], A[1, 1], A[2, 1]]])
- elif rank == 2:
- tfm = np.float32([[A[0, 0], A[1, 0], 0], [A[0, 1], A[1, 1], 0]])
-
- return tfm
-
-
-def warp_and_crop_face(src_img, facial_pts, reference_pts=None, crop_size=(96, 112), align_type='smilarity'):
- """
- Function:
- ----------
- apply affine transform 'trans' to uv
- Parameters:
- ----------
- @src_img: 3x3 np.array
- input image
- @facial_pts: could be
- 1)a list of K coordinates (x,y)
- or
- 2) Kx2 or 2xK np.array
- each row or col is a pair of coordinates (x, y)
- @reference_pts: could be
- 1) a list of K coordinates (x,y)
- or
- 2) Kx2 or 2xK np.array
- each row or col is a pair of coordinates (x, y)
- or
- 3) None
- if None, use default reference facial points
- @crop_size: (w, h)
- output face image size
- @align_type: transform type, could be one of
- 1) 'similarity': use similarity transform
- 2) 'cv2_affine': use the first 3 points to do affine transform,
- by calling cv2.getAffineTransform()
- 3) 'affine': use all points to do affine transform
- Returns:
- ----------
- @face_img: output face image with size (w, h) = @crop_size
- """
-
- if reference_pts is None:
- if crop_size[0] == 96 and crop_size[1] == 112:
- reference_pts = REFERENCE_FACIAL_POINTS
- else:
- default_square = False
- inner_padding_factor = 0
- outer_padding = (0, 0)
- output_size = crop_size
-
- reference_pts = get_reference_facial_points(output_size, inner_padding_factor, outer_padding,
- default_square)
-
- ref_pts = np.float32(reference_pts)
- ref_pts_shp = ref_pts.shape
- if max(ref_pts_shp) < 3 or min(ref_pts_shp) != 2:
- raise FaceWarpException('reference_pts.shape must be (K,2) or (2,K) and K>2')
-
- if ref_pts_shp[0] == 2:
- ref_pts = ref_pts.T
-
- src_pts = np.float32(facial_pts)
- src_pts_shp = src_pts.shape
- if max(src_pts_shp) < 3 or min(src_pts_shp) != 2:
- raise FaceWarpException('facial_pts.shape must be (K,2) or (2,K) and K>2')
-
- if src_pts_shp[0] == 2:
- src_pts = src_pts.T
-
- if src_pts.shape != ref_pts.shape:
- raise FaceWarpException('facial_pts and reference_pts must have the same shape')
-
- if align_type == 'cv2_affine':
- tfm = cv2.getAffineTransform(src_pts[0:3], ref_pts[0:3])
- elif align_type == 'affine':
- tfm = get_affine_transform_matrix(src_pts, ref_pts)
- else:
- tfm = get_similarity_transform_for_cv2(src_pts, ref_pts)
-
- face_img = cv2.warpAffine(src_img, tfm, (crop_size[0], crop_size[1]))
-
- return face_img
diff --git a/CodeFormer/CodeFormer/facelib/detection/matlab_cp2tform.py b/CodeFormer/CodeFormer/facelib/detection/matlab_cp2tform.py
deleted file mode 100644
index b2a8b54a91709c71437e15c68d3be9a9b0a20a34..0000000000000000000000000000000000000000
--- a/CodeFormer/CodeFormer/facelib/detection/matlab_cp2tform.py
+++ /dev/null
@@ -1,317 +0,0 @@
-import numpy as np
-from numpy.linalg import inv, lstsq
-from numpy.linalg import matrix_rank as rank
-from numpy.linalg import norm
-
-
-class MatlabCp2tormException(Exception):
-
- def __str__(self):
- return 'In File {}:{}'.format(__file__, super.__str__(self))
-
-
-def tformfwd(trans, uv):
- """
- Function:
- ----------
- apply affine transform 'trans' to uv
-
- Parameters:
- ----------
- @trans: 3x3 np.array
- transform matrix
- @uv: Kx2 np.array
- each row is a pair of coordinates (x, y)
-
- Returns:
- ----------
- @xy: Kx2 np.array
- each row is a pair of transformed coordinates (x, y)
- """
- uv = np.hstack((uv, np.ones((uv.shape[0], 1))))
- xy = np.dot(uv, trans)
- xy = xy[:, 0:-1]
- return xy
-
-
-def tforminv(trans, uv):
- """
- Function:
- ----------
- apply the inverse of affine transform 'trans' to uv
-
- Parameters:
- ----------
- @trans: 3x3 np.array
- transform matrix
- @uv: Kx2 np.array
- each row is a pair of coordinates (x, y)
-
- Returns:
- ----------
- @xy: Kx2 np.array
- each row is a pair of inverse-transformed coordinates (x, y)
- """
- Tinv = inv(trans)
- xy = tformfwd(Tinv, uv)
- return xy
-
-
-def findNonreflectiveSimilarity(uv, xy, options=None):
- options = {'K': 2}
-
- K = options['K']
- M = xy.shape[0]
- x = xy[:, 0].reshape((-1, 1)) # use reshape to keep a column vector
- y = xy[:, 1].reshape((-1, 1)) # use reshape to keep a column vector
-
- tmp1 = np.hstack((x, y, np.ones((M, 1)), np.zeros((M, 1))))
- tmp2 = np.hstack((y, -x, np.zeros((M, 1)), np.ones((M, 1))))
- X = np.vstack((tmp1, tmp2))
-
- u = uv[:, 0].reshape((-1, 1)) # use reshape to keep a column vector
- v = uv[:, 1].reshape((-1, 1)) # use reshape to keep a column vector
- U = np.vstack((u, v))
-
- # We know that X * r = U
- if rank(X) >= 2 * K:
- r, _, _, _ = lstsq(X, U, rcond=-1)
- r = np.squeeze(r)
- else:
- raise Exception('cp2tform:twoUniquePointsReq')
- sc = r[0]
- ss = r[1]
- tx = r[2]
- ty = r[3]
-
- Tinv = np.array([[sc, -ss, 0], [ss, sc, 0], [tx, ty, 1]])
- T = inv(Tinv)
- T[:, 2] = np.array([0, 0, 1])
-
- return T, Tinv
-
-
-def findSimilarity(uv, xy, options=None):
- options = {'K': 2}
-
- # uv = np.array(uv)
- # xy = np.array(xy)
-
- # Solve for trans1
- trans1, trans1_inv = findNonreflectiveSimilarity(uv, xy, options)
-
- # Solve for trans2
-
- # manually reflect the xy data across the Y-axis
- xyR = xy
- xyR[:, 0] = -1 * xyR[:, 0]
-
- trans2r, trans2r_inv = findNonreflectiveSimilarity(uv, xyR, options)
-
- # manually reflect the tform to undo the reflection done on xyR
- TreflectY = np.array([[-1, 0, 0], [0, 1, 0], [0, 0, 1]])
-
- trans2 = np.dot(trans2r, TreflectY)
-
- # Figure out if trans1 or trans2 is better
- xy1 = tformfwd(trans1, uv)
- norm1 = norm(xy1 - xy)
-
- xy2 = tformfwd(trans2, uv)
- norm2 = norm(xy2 - xy)
-
- if norm1 <= norm2:
- return trans1, trans1_inv
- else:
- trans2_inv = inv(trans2)
- return trans2, trans2_inv
-
-
-def get_similarity_transform(src_pts, dst_pts, reflective=True):
- """
- Function:
- ----------
- Find Similarity Transform Matrix 'trans':
- u = src_pts[:, 0]
- v = src_pts[:, 1]
- x = dst_pts[:, 0]
- y = dst_pts[:, 1]
- [x, y, 1] = [u, v, 1] * trans
-
- Parameters:
- ----------
- @src_pts: Kx2 np.array
- source points, each row is a pair of coordinates (x, y)
- @dst_pts: Kx2 np.array
- destination points, each row is a pair of transformed
- coordinates (x, y)
- @reflective: True or False
- if True:
- use reflective similarity transform
- else:
- use non-reflective similarity transform
-
- Returns:
- ----------
- @trans: 3x3 np.array
- transform matrix from uv to xy
- trans_inv: 3x3 np.array
- inverse of trans, transform matrix from xy to uv
- """
-
- if reflective:
- trans, trans_inv = findSimilarity(src_pts, dst_pts)
- else:
- trans, trans_inv = findNonreflectiveSimilarity(src_pts, dst_pts)
-
- return trans, trans_inv
-
-
-def cvt_tform_mat_for_cv2(trans):
- """
- Function:
- ----------
- Convert Transform Matrix 'trans' into 'cv2_trans' which could be
- directly used by cv2.warpAffine():
- u = src_pts[:, 0]
- v = src_pts[:, 1]
- x = dst_pts[:, 0]
- y = dst_pts[:, 1]
- [x, y].T = cv_trans * [u, v, 1].T
-
- Parameters:
- ----------
- @trans: 3x3 np.array
- transform matrix from uv to xy
-
- Returns:
- ----------
- @cv2_trans: 2x3 np.array
- transform matrix from src_pts to dst_pts, could be directly used
- for cv2.warpAffine()
- """
- cv2_trans = trans[:, 0:2].T
-
- return cv2_trans
-
-
-def get_similarity_transform_for_cv2(src_pts, dst_pts, reflective=True):
- """
- Function:
- ----------
- Find Similarity Transform Matrix 'cv2_trans' which could be
- directly used by cv2.warpAffine():
- u = src_pts[:, 0]
- v = src_pts[:, 1]
- x = dst_pts[:, 0]
- y = dst_pts[:, 1]
- [x, y].T = cv_trans * [u, v, 1].T
-
- Parameters:
- ----------
- @src_pts: Kx2 np.array
- source points, each row is a pair of coordinates (x, y)
- @dst_pts: Kx2 np.array
- destination points, each row is a pair of transformed
- coordinates (x, y)
- reflective: True or False
- if True:
- use reflective similarity transform
- else:
- use non-reflective similarity transform
-
- Returns:
- ----------
- @cv2_trans: 2x3 np.array
- transform matrix from src_pts to dst_pts, could be directly used
- for cv2.warpAffine()
- """
- trans, trans_inv = get_similarity_transform(src_pts, dst_pts, reflective)
- cv2_trans = cvt_tform_mat_for_cv2(trans)
-
- return cv2_trans
-
-
-if __name__ == '__main__':
- """
- u = [0, 6, -2]
- v = [0, 3, 5]
- x = [-1, 0, 4]
- y = [-1, -10, 4]
-
- # In Matlab, run:
- #
- # uv = [u'; v'];
- # xy = [x'; y'];
- # tform_sim=cp2tform(uv,xy,'similarity');
- #
- # trans = tform_sim.tdata.T
- # ans =
- # -0.0764 -1.6190 0
- # 1.6190 -0.0764 0
- # -3.2156 0.0290 1.0000
- # trans_inv = tform_sim.tdata.Tinv
- # ans =
- #
- # -0.0291 0.6163 0
- # -0.6163 -0.0291 0
- # -0.0756 1.9826 1.0000
- # xy_m=tformfwd(tform_sim, u,v)
- #
- # xy_m =
- #
- # -3.2156 0.0290
- # 1.1833 -9.9143
- # 5.0323 2.8853
- # uv_m=tforminv(tform_sim, x,y)
- #
- # uv_m =
- #
- # 0.5698 1.3953
- # 6.0872 2.2733
- # -2.6570 4.3314
- """
- u = [0, 6, -2]
- v = [0, 3, 5]
- x = [-1, 0, 4]
- y = [-1, -10, 4]
-
- uv = np.array((u, v)).T
- xy = np.array((x, y)).T
-
- print('\n--->uv:')
- print(uv)
- print('\n--->xy:')
- print(xy)
-
- trans, trans_inv = get_similarity_transform(uv, xy)
-
- print('\n--->trans matrix:')
- print(trans)
-
- print('\n--->trans_inv matrix:')
- print(trans_inv)
-
- print('\n---> apply transform to uv')
- print('\nxy_m = uv_augmented * trans')
- uv_aug = np.hstack((uv, np.ones((uv.shape[0], 1))))
- xy_m = np.dot(uv_aug, trans)
- print(xy_m)
-
- print('\nxy_m = tformfwd(trans, uv)')
- xy_m = tformfwd(trans, uv)
- print(xy_m)
-
- print('\n---> apply inverse transform to xy')
- print('\nuv_m = xy_augmented * trans_inv')
- xy_aug = np.hstack((xy, np.ones((xy.shape[0], 1))))
- uv_m = np.dot(xy_aug, trans_inv)
- print(uv_m)
-
- print('\nuv_m = tformfwd(trans_inv, xy)')
- uv_m = tformfwd(trans_inv, xy)
- print(uv_m)
-
- uv_m = tforminv(trans, xy)
- print('\nuv_m = tforminv(trans, xy)')
- print(uv_m)
diff --git a/CodeFormer/CodeFormer/facelib/detection/retinaface/__pycache__/retinaface.cpython-310.pyc b/CodeFormer/CodeFormer/facelib/detection/retinaface/__pycache__/retinaface.cpython-310.pyc
deleted file mode 100644
index 3b2f4602dc69218c3566ed999249dcb9d1a0f8d8..0000000000000000000000000000000000000000
Binary files a/CodeFormer/CodeFormer/facelib/detection/retinaface/__pycache__/retinaface.cpython-310.pyc and /dev/null differ
diff --git a/CodeFormer/CodeFormer/facelib/detection/retinaface/__pycache__/retinaface_net.cpython-310.pyc b/CodeFormer/CodeFormer/facelib/detection/retinaface/__pycache__/retinaface_net.cpython-310.pyc
deleted file mode 100644
index a228523655c8acd8fdf9a28beee9ec303a947346..0000000000000000000000000000000000000000
Binary files a/CodeFormer/CodeFormer/facelib/detection/retinaface/__pycache__/retinaface_net.cpython-310.pyc and /dev/null differ
diff --git a/CodeFormer/CodeFormer/facelib/detection/retinaface/__pycache__/retinaface_utils.cpython-310.pyc b/CodeFormer/CodeFormer/facelib/detection/retinaface/__pycache__/retinaface_utils.cpython-310.pyc
deleted file mode 100644
index c41ae10a425926ebf3cc746c1f0bf3289c0f4a66..0000000000000000000000000000000000000000
Binary files a/CodeFormer/CodeFormer/facelib/detection/retinaface/__pycache__/retinaface_utils.cpython-310.pyc and /dev/null differ
diff --git a/CodeFormer/CodeFormer/facelib/detection/retinaface/retinaface.py b/CodeFormer/CodeFormer/facelib/detection/retinaface/retinaface.py
deleted file mode 100644
index 02593556d88a90232bbe55a062875f4af4520621..0000000000000000000000000000000000000000
--- a/CodeFormer/CodeFormer/facelib/detection/retinaface/retinaface.py
+++ /dev/null
@@ -1,370 +0,0 @@
-import cv2
-import numpy as np
-import torch
-import torch.nn as nn
-import torch.nn.functional as F
-from PIL import Image
-from torchvision.models._utils import IntermediateLayerGetter as IntermediateLayerGetter
-
-from facelib.detection.align_trans import get_reference_facial_points, warp_and_crop_face
-from facelib.detection.retinaface.retinaface_net import FPN, SSH, MobileNetV1, make_bbox_head, make_class_head, make_landmark_head
-from facelib.detection.retinaface.retinaface_utils import (PriorBox, batched_decode, batched_decode_landm, decode, decode_landm,
- py_cpu_nms)
-
-device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
-
-
-def generate_config(network_name):
-
- cfg_mnet = {
- 'name': 'mobilenet0.25',
- 'min_sizes': [[16, 32], [64, 128], [256, 512]],
- 'steps': [8, 16, 32],
- 'variance': [0.1, 0.2],
- 'clip': False,
- 'loc_weight': 2.0,
- 'gpu_train': True,
- 'batch_size': 32,
- 'ngpu': 1,
- 'epoch': 250,
- 'decay1': 190,
- 'decay2': 220,
- 'image_size': 640,
- 'return_layers': {
- 'stage1': 1,
- 'stage2': 2,
- 'stage3': 3
- },
- 'in_channel': 32,
- 'out_channel': 64
- }
-
- cfg_re50 = {
- 'name': 'Resnet50',
- 'min_sizes': [[16, 32], [64, 128], [256, 512]],
- 'steps': [8, 16, 32],
- 'variance': [0.1, 0.2],
- 'clip': False,
- 'loc_weight': 2.0,
- 'gpu_train': True,
- 'batch_size': 24,
- 'ngpu': 4,
- 'epoch': 100,
- 'decay1': 70,
- 'decay2': 90,
- 'image_size': 840,
- 'return_layers': {
- 'layer2': 1,
- 'layer3': 2,
- 'layer4': 3
- },
- 'in_channel': 256,
- 'out_channel': 256
- }
-
- if network_name == 'mobile0.25':
- return cfg_mnet
- elif network_name == 'resnet50':
- return cfg_re50
- else:
- raise NotImplementedError(f'network_name={network_name}')
-
-
-class RetinaFace(nn.Module):
-
- def __init__(self, network_name='resnet50', half=False, phase='test'):
- super(RetinaFace, self).__init__()
- self.half_inference = half
- cfg = generate_config(network_name)
- self.backbone = cfg['name']
-
- self.model_name = f'retinaface_{network_name}'
- self.cfg = cfg
- self.phase = phase
- self.target_size, self.max_size = 1600, 2150
- self.resize, self.scale, self.scale1 = 1., None, None
- self.mean_tensor = torch.tensor([[[[104.]], [[117.]], [[123.]]]]).to(device)
- self.reference = get_reference_facial_points(default_square=True)
- # Build network.
- backbone = None
- if cfg['name'] == 'mobilenet0.25':
- backbone = MobileNetV1()
- self.body = IntermediateLayerGetter(backbone, cfg['return_layers'])
- elif cfg['name'] == 'Resnet50':
- import torchvision.models as models
- backbone = models.resnet50(pretrained=False)
- self.body = IntermediateLayerGetter(backbone, cfg['return_layers'])
-
- in_channels_stage2 = cfg['in_channel']
- in_channels_list = [
- in_channels_stage2 * 2,
- in_channels_stage2 * 4,
- in_channels_stage2 * 8,
- ]
-
- out_channels = cfg['out_channel']
- self.fpn = FPN(in_channels_list, out_channels)
- self.ssh1 = SSH(out_channels, out_channels)
- self.ssh2 = SSH(out_channels, out_channels)
- self.ssh3 = SSH(out_channels, out_channels)
-
- self.ClassHead = make_class_head(fpn_num=3, inchannels=cfg['out_channel'])
- self.BboxHead = make_bbox_head(fpn_num=3, inchannels=cfg['out_channel'])
- self.LandmarkHead = make_landmark_head(fpn_num=3, inchannels=cfg['out_channel'])
-
- self.to(device)
- self.eval()
- if self.half_inference:
- self.half()
-
- def forward(self, inputs):
- out = self.body(inputs)
-
- if self.backbone == 'mobilenet0.25' or self.backbone == 'Resnet50':
- out = list(out.values())
- # FPN
- fpn = self.fpn(out)
-
- # SSH
- feature1 = self.ssh1(fpn[0])
- feature2 = self.ssh2(fpn[1])
- feature3 = self.ssh3(fpn[2])
- features = [feature1, feature2, feature3]
-
- bbox_regressions = torch.cat([self.BboxHead[i](feature) for i, feature in enumerate(features)], dim=1)
- classifications = torch.cat([self.ClassHead[i](feature) for i, feature in enumerate(features)], dim=1)
- tmp = [self.LandmarkHead[i](feature) for i, feature in enumerate(features)]
- ldm_regressions = (torch.cat(tmp, dim=1))
-
- if self.phase == 'train':
- output = (bbox_regressions, classifications, ldm_regressions)
- else:
- output = (bbox_regressions, F.softmax(classifications, dim=-1), ldm_regressions)
- return output
-
- def __detect_faces(self, inputs):
- # get scale
- height, width = inputs.shape[2:]
- self.scale = torch.tensor([width, height, width, height], dtype=torch.float32).to(device)
- tmp = [width, height, width, height, width, height, width, height, width, height]
- self.scale1 = torch.tensor(tmp, dtype=torch.float32).to(device)
-
- # forawrd
- inputs = inputs.to(device)
- if self.half_inference:
- inputs = inputs.half()
- loc, conf, landmarks = self(inputs)
-
- # get priorbox
- priorbox = PriorBox(self.cfg, image_size=inputs.shape[2:])
- priors = priorbox.forward().to(device)
-
- return loc, conf, landmarks, priors
-
- # single image detection
- def transform(self, image, use_origin_size):
- # convert to opencv format
- if isinstance(image, Image.Image):
- image = cv2.cvtColor(np.asarray(image), cv2.COLOR_RGB2BGR)
- image = image.astype(np.float32)
-
- # testing scale
- im_size_min = np.min(image.shape[0:2])
- im_size_max = np.max(image.shape[0:2])
- resize = float(self.target_size) / float(im_size_min)
-
- # prevent bigger axis from being more than max_size
- if np.round(resize * im_size_max) > self.max_size:
- resize = float(self.max_size) / float(im_size_max)
- resize = 1 if use_origin_size else resize
-
- # resize
- if resize != 1:
- image = cv2.resize(image, None, None, fx=resize, fy=resize, interpolation=cv2.INTER_LINEAR)
-
- # convert to torch.tensor format
- # image -= (104, 117, 123)
- image = image.transpose(2, 0, 1)
- image = torch.from_numpy(image).unsqueeze(0)
-
- return image, resize
-
- def detect_faces(
- self,
- image,
- conf_threshold=0.8,
- nms_threshold=0.4,
- use_origin_size=True,
- ):
- """
- Params:
- imgs: BGR image
- """
- image, self.resize = self.transform(image, use_origin_size)
- image = image.to(device)
- if self.half_inference:
- image = image.half()
- image = image - self.mean_tensor
-
- loc, conf, landmarks, priors = self.__detect_faces(image)
-
- boxes = decode(loc.data.squeeze(0), priors.data, self.cfg['variance'])
- boxes = boxes * self.scale / self.resize
- boxes = boxes.cpu().numpy()
-
- scores = conf.squeeze(0).data.cpu().numpy()[:, 1]
-
- landmarks = decode_landm(landmarks.squeeze(0), priors, self.cfg['variance'])
- landmarks = landmarks * self.scale1 / self.resize
- landmarks = landmarks.cpu().numpy()
-
- # ignore low scores
- inds = np.where(scores > conf_threshold)[0]
- boxes, landmarks, scores = boxes[inds], landmarks[inds], scores[inds]
-
- # sort
- order = scores.argsort()[::-1]
- boxes, landmarks, scores = boxes[order], landmarks[order], scores[order]
-
- # do NMS
- bounding_boxes = np.hstack((boxes, scores[:, np.newaxis])).astype(np.float32, copy=False)
- keep = py_cpu_nms(bounding_boxes, nms_threshold)
- bounding_boxes, landmarks = bounding_boxes[keep, :], landmarks[keep]
- # self.t['forward_pass'].toc()
- # print(self.t['forward_pass'].average_time)
- # import sys
- # sys.stdout.flush()
- return np.concatenate((bounding_boxes, landmarks), axis=1)
-
- def __align_multi(self, image, boxes, landmarks, limit=None):
-
- if len(boxes) < 1:
- return [], []
-
- if limit:
- boxes = boxes[:limit]
- landmarks = landmarks[:limit]
-
- faces = []
- for landmark in landmarks:
- facial5points = [[landmark[2 * j], landmark[2 * j + 1]] for j in range(5)]
-
- warped_face = warp_and_crop_face(np.array(image), facial5points, self.reference, crop_size=(112, 112))
- faces.append(warped_face)
-
- return np.concatenate((boxes, landmarks), axis=1), faces
-
- def align_multi(self, img, conf_threshold=0.8, limit=None):
-
- rlt = self.detect_faces(img, conf_threshold=conf_threshold)
- boxes, landmarks = rlt[:, 0:5], rlt[:, 5:]
-
- return self.__align_multi(img, boxes, landmarks, limit)
-
- # batched detection
- def batched_transform(self, frames, use_origin_size):
- """
- Arguments:
- frames: a list of PIL.Image, or torch.Tensor(shape=[n, h, w, c],
- type=np.float32, BGR format).
- use_origin_size: whether to use origin size.
- """
- from_PIL = True if isinstance(frames[0], Image.Image) else False
-
- # convert to opencv format
- if from_PIL:
- frames = [cv2.cvtColor(np.asarray(frame), cv2.COLOR_RGB2BGR) for frame in frames]
- frames = np.asarray(frames, dtype=np.float32)
-
- # testing scale
- im_size_min = np.min(frames[0].shape[0:2])
- im_size_max = np.max(frames[0].shape[0:2])
- resize = float(self.target_size) / float(im_size_min)
-
- # prevent bigger axis from being more than max_size
- if np.round(resize * im_size_max) > self.max_size:
- resize = float(self.max_size) / float(im_size_max)
- resize = 1 if use_origin_size else resize
-
- # resize
- if resize != 1:
- if not from_PIL:
- frames = F.interpolate(frames, scale_factor=resize)
- else:
- frames = [
- cv2.resize(frame, None, None, fx=resize, fy=resize, interpolation=cv2.INTER_LINEAR)
- for frame in frames
- ]
-
- # convert to torch.tensor format
- if not from_PIL:
- frames = frames.transpose(1, 2).transpose(1, 3).contiguous()
- else:
- frames = frames.transpose((0, 3, 1, 2))
- frames = torch.from_numpy(frames)
-
- return frames, resize
-
- def batched_detect_faces(self, frames, conf_threshold=0.8, nms_threshold=0.4, use_origin_size=True):
- """
- Arguments:
- frames: a list of PIL.Image, or np.array(shape=[n, h, w, c],
- type=np.uint8, BGR format).
- conf_threshold: confidence threshold.
- nms_threshold: nms threshold.
- use_origin_size: whether to use origin size.
- Returns:
- final_bounding_boxes: list of np.array ([n_boxes, 5],
- type=np.float32).
- final_landmarks: list of np.array ([n_boxes, 10], type=np.float32).
- """
- # self.t['forward_pass'].tic()
- frames, self.resize = self.batched_transform(frames, use_origin_size)
- frames = frames.to(device)
- frames = frames - self.mean_tensor
-
- b_loc, b_conf, b_landmarks, priors = self.__detect_faces(frames)
-
- final_bounding_boxes, final_landmarks = [], []
-
- # decode
- priors = priors.unsqueeze(0)
- b_loc = batched_decode(b_loc, priors, self.cfg['variance']) * self.scale / self.resize
- b_landmarks = batched_decode_landm(b_landmarks, priors, self.cfg['variance']) * self.scale1 / self.resize
- b_conf = b_conf[:, :, 1]
-
- # index for selection
- b_indice = b_conf > conf_threshold
-
- # concat
- b_loc_and_conf = torch.cat((b_loc, b_conf.unsqueeze(-1)), dim=2).float()
-
- for pred, landm, inds in zip(b_loc_and_conf, b_landmarks, b_indice):
-
- # ignore low scores
- pred, landm = pred[inds, :], landm[inds, :]
- if pred.shape[0] == 0:
- final_bounding_boxes.append(np.array([], dtype=np.float32))
- final_landmarks.append(np.array([], dtype=np.float32))
- continue
-
- # sort
- # order = score.argsort(descending=True)
- # box, landm, score = box[order], landm[order], score[order]
-
- # to CPU
- bounding_boxes, landm = pred.cpu().numpy(), landm.cpu().numpy()
-
- # NMS
- keep = py_cpu_nms(bounding_boxes, nms_threshold)
- bounding_boxes, landmarks = bounding_boxes[keep, :], landm[keep]
-
- # append
- final_bounding_boxes.append(bounding_boxes)
- final_landmarks.append(landmarks)
- # self.t['forward_pass'].toc(average=True)
- # self.batch_time += self.t['forward_pass'].diff
- # self.total_frame += len(frames)
- # print(self.batch_time / self.total_frame)
-
- return final_bounding_boxes, final_landmarks
diff --git a/CodeFormer/CodeFormer/facelib/detection/retinaface/retinaface_net.py b/CodeFormer/CodeFormer/facelib/detection/retinaface/retinaface_net.py
deleted file mode 100644
index ab6aa82d3e9055a838f1f9076b12f05fdfc154d0..0000000000000000000000000000000000000000
--- a/CodeFormer/CodeFormer/facelib/detection/retinaface/retinaface_net.py
+++ /dev/null
@@ -1,196 +0,0 @@
-import torch
-import torch.nn as nn
-import torch.nn.functional as F
-
-
-def conv_bn(inp, oup, stride=1, leaky=0):
- return nn.Sequential(
- nn.Conv2d(inp, oup, 3, stride, 1, bias=False), nn.BatchNorm2d(oup),
- nn.LeakyReLU(negative_slope=leaky, inplace=True))
-
-
-def conv_bn_no_relu(inp, oup, stride):
- return nn.Sequential(
- nn.Conv2d(inp, oup, 3, stride, 1, bias=False),
- nn.BatchNorm2d(oup),
- )
-
-
-def conv_bn1X1(inp, oup, stride, leaky=0):
- return nn.Sequential(
- nn.Conv2d(inp, oup, 1, stride, padding=0, bias=False), nn.BatchNorm2d(oup),
- nn.LeakyReLU(negative_slope=leaky, inplace=True))
-
-
-def conv_dw(inp, oup, stride, leaky=0.1):
- return nn.Sequential(
- nn.Conv2d(inp, inp, 3, stride, 1, groups=inp, bias=False),
- nn.BatchNorm2d(inp),
- nn.LeakyReLU(negative_slope=leaky, inplace=True),
- nn.Conv2d(inp, oup, 1, 1, 0, bias=False),
- nn.BatchNorm2d(oup),
- nn.LeakyReLU(negative_slope=leaky, inplace=True),
- )
-
-
-class SSH(nn.Module):
-
- def __init__(self, in_channel, out_channel):
- super(SSH, self).__init__()
- assert out_channel % 4 == 0
- leaky = 0
- if (out_channel <= 64):
- leaky = 0.1
- self.conv3X3 = conv_bn_no_relu(in_channel, out_channel // 2, stride=1)
-
- self.conv5X5_1 = conv_bn(in_channel, out_channel // 4, stride=1, leaky=leaky)
- self.conv5X5_2 = conv_bn_no_relu(out_channel // 4, out_channel // 4, stride=1)
-
- self.conv7X7_2 = conv_bn(out_channel // 4, out_channel // 4, stride=1, leaky=leaky)
- self.conv7x7_3 = conv_bn_no_relu(out_channel // 4, out_channel // 4, stride=1)
-
- def forward(self, input):
- conv3X3 = self.conv3X3(input)
-
- conv5X5_1 = self.conv5X5_1(input)
- conv5X5 = self.conv5X5_2(conv5X5_1)
-
- conv7X7_2 = self.conv7X7_2(conv5X5_1)
- conv7X7 = self.conv7x7_3(conv7X7_2)
-
- out = torch.cat([conv3X3, conv5X5, conv7X7], dim=1)
- out = F.relu(out)
- return out
-
-
-class FPN(nn.Module):
-
- def __init__(self, in_channels_list, out_channels):
- super(FPN, self).__init__()
- leaky = 0
- if (out_channels <= 64):
- leaky = 0.1
- self.output1 = conv_bn1X1(in_channels_list[0], out_channels, stride=1, leaky=leaky)
- self.output2 = conv_bn1X1(in_channels_list[1], out_channels, stride=1, leaky=leaky)
- self.output3 = conv_bn1X1(in_channels_list[2], out_channels, stride=1, leaky=leaky)
-
- self.merge1 = conv_bn(out_channels, out_channels, leaky=leaky)
- self.merge2 = conv_bn(out_channels, out_channels, leaky=leaky)
-
- def forward(self, input):
- # names = list(input.keys())
- # input = list(input.values())
-
- output1 = self.output1(input[0])
- output2 = self.output2(input[1])
- output3 = self.output3(input[2])
-
- up3 = F.interpolate(output3, size=[output2.size(2), output2.size(3)], mode='nearest')
- output2 = output2 + up3
- output2 = self.merge2(output2)
-
- up2 = F.interpolate(output2, size=[output1.size(2), output1.size(3)], mode='nearest')
- output1 = output1 + up2
- output1 = self.merge1(output1)
-
- out = [output1, output2, output3]
- return out
-
-
-class MobileNetV1(nn.Module):
-
- def __init__(self):
- super(MobileNetV1, self).__init__()
- self.stage1 = nn.Sequential(
- conv_bn(3, 8, 2, leaky=0.1), # 3
- conv_dw(8, 16, 1), # 7
- conv_dw(16, 32, 2), # 11
- conv_dw(32, 32, 1), # 19
- conv_dw(32, 64, 2), # 27
- conv_dw(64, 64, 1), # 43
- )
- self.stage2 = nn.Sequential(
- conv_dw(64, 128, 2), # 43 + 16 = 59
- conv_dw(128, 128, 1), # 59 + 32 = 91
- conv_dw(128, 128, 1), # 91 + 32 = 123
- conv_dw(128, 128, 1), # 123 + 32 = 155
- conv_dw(128, 128, 1), # 155 + 32 = 187
- conv_dw(128, 128, 1), # 187 + 32 = 219
- )
- self.stage3 = nn.Sequential(
- conv_dw(128, 256, 2), # 219 +3 2 = 241
- conv_dw(256, 256, 1), # 241 + 64 = 301
- )
- self.avg = nn.AdaptiveAvgPool2d((1, 1))
- self.fc = nn.Linear(256, 1000)
-
- def forward(self, x):
- x = self.stage1(x)
- x = self.stage2(x)
- x = self.stage3(x)
- x = self.avg(x)
- # x = self.model(x)
- x = x.view(-1, 256)
- x = self.fc(x)
- return x
-
-
-class ClassHead(nn.Module):
-
- def __init__(self, inchannels=512, num_anchors=3):
- super(ClassHead, self).__init__()
- self.num_anchors = num_anchors
- self.conv1x1 = nn.Conv2d(inchannels, self.num_anchors * 2, kernel_size=(1, 1), stride=1, padding=0)
-
- def forward(self, x):
- out = self.conv1x1(x)
- out = out.permute(0, 2, 3, 1).contiguous()
-
- return out.view(out.shape[0], -1, 2)
-
-
-class BboxHead(nn.Module):
-
- def __init__(self, inchannels=512, num_anchors=3):
- super(BboxHead, self).__init__()
- self.conv1x1 = nn.Conv2d(inchannels, num_anchors * 4, kernel_size=(1, 1), stride=1, padding=0)
-
- def forward(self, x):
- out = self.conv1x1(x)
- out = out.permute(0, 2, 3, 1).contiguous()
-
- return out.view(out.shape[0], -1, 4)
-
-
-class LandmarkHead(nn.Module):
-
- def __init__(self, inchannels=512, num_anchors=3):
- super(LandmarkHead, self).__init__()
- self.conv1x1 = nn.Conv2d(inchannels, num_anchors * 10, kernel_size=(1, 1), stride=1, padding=0)
-
- def forward(self, x):
- out = self.conv1x1(x)
- out = out.permute(0, 2, 3, 1).contiguous()
-
- return out.view(out.shape[0], -1, 10)
-
-
-def make_class_head(fpn_num=3, inchannels=64, anchor_num=2):
- classhead = nn.ModuleList()
- for i in range(fpn_num):
- classhead.append(ClassHead(inchannels, anchor_num))
- return classhead
-
-
-def make_bbox_head(fpn_num=3, inchannels=64, anchor_num=2):
- bboxhead = nn.ModuleList()
- for i in range(fpn_num):
- bboxhead.append(BboxHead(inchannels, anchor_num))
- return bboxhead
-
-
-def make_landmark_head(fpn_num=3, inchannels=64, anchor_num=2):
- landmarkhead = nn.ModuleList()
- for i in range(fpn_num):
- landmarkhead.append(LandmarkHead(inchannels, anchor_num))
- return landmarkhead
diff --git a/CodeFormer/CodeFormer/facelib/detection/retinaface/retinaface_utils.py b/CodeFormer/CodeFormer/facelib/detection/retinaface/retinaface_utils.py
deleted file mode 100644
index 8c357757741c6d9bd7ce4d8ce740fefd51850fbf..0000000000000000000000000000000000000000
--- a/CodeFormer/CodeFormer/facelib/detection/retinaface/retinaface_utils.py
+++ /dev/null
@@ -1,421 +0,0 @@
-import numpy as np
-import torch
-import torchvision
-from itertools import product as product
-from math import ceil
-
-
-class PriorBox(object):
-
- def __init__(self, cfg, image_size=None, phase='train'):
- super(PriorBox, self).__init__()
- self.min_sizes = cfg['min_sizes']
- self.steps = cfg['steps']
- self.clip = cfg['clip']
- self.image_size = image_size
- self.feature_maps = [[ceil(self.image_size[0] / step), ceil(self.image_size[1] / step)] for step in self.steps]
- self.name = 's'
-
- def forward(self):
- anchors = []
- for k, f in enumerate(self.feature_maps):
- min_sizes = self.min_sizes[k]
- for i, j in product(range(f[0]), range(f[1])):
- for min_size in min_sizes:
- s_kx = min_size / self.image_size[1]
- s_ky = min_size / self.image_size[0]
- dense_cx = [x * self.steps[k] / self.image_size[1] for x in [j + 0.5]]
- dense_cy = [y * self.steps[k] / self.image_size[0] for y in [i + 0.5]]
- for cy, cx in product(dense_cy, dense_cx):
- anchors += [cx, cy, s_kx, s_ky]
-
- # back to torch land
- output = torch.Tensor(anchors).view(-1, 4)
- if self.clip:
- output.clamp_(max=1, min=0)
- return output
-
-
-def py_cpu_nms(dets, thresh):
- """Pure Python NMS baseline."""
- keep = torchvision.ops.nms(
- boxes=torch.Tensor(dets[:, :4]),
- scores=torch.Tensor(dets[:, 4]),
- iou_threshold=thresh,
- )
-
- return list(keep)
-
-
-def point_form(boxes):
- """ Convert prior_boxes to (xmin, ymin, xmax, ymax)
- representation for comparison to point form ground truth data.
- Args:
- boxes: (tensor) center-size default boxes from priorbox layers.
- Return:
- boxes: (tensor) Converted xmin, ymin, xmax, ymax form of boxes.
- """
- return torch.cat(
- (
- boxes[:, :2] - boxes[:, 2:] / 2, # xmin, ymin
- boxes[:, :2] + boxes[:, 2:] / 2),
- 1) # xmax, ymax
-
-
-def center_size(boxes):
- """ Convert prior_boxes to (cx, cy, w, h)
- representation for comparison to center-size form ground truth data.
- Args:
- boxes: (tensor) point_form boxes
- Return:
- boxes: (tensor) Converted xmin, ymin, xmax, ymax form of boxes.
- """
- return torch.cat(
- (boxes[:, 2:] + boxes[:, :2]) / 2, # cx, cy
- boxes[:, 2:] - boxes[:, :2],
- 1) # w, h
-
-
-def intersect(box_a, box_b):
- """ We resize both tensors to [A,B,2] without new malloc:
- [A,2] -> [A,1,2] -> [A,B,2]
- [B,2] -> [1,B,2] -> [A,B,2]
- Then we compute the area of intersect between box_a and box_b.
- Args:
- box_a: (tensor) bounding boxes, Shape: [A,4].
- box_b: (tensor) bounding boxes, Shape: [B,4].
- Return:
- (tensor) intersection area, Shape: [A,B].
- """
- A = box_a.size(0)
- B = box_b.size(0)
- max_xy = torch.min(box_a[:, 2:].unsqueeze(1).expand(A, B, 2), box_b[:, 2:].unsqueeze(0).expand(A, B, 2))
- min_xy = torch.max(box_a[:, :2].unsqueeze(1).expand(A, B, 2), box_b[:, :2].unsqueeze(0).expand(A, B, 2))
- inter = torch.clamp((max_xy - min_xy), min=0)
- return inter[:, :, 0] * inter[:, :, 1]
-
-
-def jaccard(box_a, box_b):
- """Compute the jaccard overlap of two sets of boxes. The jaccard overlap
- is simply the intersection over union of two boxes. Here we operate on
- ground truth boxes and default boxes.
- E.g.:
- A ∩ B / A ∪ B = A ∩ B / (area(A) + area(B) - A ∩ B)
- Args:
- box_a: (tensor) Ground truth bounding boxes, Shape: [num_objects,4]
- box_b: (tensor) Prior boxes from priorbox layers, Shape: [num_priors,4]
- Return:
- jaccard overlap: (tensor) Shape: [box_a.size(0), box_b.size(0)]
- """
- inter = intersect(box_a, box_b)
- area_a = ((box_a[:, 2] - box_a[:, 0]) * (box_a[:, 3] - box_a[:, 1])).unsqueeze(1).expand_as(inter) # [A,B]
- area_b = ((box_b[:, 2] - box_b[:, 0]) * (box_b[:, 3] - box_b[:, 1])).unsqueeze(0).expand_as(inter) # [A,B]
- union = area_a + area_b - inter
- return inter / union # [A,B]
-
-
-def matrix_iou(a, b):
- """
- return iou of a and b, numpy version for data augenmentation
- """
- lt = np.maximum(a[:, np.newaxis, :2], b[:, :2])
- rb = np.minimum(a[:, np.newaxis, 2:], b[:, 2:])
-
- area_i = np.prod(rb - lt, axis=2) * (lt < rb).all(axis=2)
- area_a = np.prod(a[:, 2:] - a[:, :2], axis=1)
- area_b = np.prod(b[:, 2:] - b[:, :2], axis=1)
- return area_i / (area_a[:, np.newaxis] + area_b - area_i)
-
-
-def matrix_iof(a, b):
- """
- return iof of a and b, numpy version for data augenmentation
- """
- lt = np.maximum(a[:, np.newaxis, :2], b[:, :2])
- rb = np.minimum(a[:, np.newaxis, 2:], b[:, 2:])
-
- area_i = np.prod(rb - lt, axis=2) * (lt < rb).all(axis=2)
- area_a = np.prod(a[:, 2:] - a[:, :2], axis=1)
- return area_i / np.maximum(area_a[:, np.newaxis], 1)
-
-
-def match(threshold, truths, priors, variances, labels, landms, loc_t, conf_t, landm_t, idx):
- """Match each prior box with the ground truth box of the highest jaccard
- overlap, encode the bounding boxes, then return the matched indices
- corresponding to both confidence and location preds.
- Args:
- threshold: (float) The overlap threshold used when matching boxes.
- truths: (tensor) Ground truth boxes, Shape: [num_obj, 4].
- priors: (tensor) Prior boxes from priorbox layers, Shape: [n_priors,4].
- variances: (tensor) Variances corresponding to each prior coord,
- Shape: [num_priors, 4].
- labels: (tensor) All the class labels for the image, Shape: [num_obj].
- landms: (tensor) Ground truth landms, Shape [num_obj, 10].
- loc_t: (tensor) Tensor to be filled w/ encoded location targets.
- conf_t: (tensor) Tensor to be filled w/ matched indices for conf preds.
- landm_t: (tensor) Tensor to be filled w/ encoded landm targets.
- idx: (int) current batch index
- Return:
- The matched indices corresponding to 1)location 2)confidence
- 3)landm preds.
- """
- # jaccard index
- overlaps = jaccard(truths, point_form(priors))
- # (Bipartite Matching)
- # [1,num_objects] best prior for each ground truth
- best_prior_overlap, best_prior_idx = overlaps.max(1, keepdim=True)
-
- # ignore hard gt
- valid_gt_idx = best_prior_overlap[:, 0] >= 0.2
- best_prior_idx_filter = best_prior_idx[valid_gt_idx, :]
- if best_prior_idx_filter.shape[0] <= 0:
- loc_t[idx] = 0
- conf_t[idx] = 0
- return
-
- # [1,num_priors] best ground truth for each prior
- best_truth_overlap, best_truth_idx = overlaps.max(0, keepdim=True)
- best_truth_idx.squeeze_(0)
- best_truth_overlap.squeeze_(0)
- best_prior_idx.squeeze_(1)
- best_prior_idx_filter.squeeze_(1)
- best_prior_overlap.squeeze_(1)
- best_truth_overlap.index_fill_(0, best_prior_idx_filter, 2) # ensure best prior
- # TODO refactor: index best_prior_idx with long tensor
- # ensure every gt matches with its prior of max overlap
- for j in range(best_prior_idx.size(0)): # 判别此anchor是预测哪一个boxes
- best_truth_idx[best_prior_idx[j]] = j
- matches = truths[best_truth_idx] # Shape: [num_priors,4] 此处为每一个anchor对应的bbox取出来
- conf = labels[best_truth_idx] # Shape: [num_priors] 此处为每一个anchor对应的label取出来
- conf[best_truth_overlap < threshold] = 0 # label as background overlap<0.35的全部作为负样本
- loc = encode(matches, priors, variances)
-
- matches_landm = landms[best_truth_idx]
- landm = encode_landm(matches_landm, priors, variances)
- loc_t[idx] = loc # [num_priors,4] encoded offsets to learn
- conf_t[idx] = conf # [num_priors] top class label for each prior
- landm_t[idx] = landm
-
-
-def encode(matched, priors, variances):
- """Encode the variances from the priorbox layers into the ground truth boxes
- we have matched (based on jaccard overlap) with the prior boxes.
- Args:
- matched: (tensor) Coords of ground truth for each prior in point-form
- Shape: [num_priors, 4].
- priors: (tensor) Prior boxes in center-offset form
- Shape: [num_priors,4].
- variances: (list[float]) Variances of priorboxes
- Return:
- encoded boxes (tensor), Shape: [num_priors, 4]
- """
-
- # dist b/t match center and prior's center
- g_cxcy = (matched[:, :2] + matched[:, 2:]) / 2 - priors[:, :2]
- # encode variance
- g_cxcy /= (variances[0] * priors[:, 2:])
- # match wh / prior wh
- g_wh = (matched[:, 2:] - matched[:, :2]) / priors[:, 2:]
- g_wh = torch.log(g_wh) / variances[1]
- # return target for smooth_l1_loss
- return torch.cat([g_cxcy, g_wh], 1) # [num_priors,4]
-
-
-def encode_landm(matched, priors, variances):
- """Encode the variances from the priorbox layers into the ground truth boxes
- we have matched (based on jaccard overlap) with the prior boxes.
- Args:
- matched: (tensor) Coords of ground truth for each prior in point-form
- Shape: [num_priors, 10].
- priors: (tensor) Prior boxes in center-offset form
- Shape: [num_priors,4].
- variances: (list[float]) Variances of priorboxes
- Return:
- encoded landm (tensor), Shape: [num_priors, 10]
- """
-
- # dist b/t match center and prior's center
- matched = torch.reshape(matched, (matched.size(0), 5, 2))
- priors_cx = priors[:, 0].unsqueeze(1).expand(matched.size(0), 5).unsqueeze(2)
- priors_cy = priors[:, 1].unsqueeze(1).expand(matched.size(0), 5).unsqueeze(2)
- priors_w = priors[:, 2].unsqueeze(1).expand(matched.size(0), 5).unsqueeze(2)
- priors_h = priors[:, 3].unsqueeze(1).expand(matched.size(0), 5).unsqueeze(2)
- priors = torch.cat([priors_cx, priors_cy, priors_w, priors_h], dim=2)
- g_cxcy = matched[:, :, :2] - priors[:, :, :2]
- # encode variance
- g_cxcy /= (variances[0] * priors[:, :, 2:])
- # g_cxcy /= priors[:, :, 2:]
- g_cxcy = g_cxcy.reshape(g_cxcy.size(0), -1)
- # return target for smooth_l1_loss
- return g_cxcy
-
-
-# Adapted from https://github.com/Hakuyume/chainer-ssd
-def decode(loc, priors, variances):
- """Decode locations from predictions using priors to undo
- the encoding we did for offset regression at train time.
- Args:
- loc (tensor): location predictions for loc layers,
- Shape: [num_priors,4]
- priors (tensor): Prior boxes in center-offset form.
- Shape: [num_priors,4].
- variances: (list[float]) Variances of priorboxes
- Return:
- decoded bounding box predictions
- """
-
- boxes = torch.cat((priors[:, :2] + loc[:, :2] * variances[0] * priors[:, 2:],
- priors[:, 2:] * torch.exp(loc[:, 2:] * variances[1])), 1)
- boxes[:, :2] -= boxes[:, 2:] / 2
- boxes[:, 2:] += boxes[:, :2]
- return boxes
-
-
-def decode_landm(pre, priors, variances):
- """Decode landm from predictions using priors to undo
- the encoding we did for offset regression at train time.
- Args:
- pre (tensor): landm predictions for loc layers,
- Shape: [num_priors,10]
- priors (tensor): Prior boxes in center-offset form.
- Shape: [num_priors,4].
- variances: (list[float]) Variances of priorboxes
- Return:
- decoded landm predictions
- """
- tmp = (
- priors[:, :2] + pre[:, :2] * variances[0] * priors[:, 2:],
- priors[:, :2] + pre[:, 2:4] * variances[0] * priors[:, 2:],
- priors[:, :2] + pre[:, 4:6] * variances[0] * priors[:, 2:],
- priors[:, :2] + pre[:, 6:8] * variances[0] * priors[:, 2:],
- priors[:, :2] + pre[:, 8:10] * variances[0] * priors[:, 2:],
- )
- landms = torch.cat(tmp, dim=1)
- return landms
-
-
-def batched_decode(b_loc, priors, variances):
- """Decode locations from predictions using priors to undo
- the encoding we did for offset regression at train time.
- Args:
- b_loc (tensor): location predictions for loc layers,
- Shape: [num_batches,num_priors,4]
- priors (tensor): Prior boxes in center-offset form.
- Shape: [1,num_priors,4].
- variances: (list[float]) Variances of priorboxes
- Return:
- decoded bounding box predictions
- """
- boxes = (
- priors[:, :, :2] + b_loc[:, :, :2] * variances[0] * priors[:, :, 2:],
- priors[:, :, 2:] * torch.exp(b_loc[:, :, 2:] * variances[1]),
- )
- boxes = torch.cat(boxes, dim=2)
-
- boxes[:, :, :2] -= boxes[:, :, 2:] / 2
- boxes[:, :, 2:] += boxes[:, :, :2]
- return boxes
-
-
-def batched_decode_landm(pre, priors, variances):
- """Decode landm from predictions using priors to undo
- the encoding we did for offset regression at train time.
- Args:
- pre (tensor): landm predictions for loc layers,
- Shape: [num_batches,num_priors,10]
- priors (tensor): Prior boxes in center-offset form.
- Shape: [1,num_priors,4].
- variances: (list[float]) Variances of priorboxes
- Return:
- decoded landm predictions
- """
- landms = (
- priors[:, :, :2] + pre[:, :, :2] * variances[0] * priors[:, :, 2:],
- priors[:, :, :2] + pre[:, :, 2:4] * variances[0] * priors[:, :, 2:],
- priors[:, :, :2] + pre[:, :, 4:6] * variances[0] * priors[:, :, 2:],
- priors[:, :, :2] + pre[:, :, 6:8] * variances[0] * priors[:, :, 2:],
- priors[:, :, :2] + pre[:, :, 8:10] * variances[0] * priors[:, :, 2:],
- )
- landms = torch.cat(landms, dim=2)
- return landms
-
-
-def log_sum_exp(x):
- """Utility function for computing log_sum_exp while determining
- This will be used to determine unaveraged confidence loss across
- all examples in a batch.
- Args:
- x (Variable(tensor)): conf_preds from conf layers
- """
- x_max = x.data.max()
- return torch.log(torch.sum(torch.exp(x - x_max), 1, keepdim=True)) + x_max
-
-
-# Original author: Francisco Massa:
-# https://github.com/fmassa/object-detection.torch
-# Ported to PyTorch by Max deGroot (02/01/2017)
-def nms(boxes, scores, overlap=0.5, top_k=200):
- """Apply non-maximum suppression at test time to avoid detecting too many
- overlapping bounding boxes for a given object.
- Args:
- boxes: (tensor) The location preds for the img, Shape: [num_priors,4].
- scores: (tensor) The class predscores for the img, Shape:[num_priors].
- overlap: (float) The overlap thresh for suppressing unnecessary boxes.
- top_k: (int) The Maximum number of box preds to consider.
- Return:
- The indices of the kept boxes with respect to num_priors.
- """
-
- keep = torch.Tensor(scores.size(0)).fill_(0).long()
- if boxes.numel() == 0:
- return keep
- x1 = boxes[:, 0]
- y1 = boxes[:, 1]
- x2 = boxes[:, 2]
- y2 = boxes[:, 3]
- area = torch.mul(x2 - x1, y2 - y1)
- v, idx = scores.sort(0) # sort in ascending order
- # I = I[v >= 0.01]
- idx = idx[-top_k:] # indices of the top-k largest vals
- xx1 = boxes.new()
- yy1 = boxes.new()
- xx2 = boxes.new()
- yy2 = boxes.new()
- w = boxes.new()
- h = boxes.new()
-
- # keep = torch.Tensor()
- count = 0
- while idx.numel() > 0:
- i = idx[-1] # index of current largest val
- # keep.append(i)
- keep[count] = i
- count += 1
- if idx.size(0) == 1:
- break
- idx = idx[:-1] # remove kept element from view
- # load bboxes of next highest vals
- torch.index_select(x1, 0, idx, out=xx1)
- torch.index_select(y1, 0, idx, out=yy1)
- torch.index_select(x2, 0, idx, out=xx2)
- torch.index_select(y2, 0, idx, out=yy2)
- # store element-wise max with next highest score
- xx1 = torch.clamp(xx1, min=x1[i])
- yy1 = torch.clamp(yy1, min=y1[i])
- xx2 = torch.clamp(xx2, max=x2[i])
- yy2 = torch.clamp(yy2, max=y2[i])
- w.resize_as_(xx2)
- h.resize_as_(yy2)
- w = xx2 - xx1
- h = yy2 - yy1
- # check sizes of xx1 and xx2.. after each iteration
- w = torch.clamp(w, min=0.0)
- h = torch.clamp(h, min=0.0)
- inter = w * h
- # IoU = i / (area(a) + area(b) - i)
- rem_areas = torch.index_select(area, 0, idx) # load remaining areas)
- union = (rem_areas - inter) + area[i]
- IoU = inter / union # store result in iou
- # keep only elements with an IoU <= overlap
- idx = idx[IoU.le(overlap)]
- return keep, count
diff --git a/CodeFormer/CodeFormer/facelib/detection/yolov5face/__init__.py b/CodeFormer/CodeFormer/facelib/detection/yolov5face/__init__.py
deleted file mode 100644
index e69de29bb2d1d6434b8b29ae775ad8c2e48c5391..0000000000000000000000000000000000000000
diff --git a/CodeFormer/CodeFormer/facelib/detection/yolov5face/__pycache__/__init__.cpython-310.pyc b/CodeFormer/CodeFormer/facelib/detection/yolov5face/__pycache__/__init__.cpython-310.pyc
deleted file mode 100644
index 38ad3c1ebf7de60f2b64694a3eae13b14e7ce8f5..0000000000000000000000000000000000000000
Binary files a/CodeFormer/CodeFormer/facelib/detection/yolov5face/__pycache__/__init__.cpython-310.pyc and /dev/null differ
diff --git a/CodeFormer/CodeFormer/facelib/detection/yolov5face/__pycache__/face_detector.cpython-310.pyc b/CodeFormer/CodeFormer/facelib/detection/yolov5face/__pycache__/face_detector.cpython-310.pyc
deleted file mode 100644
index cddb88c53468bb0b0fa73e2f527a52b67792fa82..0000000000000000000000000000000000000000
Binary files a/CodeFormer/CodeFormer/facelib/detection/yolov5face/__pycache__/face_detector.cpython-310.pyc and /dev/null differ
diff --git a/CodeFormer/CodeFormer/facelib/detection/yolov5face/face_detector.py b/CodeFormer/CodeFormer/facelib/detection/yolov5face/face_detector.py
deleted file mode 100644
index 0103411e27860898fee470895a7cf59d8be2e11a..0000000000000000000000000000000000000000
--- a/CodeFormer/CodeFormer/facelib/detection/yolov5face/face_detector.py
+++ /dev/null
@@ -1,142 +0,0 @@
-import copy
-import os
-from pathlib import Path
-
-import cv2
-import numpy as np
-import torch
-from torch import nn
-
-from facelib.detection.yolov5face.models.common import Conv
-from facelib.detection.yolov5face.models.yolo import Model
-from facelib.detection.yolov5face.utils.datasets import letterbox
-from facelib.detection.yolov5face.utils.general import (
- check_img_size,
- non_max_suppression_face,
- scale_coords,
- scale_coords_landmarks,
-)
-
-IS_HIGH_VERSION = tuple(map(int, torch.__version__.split('+')[0].split('.')[:3])) >= (1, 9, 0)
-
-
-def isListempty(inList):
- if isinstance(inList, list): # Is a list
- return all(map(isListempty, inList))
- return False # Not a list
-
-class YoloDetector:
- def __init__(
- self,
- config_name,
- min_face=10,
- target_size=None,
- device='cuda',
- ):
- """
- config_name: name of .yaml config with network configuration from models/ folder.
- min_face : minimal face size in pixels.
- target_size : target size of smaller image axis (choose lower for faster work). e.g. 480, 720, 1080.
- None for original resolution.
- """
- self._class_path = Path(__file__).parent.absolute()
- self.target_size = target_size
- self.min_face = min_face
- self.detector = Model(cfg=config_name)
- self.device = device
-
-
- def _preprocess(self, imgs):
- """
- Preprocessing image before passing through the network. Resize and conversion to torch tensor.
- """
- pp_imgs = []
- for img in imgs:
- h0, w0 = img.shape[:2] # orig hw
- if self.target_size:
- r = self.target_size / min(h0, w0) # resize image to img_size
- if r < 1:
- img = cv2.resize(img, (int(w0 * r), int(h0 * r)), interpolation=cv2.INTER_LINEAR)
-
- imgsz = check_img_size(max(img.shape[:2]), s=self.detector.stride.max()) # check img_size
- img = letterbox(img, new_shape=imgsz)[0]
- pp_imgs.append(img)
- pp_imgs = np.array(pp_imgs)
- pp_imgs = pp_imgs.transpose(0, 3, 1, 2)
- pp_imgs = torch.from_numpy(pp_imgs).to(self.device)
- pp_imgs = pp_imgs.float() # uint8 to fp16/32
- return pp_imgs / 255.0 # 0 - 255 to 0.0 - 1.0
-
- def _postprocess(self, imgs, origimgs, pred, conf_thres, iou_thres):
- """
- Postprocessing of raw pytorch model output.
- Returns:
- bboxes: list of arrays with 4 coordinates of bounding boxes with format x1,y1,x2,y2.
- points: list of arrays with coordinates of 5 facial keypoints (eyes, nose, lips corners).
- """
- bboxes = [[] for _ in range(len(origimgs))]
- landmarks = [[] for _ in range(len(origimgs))]
-
- pred = non_max_suppression_face(pred, conf_thres, iou_thres)
-
- for image_id, origimg in enumerate(origimgs):
- img_shape = origimg.shape
- image_height, image_width = img_shape[:2]
- gn = torch.tensor(img_shape)[[1, 0, 1, 0]] # normalization gain whwh
- gn_lks = torch.tensor(img_shape)[[1, 0, 1, 0, 1, 0, 1, 0, 1, 0]] # normalization gain landmarks
- det = pred[image_id].cpu()
- scale_coords(imgs[image_id].shape[1:], det[:, :4], img_shape).round()
- scale_coords_landmarks(imgs[image_id].shape[1:], det[:, 5:15], img_shape).round()
-
- for j in range(det.size()[0]):
- box = (det[j, :4].view(1, 4) / gn).view(-1).tolist()
- box = list(
- map(int, [box[0] * image_width, box[1] * image_height, box[2] * image_width, box[3] * image_height])
- )
- if box[3] - box[1] < self.min_face:
- continue
- lm = (det[j, 5:15].view(1, 10) / gn_lks).view(-1).tolist()
- lm = list(map(int, [i * image_width if j % 2 == 0 else i * image_height for j, i in enumerate(lm)]))
- lm = [lm[i : i + 2] for i in range(0, len(lm), 2)]
- bboxes[image_id].append(box)
- landmarks[image_id].append(lm)
- return bboxes, landmarks
-
- def detect_faces(self, imgs, conf_thres=0.7, iou_thres=0.5):
- """
- Get bbox coordinates and keypoints of faces on original image.
- Params:
- imgs: image or list of images to detect faces on with BGR order (convert to RGB order for inference)
- conf_thres: confidence threshold for each prediction
- iou_thres: threshold for NMS (filter of intersecting bboxes)
- Returns:
- bboxes: list of arrays with 4 coordinates of bounding boxes with format x1,y1,x2,y2.
- points: list of arrays with coordinates of 5 facial keypoints (eyes, nose, lips corners).
- """
- # Pass input images through face detector
- images = imgs if isinstance(imgs, list) else [imgs]
- images = [cv2.cvtColor(img, cv2.COLOR_BGR2RGB) for img in images]
- origimgs = copy.deepcopy(images)
-
- images = self._preprocess(images)
-
- if IS_HIGH_VERSION:
- with torch.inference_mode(): # for pytorch>=1.9
- pred = self.detector(images)[0]
- else:
- with torch.no_grad(): # for pytorch<1.9
- pred = self.detector(images)[0]
-
- bboxes, points = self._postprocess(images, origimgs, pred, conf_thres, iou_thres)
-
- # return bboxes, points
- if not isListempty(points):
- bboxes = np.array(bboxes).reshape(-1,4)
- points = np.array(points).reshape(-1,10)
- padding = bboxes[:,0].reshape(-1,1)
- return np.concatenate((bboxes, padding, points), axis=1)
- else:
- return None
-
- def __call__(self, *args):
- return self.predict(*args)
diff --git a/CodeFormer/CodeFormer/facelib/detection/yolov5face/models/__init__.py b/CodeFormer/CodeFormer/facelib/detection/yolov5face/models/__init__.py
deleted file mode 100644
index e69de29bb2d1d6434b8b29ae775ad8c2e48c5391..0000000000000000000000000000000000000000
diff --git a/CodeFormer/CodeFormer/facelib/detection/yolov5face/models/__pycache__/__init__.cpython-310.pyc b/CodeFormer/CodeFormer/facelib/detection/yolov5face/models/__pycache__/__init__.cpython-310.pyc
deleted file mode 100644
index 6c4861270547f15cc2af39845ece0e12eeb3990a..0000000000000000000000000000000000000000
Binary files a/CodeFormer/CodeFormer/facelib/detection/yolov5face/models/__pycache__/__init__.cpython-310.pyc and /dev/null differ
diff --git a/CodeFormer/CodeFormer/facelib/detection/yolov5face/models/__pycache__/common.cpython-310.pyc b/CodeFormer/CodeFormer/facelib/detection/yolov5face/models/__pycache__/common.cpython-310.pyc
deleted file mode 100644
index f1bd1d5a10dd43ae263c6d0305c633326aa18469..0000000000000000000000000000000000000000
Binary files a/CodeFormer/CodeFormer/facelib/detection/yolov5face/models/__pycache__/common.cpython-310.pyc and /dev/null differ
diff --git a/CodeFormer/CodeFormer/facelib/detection/yolov5face/models/__pycache__/experimental.cpython-310.pyc b/CodeFormer/CodeFormer/facelib/detection/yolov5face/models/__pycache__/experimental.cpython-310.pyc
deleted file mode 100644
index 28a8e4dd3da37c112bbb168267086f6f2528ff08..0000000000000000000000000000000000000000
Binary files a/CodeFormer/CodeFormer/facelib/detection/yolov5face/models/__pycache__/experimental.cpython-310.pyc and /dev/null differ
diff --git a/CodeFormer/CodeFormer/facelib/detection/yolov5face/models/__pycache__/yolo.cpython-310.pyc b/CodeFormer/CodeFormer/facelib/detection/yolov5face/models/__pycache__/yolo.cpython-310.pyc
deleted file mode 100644
index f27edc94c351b4ec8026b843278d44dad31ecf6e..0000000000000000000000000000000000000000
Binary files a/CodeFormer/CodeFormer/facelib/detection/yolov5face/models/__pycache__/yolo.cpython-310.pyc and /dev/null differ
diff --git a/CodeFormer/CodeFormer/facelib/detection/yolov5face/models/common.py b/CodeFormer/CodeFormer/facelib/detection/yolov5face/models/common.py
deleted file mode 100644
index 497a00444c4c59725001993a63fe4617e9d323c8..0000000000000000000000000000000000000000
--- a/CodeFormer/CodeFormer/facelib/detection/yolov5face/models/common.py
+++ /dev/null
@@ -1,299 +0,0 @@
-# This file contains modules common to various models
-
-import math
-
-import numpy as np
-import torch
-from torch import nn
-
-from facelib.detection.yolov5face.utils.datasets import letterbox
-from facelib.detection.yolov5face.utils.general import (
- make_divisible,
- non_max_suppression,
- scale_coords,
- xyxy2xywh,
-)
-
-
-def autopad(k, p=None): # kernel, padding
- # Pad to 'same'
- if p is None:
- p = k // 2 if isinstance(k, int) else [x // 2 for x in k] # auto-pad
- return p
-
-
-def channel_shuffle(x, groups):
- batchsize, num_channels, height, width = x.data.size()
- channels_per_group = torch.div(num_channels, groups, rounding_mode="trunc")
-
- # reshape
- x = x.view(batchsize, groups, channels_per_group, height, width)
- x = torch.transpose(x, 1, 2).contiguous()
-
- # flatten
- return x.view(batchsize, -1, height, width)
-
-
-def DWConv(c1, c2, k=1, s=1, act=True):
- # Depthwise convolution
- return Conv(c1, c2, k, s, g=math.gcd(c1, c2), act=act)
-
-
-class Conv(nn.Module):
- # Standard convolution
- def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups
- super().__init__()
- self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False)
- self.bn = nn.BatchNorm2d(c2)
- self.act = nn.SiLU() if act is True else (act if isinstance(act, nn.Module) else nn.Identity())
-
- def forward(self, x):
- return self.act(self.bn(self.conv(x)))
-
- def fuseforward(self, x):
- return self.act(self.conv(x))
-
-
-class StemBlock(nn.Module):
- def __init__(self, c1, c2, k=3, s=2, p=None, g=1, act=True):
- super().__init__()
- self.stem_1 = Conv(c1, c2, k, s, p, g, act)
- self.stem_2a = Conv(c2, c2 // 2, 1, 1, 0)
- self.stem_2b = Conv(c2 // 2, c2, 3, 2, 1)
- self.stem_2p = nn.MaxPool2d(kernel_size=2, stride=2, ceil_mode=True)
- self.stem_3 = Conv(c2 * 2, c2, 1, 1, 0)
-
- def forward(self, x):
- stem_1_out = self.stem_1(x)
- stem_2a_out = self.stem_2a(stem_1_out)
- stem_2b_out = self.stem_2b(stem_2a_out)
- stem_2p_out = self.stem_2p(stem_1_out)
- return self.stem_3(torch.cat((stem_2b_out, stem_2p_out), 1))
-
-
-class Bottleneck(nn.Module):
- # Standard bottleneck
- def __init__(self, c1, c2, shortcut=True, g=1, e=0.5): # ch_in, ch_out, shortcut, groups, expansion
- super().__init__()
- c_ = int(c2 * e) # hidden channels
- self.cv1 = Conv(c1, c_, 1, 1)
- self.cv2 = Conv(c_, c2, 3, 1, g=g)
- self.add = shortcut and c1 == c2
-
- def forward(self, x):
- return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
-
-
-class BottleneckCSP(nn.Module):
- # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
- def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
- super().__init__()
- c_ = int(c2 * e) # hidden channels
- self.cv1 = Conv(c1, c_, 1, 1)
- self.cv2 = nn.Conv2d(c1, c_, 1, 1, bias=False)
- self.cv3 = nn.Conv2d(c_, c_, 1, 1, bias=False)
- self.cv4 = Conv(2 * c_, c2, 1, 1)
- self.bn = nn.BatchNorm2d(2 * c_) # applied to cat(cv2, cv3)
- self.act = nn.LeakyReLU(0.1, inplace=True)
- self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))
-
- def forward(self, x):
- y1 = self.cv3(self.m(self.cv1(x)))
- y2 = self.cv2(x)
- return self.cv4(self.act(self.bn(torch.cat((y1, y2), dim=1))))
-
-
-class C3(nn.Module):
- # CSP Bottleneck with 3 convolutions
- def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
- super().__init__()
- c_ = int(c2 * e) # hidden channels
- self.cv1 = Conv(c1, c_, 1, 1)
- self.cv2 = Conv(c1, c_, 1, 1)
- self.cv3 = Conv(2 * c_, c2, 1) # act=FReLU(c2)
- self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))
-
- def forward(self, x):
- return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), dim=1))
-
-
-class ShuffleV2Block(nn.Module):
- def __init__(self, inp, oup, stride):
- super().__init__()
-
- if not 1 <= stride <= 3:
- raise ValueError("illegal stride value")
- self.stride = stride
-
- branch_features = oup // 2
-
- if self.stride > 1:
- self.branch1 = nn.Sequential(
- self.depthwise_conv(inp, inp, kernel_size=3, stride=self.stride, padding=1),
- nn.BatchNorm2d(inp),
- nn.Conv2d(inp, branch_features, kernel_size=1, stride=1, padding=0, bias=False),
- nn.BatchNorm2d(branch_features),
- nn.SiLU(),
- )
- else:
- self.branch1 = nn.Sequential()
-
- self.branch2 = nn.Sequential(
- nn.Conv2d(
- inp if (self.stride > 1) else branch_features,
- branch_features,
- kernel_size=1,
- stride=1,
- padding=0,
- bias=False,
- ),
- nn.BatchNorm2d(branch_features),
- nn.SiLU(),
- self.depthwise_conv(branch_features, branch_features, kernel_size=3, stride=self.stride, padding=1),
- nn.BatchNorm2d(branch_features),
- nn.Conv2d(branch_features, branch_features, kernel_size=1, stride=1, padding=0, bias=False),
- nn.BatchNorm2d(branch_features),
- nn.SiLU(),
- )
-
- @staticmethod
- def depthwise_conv(i, o, kernel_size, stride=1, padding=0, bias=False):
- return nn.Conv2d(i, o, kernel_size, stride, padding, bias=bias, groups=i)
-
- def forward(self, x):
- if self.stride == 1:
- x1, x2 = x.chunk(2, dim=1)
- out = torch.cat((x1, self.branch2(x2)), dim=1)
- else:
- out = torch.cat((self.branch1(x), self.branch2(x)), dim=1)
- out = channel_shuffle(out, 2)
- return out
-
-
-class SPP(nn.Module):
- # Spatial pyramid pooling layer used in YOLOv3-SPP
- def __init__(self, c1, c2, k=(5, 9, 13)):
- super().__init__()
- c_ = c1 // 2 # hidden channels
- self.cv1 = Conv(c1, c_, 1, 1)
- self.cv2 = Conv(c_ * (len(k) + 1), c2, 1, 1)
- self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k])
-
- def forward(self, x):
- x = self.cv1(x)
- return self.cv2(torch.cat([x] + [m(x) for m in self.m], 1))
-
-
-class Focus(nn.Module):
- # Focus wh information into c-space
- def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups
- super().__init__()
- self.conv = Conv(c1 * 4, c2, k, s, p, g, act)
-
- def forward(self, x): # x(b,c,w,h) -> y(b,4c,w/2,h/2)
- return self.conv(torch.cat([x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]], 1))
-
-
-class Concat(nn.Module):
- # Concatenate a list of tensors along dimension
- def __init__(self, dimension=1):
- super().__init__()
- self.d = dimension
-
- def forward(self, x):
- return torch.cat(x, self.d)
-
-
-class NMS(nn.Module):
- # Non-Maximum Suppression (NMS) module
- conf = 0.25 # confidence threshold
- iou = 0.45 # IoU threshold
- classes = None # (optional list) filter by class
-
- def forward(self, x):
- return non_max_suppression(x[0], conf_thres=self.conf, iou_thres=self.iou, classes=self.classes)
-
-
-class AutoShape(nn.Module):
- # input-robust model wrapper for passing cv2/np/PIL/torch inputs. Includes preprocessing, inference and NMS
- img_size = 640 # inference size (pixels)
- conf = 0.25 # NMS confidence threshold
- iou = 0.45 # NMS IoU threshold
- classes = None # (optional list) filter by class
-
- def __init__(self, model):
- super().__init__()
- self.model = model.eval()
-
- def autoshape(self):
- print("autoShape already enabled, skipping... ") # model already converted to model.autoshape()
- return self
-
- def forward(self, imgs, size=640, augment=False, profile=False):
- # Inference from various sources. For height=720, width=1280, RGB images example inputs are:
- # OpenCV: = cv2.imread('image.jpg')[:,:,::-1] # HWC BGR to RGB x(720,1280,3)
- # PIL: = Image.open('image.jpg') # HWC x(720,1280,3)
- # numpy: = np.zeros((720,1280,3)) # HWC
- # torch: = torch.zeros(16,3,720,1280) # BCHW
- # multiple: = [Image.open('image1.jpg'), Image.open('image2.jpg'), ...] # list of images
-
- p = next(self.model.parameters()) # for device and type
- if isinstance(imgs, torch.Tensor): # torch
- return self.model(imgs.to(p.device).type_as(p), augment, profile) # inference
-
- # Pre-process
- n, imgs = (len(imgs), imgs) if isinstance(imgs, list) else (1, [imgs]) # number of images, list of images
- shape0, shape1 = [], [] # image and inference shapes
- for i, im in enumerate(imgs):
- im = np.array(im) # to numpy
- if im.shape[0] < 5: # image in CHW
- im = im.transpose((1, 2, 0)) # reverse dataloader .transpose(2, 0, 1)
- im = im[:, :, :3] if im.ndim == 3 else np.tile(im[:, :, None], 3) # enforce 3ch input
- s = im.shape[:2] # HWC
- shape0.append(s) # image shape
- g = size / max(s) # gain
- shape1.append([y * g for y in s])
- imgs[i] = im # update
- shape1 = [make_divisible(x, int(self.stride.max())) for x in np.stack(shape1, 0).max(0)] # inference shape
- x = [letterbox(im, new_shape=shape1, auto=False)[0] for im in imgs] # pad
- x = np.stack(x, 0) if n > 1 else x[0][None] # stack
- x = np.ascontiguousarray(x.transpose((0, 3, 1, 2))) # BHWC to BCHW
- x = torch.from_numpy(x).to(p.device).type_as(p) / 255.0 # uint8 to fp16/32
-
- # Inference
- with torch.no_grad():
- y = self.model(x, augment, profile)[0] # forward
- y = non_max_suppression(y, conf_thres=self.conf, iou_thres=self.iou, classes=self.classes) # NMS
-
- # Post-process
- for i in range(n):
- scale_coords(shape1, y[i][:, :4], shape0[i])
-
- return Detections(imgs, y, self.names)
-
-
-class Detections:
- # detections class for YOLOv5 inference results
- def __init__(self, imgs, pred, names=None):
- super().__init__()
- d = pred[0].device # device
- gn = [torch.tensor([*(im.shape[i] for i in [1, 0, 1, 0]), 1.0, 1.0], device=d) for im in imgs] # normalizations
- self.imgs = imgs # list of images as numpy arrays
- self.pred = pred # list of tensors pred[0] = (xyxy, conf, cls)
- self.names = names # class names
- self.xyxy = pred # xyxy pixels
- self.xywh = [xyxy2xywh(x) for x in pred] # xywh pixels
- self.xyxyn = [x / g for x, g in zip(self.xyxy, gn)] # xyxy normalized
- self.xywhn = [x / g for x, g in zip(self.xywh, gn)] # xywh normalized
- self.n = len(self.pred)
-
- def __len__(self):
- return self.n
-
- def tolist(self):
- # return a list of Detections objects, i.e. 'for result in results.tolist():'
- x = [Detections([self.imgs[i]], [self.pred[i]], self.names) for i in range(self.n)]
- for d in x:
- for k in ["imgs", "pred", "xyxy", "xyxyn", "xywh", "xywhn"]:
- setattr(d, k, getattr(d, k)[0]) # pop out of list
- return x
diff --git a/CodeFormer/CodeFormer/facelib/detection/yolov5face/models/experimental.py b/CodeFormer/CodeFormer/facelib/detection/yolov5face/models/experimental.py
deleted file mode 100644
index 37ba4c4420789c92dc0e2aaeb3d5b64859ec728c..0000000000000000000000000000000000000000
--- a/CodeFormer/CodeFormer/facelib/detection/yolov5face/models/experimental.py
+++ /dev/null
@@ -1,45 +0,0 @@
-# # This file contains experimental modules
-
-import numpy as np
-import torch
-from torch import nn
-
-from facelib.detection.yolov5face.models.common import Conv
-
-
-class CrossConv(nn.Module):
- # Cross Convolution Downsample
- def __init__(self, c1, c2, k=3, s=1, g=1, e=1.0, shortcut=False):
- # ch_in, ch_out, kernel, stride, groups, expansion, shortcut
- super().__init__()
- c_ = int(c2 * e) # hidden channels
- self.cv1 = Conv(c1, c_, (1, k), (1, s))
- self.cv2 = Conv(c_, c2, (k, 1), (s, 1), g=g)
- self.add = shortcut and c1 == c2
-
- def forward(self, x):
- return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
-
-
-class MixConv2d(nn.Module):
- # Mixed Depthwise Conv https://arxiv.org/abs/1907.09595
- def __init__(self, c1, c2, k=(1, 3), s=1, equal_ch=True):
- super().__init__()
- groups = len(k)
- if equal_ch: # equal c_ per group
- i = torch.linspace(0, groups - 1e-6, c2).floor() # c2 indices
- c_ = [(i == g).sum() for g in range(groups)] # intermediate channels
- else: # equal weight.numel() per group
- b = [c2] + [0] * groups
- a = np.eye(groups + 1, groups, k=-1)
- a -= np.roll(a, 1, axis=1)
- a *= np.array(k) ** 2
- a[0] = 1
- c_ = np.linalg.lstsq(a, b, rcond=None)[0].round() # solve for equal weight indices, ax = b
-
- self.m = nn.ModuleList([nn.Conv2d(c1, int(c_[g]), k[g], s, k[g] // 2, bias=False) for g in range(groups)])
- self.bn = nn.BatchNorm2d(c2)
- self.act = nn.LeakyReLU(0.1, inplace=True)
-
- def forward(self, x):
- return x + self.act(self.bn(torch.cat([m(x) for m in self.m], 1)))
diff --git a/CodeFormer/CodeFormer/facelib/detection/yolov5face/models/yolo.py b/CodeFormer/CodeFormer/facelib/detection/yolov5face/models/yolo.py
deleted file mode 100644
index 70845d972f0bcfd3632fcbac096b23e1b4d4d779..0000000000000000000000000000000000000000
--- a/CodeFormer/CodeFormer/facelib/detection/yolov5face/models/yolo.py
+++ /dev/null
@@ -1,235 +0,0 @@
-import math
-from copy import deepcopy
-from pathlib import Path
-
-import torch
-import yaml # for torch hub
-from torch import nn
-
-from facelib.detection.yolov5face.models.common import (
- C3,
- NMS,
- SPP,
- AutoShape,
- Bottleneck,
- BottleneckCSP,
- Concat,
- Conv,
- DWConv,
- Focus,
- ShuffleV2Block,
- StemBlock,
-)
-from facelib.detection.yolov5face.models.experimental import CrossConv, MixConv2d
-from facelib.detection.yolov5face.utils.autoanchor import check_anchor_order
-from facelib.detection.yolov5face.utils.general import make_divisible
-from facelib.detection.yolov5face.utils.torch_utils import copy_attr, fuse_conv_and_bn
-
-
-class Detect(nn.Module):
- stride = None # strides computed during build
- export = False # onnx export
-
- def __init__(self, nc=80, anchors=(), ch=()): # detection layer
- super().__init__()
- self.nc = nc # number of classes
- self.no = nc + 5 + 10 # number of outputs per anchor
-
- self.nl = len(anchors) # number of detection layers
- self.na = len(anchors[0]) // 2 # number of anchors
- self.grid = [torch.zeros(1)] * self.nl # init grid
- a = torch.tensor(anchors).float().view(self.nl, -1, 2)
- self.register_buffer("anchors", a) # shape(nl,na,2)
- self.register_buffer("anchor_grid", a.clone().view(self.nl, 1, -1, 1, 1, 2)) # shape(nl,1,na,1,1,2)
- self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch) # output conv
-
- def forward(self, x):
- z = [] # inference output
- if self.export:
- for i in range(self.nl):
- x[i] = self.m[i](x[i])
- return x
- for i in range(self.nl):
- x[i] = self.m[i](x[i]) # conv
- bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85)
- x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
-
- if not self.training: # inference
- if self.grid[i].shape[2:4] != x[i].shape[2:4]:
- self.grid[i] = self._make_grid(nx, ny).to(x[i].device)
-
- y = torch.full_like(x[i], 0)
- y[..., [0, 1, 2, 3, 4, 15]] = x[i][..., [0, 1, 2, 3, 4, 15]].sigmoid()
- y[..., 5:15] = x[i][..., 5:15]
-
- y[..., 0:2] = (y[..., 0:2] * 2.0 - 0.5 + self.grid[i].to(x[i].device)) * self.stride[i] # xy
- y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh
-
- y[..., 5:7] = (
- y[..., 5:7] * self.anchor_grid[i] + self.grid[i].to(x[i].device) * self.stride[i]
- ) # landmark x1 y1
- y[..., 7:9] = (
- y[..., 7:9] * self.anchor_grid[i] + self.grid[i].to(x[i].device) * self.stride[i]
- ) # landmark x2 y2
- y[..., 9:11] = (
- y[..., 9:11] * self.anchor_grid[i] + self.grid[i].to(x[i].device) * self.stride[i]
- ) # landmark x3 y3
- y[..., 11:13] = (
- y[..., 11:13] * self.anchor_grid[i] + self.grid[i].to(x[i].device) * self.stride[i]
- ) # landmark x4 y4
- y[..., 13:15] = (
- y[..., 13:15] * self.anchor_grid[i] + self.grid[i].to(x[i].device) * self.stride[i]
- ) # landmark x5 y5
-
- z.append(y.view(bs, -1, self.no))
-
- return x if self.training else (torch.cat(z, 1), x)
-
- @staticmethod
- def _make_grid(nx=20, ny=20):
- # yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)], indexing="ij") # for pytorch>=1.10
- yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)])
- return torch.stack((xv, yv), 2).view((1, 1, ny, nx, 2)).float()
-
-
-class Model(nn.Module):
- def __init__(self, cfg="yolov5s.yaml", ch=3, nc=None): # model, input channels, number of classes
- super().__init__()
- self.yaml_file = Path(cfg).name
- with Path(cfg).open(encoding="utf8") as f:
- self.yaml = yaml.safe_load(f) # model dict
-
- # Define model
- ch = self.yaml["ch"] = self.yaml.get("ch", ch) # input channels
- if nc and nc != self.yaml["nc"]:
- self.yaml["nc"] = nc # override yaml value
-
- self.model, self.save = parse_model(deepcopy(self.yaml), ch=[ch]) # model, savelist
- self.names = [str(i) for i in range(self.yaml["nc"])] # default names
-
- # Build strides, anchors
- m = self.model[-1] # Detect()
- if isinstance(m, Detect):
- s = 128 # 2x min stride
- m.stride = torch.tensor([s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))]) # forward
- m.anchors /= m.stride.view(-1, 1, 1)
- check_anchor_order(m)
- self.stride = m.stride
- self._initialize_biases() # only run once
-
- def forward(self, x):
- return self.forward_once(x) # single-scale inference, train
-
- def forward_once(self, x):
- y = [] # outputs
- for m in self.model:
- if m.f != -1: # if not from previous layer
- x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] # from earlier layers
-
- x = m(x) # run
- y.append(x if m.i in self.save else None) # save output
-
- return x
-
- def _initialize_biases(self, cf=None): # initialize biases into Detect(), cf is class frequency
- # https://arxiv.org/abs/1708.02002 section 3.3
- m = self.model[-1] # Detect() module
- for mi, s in zip(m.m, m.stride): # from
- b = mi.bias.view(m.na, -1) # conv.bias(255) to (3,85)
- b.data[:, 4] += math.log(8 / (640 / s) ** 2) # obj (8 objects per 640 image)
- b.data[:, 5:] += math.log(0.6 / (m.nc - 0.99)) if cf is None else torch.log(cf / cf.sum()) # cls
- mi.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
-
- def _print_biases(self):
- m = self.model[-1] # Detect() module
- for mi in m.m: # from
- b = mi.bias.detach().view(m.na, -1).T # conv.bias(255) to (3,85)
- print(("%6g Conv2d.bias:" + "%10.3g" * 6) % (mi.weight.shape[1], *b[:5].mean(1).tolist(), b[5:].mean()))
-
- def fuse(self): # fuse model Conv2d() + BatchNorm2d() layers
- print("Fusing layers... ")
- for m in self.model.modules():
- if isinstance(m, Conv) and hasattr(m, "bn"):
- m.conv = fuse_conv_and_bn(m.conv, m.bn) # update conv
- delattr(m, "bn") # remove batchnorm
- m.forward = m.fuseforward # update forward
- elif type(m) is nn.Upsample:
- m.recompute_scale_factor = None # torch 1.11.0 compatibility
- return self
-
- def nms(self, mode=True): # add or remove NMS module
- present = isinstance(self.model[-1], NMS) # last layer is NMS
- if mode and not present:
- print("Adding NMS... ")
- m = NMS() # module
- m.f = -1 # from
- m.i = self.model[-1].i + 1 # index
- self.model.add_module(name=str(m.i), module=m) # add
- self.eval()
- elif not mode and present:
- print("Removing NMS... ")
- self.model = self.model[:-1] # remove
- return self
-
- def autoshape(self): # add autoShape module
- print("Adding autoShape... ")
- m = AutoShape(self) # wrap model
- copy_attr(m, self, include=("yaml", "nc", "hyp", "names", "stride"), exclude=()) # copy attributes
- return m
-
-
-def parse_model(d, ch): # model_dict, input_channels(3)
- anchors, nc, gd, gw = d["anchors"], d["nc"], d["depth_multiple"], d["width_multiple"]
- na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors # number of anchors
- no = na * (nc + 5) # number of outputs = anchors * (classes + 5)
-
- layers, save, c2 = [], [], ch[-1] # layers, savelist, ch out
- for i, (f, n, m, args) in enumerate(d["backbone"] + d["head"]): # from, number, module, args
- m = eval(m) if isinstance(m, str) else m # eval strings
- for j, a in enumerate(args):
- try:
- args[j] = eval(a) if isinstance(a, str) else a # eval strings
- except:
- pass
-
- n = max(round(n * gd), 1) if n > 1 else n # depth gain
- if m in [
- Conv,
- Bottleneck,
- SPP,
- DWConv,
- MixConv2d,
- Focus,
- CrossConv,
- BottleneckCSP,
- C3,
- ShuffleV2Block,
- StemBlock,
- ]:
- c1, c2 = ch[f], args[0]
-
- c2 = make_divisible(c2 * gw, 8) if c2 != no else c2
-
- args = [c1, c2, *args[1:]]
- if m in [BottleneckCSP, C3]:
- args.insert(2, n)
- n = 1
- elif m is nn.BatchNorm2d:
- args = [ch[f]]
- elif m is Concat:
- c2 = sum(ch[-1 if x == -1 else x + 1] for x in f)
- elif m is Detect:
- args.append([ch[x + 1] for x in f])
- if isinstance(args[1], int): # number of anchors
- args[1] = [list(range(args[1] * 2))] * len(f)
- else:
- c2 = ch[f]
-
- m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args) # module
- t = str(m)[8:-2].replace("__main__.", "") # module type
- np = sum(x.numel() for x in m_.parameters()) # number params
- m_.i, m_.f, m_.type, m_.np = i, f, t, np # attach index, 'from' index, type, number params
- save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1) # append to savelist
- layers.append(m_)
- ch.append(c2)
- return nn.Sequential(*layers), sorted(save)
diff --git a/CodeFormer/CodeFormer/facelib/detection/yolov5face/models/yolov5l.yaml b/CodeFormer/CodeFormer/facelib/detection/yolov5face/models/yolov5l.yaml
deleted file mode 100644
index 0532b0e22fa7f59349b178146ffddcfdb368aba6..0000000000000000000000000000000000000000
--- a/CodeFormer/CodeFormer/facelib/detection/yolov5face/models/yolov5l.yaml
+++ /dev/null
@@ -1,47 +0,0 @@
-# parameters
-nc: 1 # number of classes
-depth_multiple: 1.0 # model depth multiple
-width_multiple: 1.0 # layer channel multiple
-
-# anchors
-anchors:
- - [4,5, 8,10, 13,16] # P3/8
- - [23,29, 43,55, 73,105] # P4/16
- - [146,217, 231,300, 335,433] # P5/32
-
-# YOLOv5 backbone
-backbone:
- # [from, number, module, args]
- [[-1, 1, StemBlock, [64, 3, 2]], # 0-P1/2
- [-1, 3, C3, [128]],
- [-1, 1, Conv, [256, 3, 2]], # 2-P3/8
- [-1, 9, C3, [256]],
- [-1, 1, Conv, [512, 3, 2]], # 4-P4/16
- [-1, 9, C3, [512]],
- [-1, 1, Conv, [1024, 3, 2]], # 6-P5/32
- [-1, 1, SPP, [1024, [3,5,7]]],
- [-1, 3, C3, [1024, False]], # 8
- ]
-
-# YOLOv5 head
-head:
- [[-1, 1, Conv, [512, 1, 1]],
- [-1, 1, nn.Upsample, [None, 2, 'nearest']],
- [[-1, 5], 1, Concat, [1]], # cat backbone P4
- [-1, 3, C3, [512, False]], # 12
-
- [-1, 1, Conv, [256, 1, 1]],
- [-1, 1, nn.Upsample, [None, 2, 'nearest']],
- [[-1, 3], 1, Concat, [1]], # cat backbone P3
- [-1, 3, C3, [256, False]], # 16 (P3/8-small)
-
- [-1, 1, Conv, [256, 3, 2]],
- [[-1, 13], 1, Concat, [1]], # cat head P4
- [-1, 3, C3, [512, False]], # 19 (P4/16-medium)
-
- [-1, 1, Conv, [512, 3, 2]],
- [[-1, 9], 1, Concat, [1]], # cat head P5
- [-1, 3, C3, [1024, False]], # 22 (P5/32-large)
-
- [[16, 19, 22], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
- ]
\ No newline at end of file
diff --git a/CodeFormer/CodeFormer/facelib/detection/yolov5face/models/yolov5n.yaml b/CodeFormer/CodeFormer/facelib/detection/yolov5face/models/yolov5n.yaml
deleted file mode 100644
index caba6bed674aa2213b110f19e04eb352ffbeaf1e..0000000000000000000000000000000000000000
--- a/CodeFormer/CodeFormer/facelib/detection/yolov5face/models/yolov5n.yaml
+++ /dev/null
@@ -1,45 +0,0 @@
-# parameters
-nc: 1 # number of classes
-depth_multiple: 1.0 # model depth multiple
-width_multiple: 1.0 # layer channel multiple
-
-# anchors
-anchors:
- - [4,5, 8,10, 13,16] # P3/8
- - [23,29, 43,55, 73,105] # P4/16
- - [146,217, 231,300, 335,433] # P5/32
-
-# YOLOv5 backbone
-backbone:
- # [from, number, module, args]
- [[-1, 1, StemBlock, [32, 3, 2]], # 0-P2/4
- [-1, 1, ShuffleV2Block, [128, 2]], # 1-P3/8
- [-1, 3, ShuffleV2Block, [128, 1]], # 2
- [-1, 1, ShuffleV2Block, [256, 2]], # 3-P4/16
- [-1, 7, ShuffleV2Block, [256, 1]], # 4
- [-1, 1, ShuffleV2Block, [512, 2]], # 5-P5/32
- [-1, 3, ShuffleV2Block, [512, 1]], # 6
- ]
-
-# YOLOv5 head
-head:
- [[-1, 1, Conv, [128, 1, 1]],
- [-1, 1, nn.Upsample, [None, 2, 'nearest']],
- [[-1, 4], 1, Concat, [1]], # cat backbone P4
- [-1, 1, C3, [128, False]], # 10
-
- [-1, 1, Conv, [128, 1, 1]],
- [-1, 1, nn.Upsample, [None, 2, 'nearest']],
- [[-1, 2], 1, Concat, [1]], # cat backbone P3
- [-1, 1, C3, [128, False]], # 14 (P3/8-small)
-
- [-1, 1, Conv, [128, 3, 2]],
- [[-1, 11], 1, Concat, [1]], # cat head P4
- [-1, 1, C3, [128, False]], # 17 (P4/16-medium)
-
- [-1, 1, Conv, [128, 3, 2]],
- [[-1, 7], 1, Concat, [1]], # cat head P5
- [-1, 1, C3, [128, False]], # 20 (P5/32-large)
-
- [[14, 17, 20], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
- ]
diff --git a/CodeFormer/CodeFormer/facelib/detection/yolov5face/utils/__init__.py b/CodeFormer/CodeFormer/facelib/detection/yolov5face/utils/__init__.py
deleted file mode 100644
index e69de29bb2d1d6434b8b29ae775ad8c2e48c5391..0000000000000000000000000000000000000000
diff --git a/CodeFormer/CodeFormer/facelib/detection/yolov5face/utils/__pycache__/__init__.cpython-310.pyc b/CodeFormer/CodeFormer/facelib/detection/yolov5face/utils/__pycache__/__init__.cpython-310.pyc
deleted file mode 100644
index ce12cb8cf1d3a6b9a233c02fa0fc1ee153f6aa74..0000000000000000000000000000000000000000
Binary files a/CodeFormer/CodeFormer/facelib/detection/yolov5face/utils/__pycache__/__init__.cpython-310.pyc and /dev/null differ
diff --git a/CodeFormer/CodeFormer/facelib/detection/yolov5face/utils/__pycache__/autoanchor.cpython-310.pyc b/CodeFormer/CodeFormer/facelib/detection/yolov5face/utils/__pycache__/autoanchor.cpython-310.pyc
deleted file mode 100644
index 6a96a829ab3d3aa2cdabddfedcf26cc839d8060c..0000000000000000000000000000000000000000
Binary files a/CodeFormer/CodeFormer/facelib/detection/yolov5face/utils/__pycache__/autoanchor.cpython-310.pyc and /dev/null differ
diff --git a/CodeFormer/CodeFormer/facelib/detection/yolov5face/utils/__pycache__/datasets.cpython-310.pyc b/CodeFormer/CodeFormer/facelib/detection/yolov5face/utils/__pycache__/datasets.cpython-310.pyc
deleted file mode 100644
index 53b78ac1a5774a61f71a551381857ef46b9570be..0000000000000000000000000000000000000000
Binary files a/CodeFormer/CodeFormer/facelib/detection/yolov5face/utils/__pycache__/datasets.cpython-310.pyc and /dev/null differ
diff --git a/CodeFormer/CodeFormer/facelib/detection/yolov5face/utils/__pycache__/general.cpython-310.pyc b/CodeFormer/CodeFormer/facelib/detection/yolov5face/utils/__pycache__/general.cpython-310.pyc
deleted file mode 100644
index 8e606f4978be47f028fdb8545656133af8dae171..0000000000000000000000000000000000000000
Binary files a/CodeFormer/CodeFormer/facelib/detection/yolov5face/utils/__pycache__/general.cpython-310.pyc and /dev/null differ
diff --git a/CodeFormer/CodeFormer/facelib/detection/yolov5face/utils/__pycache__/torch_utils.cpython-310.pyc b/CodeFormer/CodeFormer/facelib/detection/yolov5face/utils/__pycache__/torch_utils.cpython-310.pyc
deleted file mode 100644
index 22210cf87a96a26e7653c4b841dc9f48cfeaeac1..0000000000000000000000000000000000000000
Binary files a/CodeFormer/CodeFormer/facelib/detection/yolov5face/utils/__pycache__/torch_utils.cpython-310.pyc and /dev/null differ
diff --git a/CodeFormer/CodeFormer/facelib/detection/yolov5face/utils/autoanchor.py b/CodeFormer/CodeFormer/facelib/detection/yolov5face/utils/autoanchor.py
deleted file mode 100644
index a4eba3e94888709be7d2a7c7499fbcc1808b4a88..0000000000000000000000000000000000000000
--- a/CodeFormer/CodeFormer/facelib/detection/yolov5face/utils/autoanchor.py
+++ /dev/null
@@ -1,12 +0,0 @@
-# Auto-anchor utils
-
-
-def check_anchor_order(m):
- # Check anchor order against stride order for YOLOv5 Detect() module m, and correct if necessary
- a = m.anchor_grid.prod(-1).view(-1) # anchor area
- da = a[-1] - a[0] # delta a
- ds = m.stride[-1] - m.stride[0] # delta s
- if da.sign() != ds.sign(): # same order
- print("Reversing anchor order")
- m.anchors[:] = m.anchors.flip(0)
- m.anchor_grid[:] = m.anchor_grid.flip(0)
diff --git a/CodeFormer/CodeFormer/facelib/detection/yolov5face/utils/datasets.py b/CodeFormer/CodeFormer/facelib/detection/yolov5face/utils/datasets.py
deleted file mode 100644
index e672b136f56fd6b05038e24377908361a54fe519..0000000000000000000000000000000000000000
--- a/CodeFormer/CodeFormer/facelib/detection/yolov5face/utils/datasets.py
+++ /dev/null
@@ -1,35 +0,0 @@
-import cv2
-import numpy as np
-
-
-def letterbox(img, new_shape=(640, 640), color=(114, 114, 114), auto=True, scale_fill=False, scaleup=True):
- # Resize image to a 32-pixel-multiple rectangle https://github.com/ultralytics/yolov3/issues/232
- shape = img.shape[:2] # current shape [height, width]
- if isinstance(new_shape, int):
- new_shape = (new_shape, new_shape)
-
- # Scale ratio (new / old)
- r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
- if not scaleup: # only scale down, do not scale up (for better test mAP)
- r = min(r, 1.0)
-
- # Compute padding
- ratio = r, r # width, height ratios
- new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
- dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding
- if auto: # minimum rectangle
- dw, dh = np.mod(dw, 64), np.mod(dh, 64) # wh padding
- elif scale_fill: # stretch
- dw, dh = 0.0, 0.0
- new_unpad = (new_shape[1], new_shape[0])
- ratio = new_shape[1] / shape[1], new_shape[0] / shape[0] # width, height ratios
-
- dw /= 2 # divide padding into 2 sides
- dh /= 2
-
- if shape[::-1] != new_unpad: # resize
- img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR)
- top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
- left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
- img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) # add border
- return img, ratio, (dw, dh)
diff --git a/CodeFormer/CodeFormer/facelib/detection/yolov5face/utils/extract_ckpt.py b/CodeFormer/CodeFormer/facelib/detection/yolov5face/utils/extract_ckpt.py
deleted file mode 100644
index 4b8b631348f2d0cdea4e5a3594bb59f3e8f34a0f..0000000000000000000000000000000000000000
--- a/CodeFormer/CodeFormer/facelib/detection/yolov5face/utils/extract_ckpt.py
+++ /dev/null
@@ -1,5 +0,0 @@
-import torch
-import sys
-sys.path.insert(0,'./facelib/detection/yolov5face')
-model = torch.load('facelib/detection/yolov5face/yolov5n-face.pt', map_location='cpu')['model']
-torch.save(model.state_dict(),'weights/facelib/yolov5n-face.pth')
\ No newline at end of file
diff --git a/CodeFormer/CodeFormer/facelib/detection/yolov5face/utils/general.py b/CodeFormer/CodeFormer/facelib/detection/yolov5face/utils/general.py
deleted file mode 100644
index 1c8e14f56a107ec3a4269c382cfc5168ad780ffc..0000000000000000000000000000000000000000
--- a/CodeFormer/CodeFormer/facelib/detection/yolov5face/utils/general.py
+++ /dev/null
@@ -1,271 +0,0 @@
-import math
-import time
-
-import numpy as np
-import torch
-import torchvision
-
-
-def check_img_size(img_size, s=32):
- # Verify img_size is a multiple of stride s
- new_size = make_divisible(img_size, int(s)) # ceil gs-multiple
- # if new_size != img_size:
- # print(f"WARNING: --img-size {img_size:g} must be multiple of max stride {s:g}, updating to {new_size:g}")
- return new_size
-
-
-def make_divisible(x, divisor):
- # Returns x evenly divisible by divisor
- return math.ceil(x / divisor) * divisor
-
-
-def xyxy2xywh(x):
- # Convert nx4 boxes from [x1, y1, x2, y2] to [x, y, w, h] where xy1=top-left, xy2=bottom-right
- y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
- y[:, 0] = (x[:, 0] + x[:, 2]) / 2 # x center
- y[:, 1] = (x[:, 1] + x[:, 3]) / 2 # y center
- y[:, 2] = x[:, 2] - x[:, 0] # width
- y[:, 3] = x[:, 3] - x[:, 1] # height
- return y
-
-
-def xywh2xyxy(x):
- # Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
- y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
- y[:, 0] = x[:, 0] - x[:, 2] / 2 # top left x
- y[:, 1] = x[:, 1] - x[:, 3] / 2 # top left y
- y[:, 2] = x[:, 0] + x[:, 2] / 2 # bottom right x
- y[:, 3] = x[:, 1] + x[:, 3] / 2 # bottom right y
- return y
-
-
-def scale_coords(img1_shape, coords, img0_shape, ratio_pad=None):
- # Rescale coords (xyxy) from img1_shape to img0_shape
- if ratio_pad is None: # calculate from img0_shape
- gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1]) # gain = old / new
- pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2 # wh padding
- else:
- gain = ratio_pad[0][0]
- pad = ratio_pad[1]
-
- coords[:, [0, 2]] -= pad[0] # x padding
- coords[:, [1, 3]] -= pad[1] # y padding
- coords[:, :4] /= gain
- clip_coords(coords, img0_shape)
- return coords
-
-
-def clip_coords(boxes, img_shape):
- # Clip bounding xyxy bounding boxes to image shape (height, width)
- boxes[:, 0].clamp_(0, img_shape[1]) # x1
- boxes[:, 1].clamp_(0, img_shape[0]) # y1
- boxes[:, 2].clamp_(0, img_shape[1]) # x2
- boxes[:, 3].clamp_(0, img_shape[0]) # y2
-
-
-def box_iou(box1, box2):
- # https://github.com/pytorch/vision/blob/master/torchvision/ops/boxes.py
- """
- Return intersection-over-union (Jaccard index) of boxes.
- Both sets of boxes are expected to be in (x1, y1, x2, y2) format.
- Arguments:
- box1 (Tensor[N, 4])
- box2 (Tensor[M, 4])
- Returns:
- iou (Tensor[N, M]): the NxM matrix containing the pairwise
- IoU values for every element in boxes1 and boxes2
- """
-
- def box_area(box):
- return (box[2] - box[0]) * (box[3] - box[1])
-
- area1 = box_area(box1.T)
- area2 = box_area(box2.T)
-
- inter = (torch.min(box1[:, None, 2:], box2[:, 2:]) - torch.max(box1[:, None, :2], box2[:, :2])).clamp(0).prod(2)
- return inter / (area1[:, None] + area2 - inter)
-
-
-def non_max_suppression_face(prediction, conf_thres=0.25, iou_thres=0.45, classes=None, agnostic=False, labels=()):
- """Performs Non-Maximum Suppression (NMS) on inference results
- Returns:
- detections with shape: nx6 (x1, y1, x2, y2, conf, cls)
- """
-
- nc = prediction.shape[2] - 15 # number of classes
- xc = prediction[..., 4] > conf_thres # candidates
-
- # Settings
- # (pixels) maximum box width and height
- max_wh = 4096
- time_limit = 10.0 # seconds to quit after
- redundant = True # require redundant detections
- multi_label = nc > 1 # multiple labels per box (adds 0.5ms/img)
- merge = False # use merge-NMS
-
- t = time.time()
- output = [torch.zeros((0, 16), device=prediction.device)] * prediction.shape[0]
- for xi, x in enumerate(prediction): # image index, image inference
- # Apply constraints
- x = x[xc[xi]] # confidence
-
- # Cat apriori labels if autolabelling
- if labels and len(labels[xi]):
- label = labels[xi]
- v = torch.zeros((len(label), nc + 15), device=x.device)
- v[:, :4] = label[:, 1:5] # box
- v[:, 4] = 1.0 # conf
- v[range(len(label)), label[:, 0].long() + 15] = 1.0 # cls
- x = torch.cat((x, v), 0)
-
- # If none remain process next image
- if not x.shape[0]:
- continue
-
- # Compute conf
- x[:, 15:] *= x[:, 4:5] # conf = obj_conf * cls_conf
-
- # Box (center x, center y, width, height) to (x1, y1, x2, y2)
- box = xywh2xyxy(x[:, :4])
-
- # Detections matrix nx6 (xyxy, conf, landmarks, cls)
- if multi_label:
- i, j = (x[:, 15:] > conf_thres).nonzero(as_tuple=False).T
- x = torch.cat((box[i], x[i, j + 15, None], x[:, 5:15], j[:, None].float()), 1)
- else: # best class only
- conf, j = x[:, 15:].max(1, keepdim=True)
- x = torch.cat((box, conf, x[:, 5:15], j.float()), 1)[conf.view(-1) > conf_thres]
-
- # Filter by class
- if classes is not None:
- x = x[(x[:, 5:6] == torch.tensor(classes, device=x.device)).any(1)]
-
- # If none remain process next image
- n = x.shape[0] # number of boxes
- if not n:
- continue
-
- # Batched NMS
- c = x[:, 15:16] * (0 if agnostic else max_wh) # classes
- boxes, scores = x[:, :4] + c, x[:, 4] # boxes (offset by class), scores
- i = torchvision.ops.nms(boxes, scores, iou_thres) # NMS
-
- if merge and (1 < n < 3e3): # Merge NMS (boxes merged using weighted mean)
- # update boxes as boxes(i,4) = weights(i,n) * boxes(n,4)
- iou = box_iou(boxes[i], boxes) > iou_thres # iou matrix
- weights = iou * scores[None] # box weights
- x[i, :4] = torch.mm(weights, x[:, :4]).float() / weights.sum(1, keepdim=True) # merged boxes
- if redundant:
- i = i[iou.sum(1) > 1] # require redundancy
-
- output[xi] = x[i]
- if (time.time() - t) > time_limit:
- break # time limit exceeded
-
- return output
-
-
-def non_max_suppression(prediction, conf_thres=0.25, iou_thres=0.45, classes=None, agnostic=False, labels=()):
- """Performs Non-Maximum Suppression (NMS) on inference results
-
- Returns:
- detections with shape: nx6 (x1, y1, x2, y2, conf, cls)
- """
-
- nc = prediction.shape[2] - 5 # number of classes
- xc = prediction[..., 4] > conf_thres # candidates
-
- # Settings
- # (pixels) maximum box width and height
- max_wh = 4096
- time_limit = 10.0 # seconds to quit after
- redundant = True # require redundant detections
- multi_label = nc > 1 # multiple labels per box (adds 0.5ms/img)
- merge = False # use merge-NMS
-
- t = time.time()
- output = [torch.zeros((0, 6), device=prediction.device)] * prediction.shape[0]
- for xi, x in enumerate(prediction): # image index, image inference
- x = x[xc[xi]] # confidence
-
- # Cat apriori labels if autolabelling
- if labels and len(labels[xi]):
- label_id = labels[xi]
- v = torch.zeros((len(label_id), nc + 5), device=x.device)
- v[:, :4] = label_id[:, 1:5] # box
- v[:, 4] = 1.0 # conf
- v[range(len(label_id)), label_id[:, 0].long() + 5] = 1.0 # cls
- x = torch.cat((x, v), 0)
-
- # If none remain process next image
- if not x.shape[0]:
- continue
-
- # Compute conf
- x[:, 5:] *= x[:, 4:5] # conf = obj_conf * cls_conf
-
- # Box (center x, center y, width, height) to (x1, y1, x2, y2)
- box = xywh2xyxy(x[:, :4])
-
- # Detections matrix nx6 (xyxy, conf, cls)
- if multi_label:
- i, j = (x[:, 5:] > conf_thres).nonzero(as_tuple=False).T
- x = torch.cat((box[i], x[i, j + 5, None], j[:, None].float()), 1)
- else: # best class only
- conf, j = x[:, 5:].max(1, keepdim=True)
- x = torch.cat((box, conf, j.float()), 1)[conf.view(-1) > conf_thres]
-
- # Filter by class
- if classes is not None:
- x = x[(x[:, 5:6] == torch.tensor(classes, device=x.device)).any(1)]
-
- # Check shape
- n = x.shape[0] # number of boxes
- if not n: # no boxes
- continue
-
- x = x[x[:, 4].argsort(descending=True)] # sort by confidence
-
- # Batched NMS
- c = x[:, 5:6] * (0 if agnostic else max_wh) # classes
- boxes, scores = x[:, :4] + c, x[:, 4] # boxes (offset by class), scores
- i = torchvision.ops.nms(boxes, scores, iou_thres) # NMS
- if merge and (1 < n < 3e3): # Merge NMS (boxes merged using weighted mean)
- # update boxes as boxes(i,4) = weights(i,n) * boxes(n,4)
- iou = box_iou(boxes[i], boxes) > iou_thres # iou matrix
- weights = iou * scores[None] # box weights
- x[i, :4] = torch.mm(weights, x[:, :4]).float() / weights.sum(1, keepdim=True) # merged boxes
- if redundant:
- i = i[iou.sum(1) > 1] # require redundancy
-
- output[xi] = x[i]
- if (time.time() - t) > time_limit:
- print(f"WARNING: NMS time limit {time_limit}s exceeded")
- break # time limit exceeded
-
- return output
-
-
-def scale_coords_landmarks(img1_shape, coords, img0_shape, ratio_pad=None):
- # Rescale coords (xyxy) from img1_shape to img0_shape
- if ratio_pad is None: # calculate from img0_shape
- gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1]) # gain = old / new
- pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2 # wh padding
- else:
- gain = ratio_pad[0][0]
- pad = ratio_pad[1]
-
- coords[:, [0, 2, 4, 6, 8]] -= pad[0] # x padding
- coords[:, [1, 3, 5, 7, 9]] -= pad[1] # y padding
- coords[:, :10] /= gain
- coords[:, 0].clamp_(0, img0_shape[1]) # x1
- coords[:, 1].clamp_(0, img0_shape[0]) # y1
- coords[:, 2].clamp_(0, img0_shape[1]) # x2
- coords[:, 3].clamp_(0, img0_shape[0]) # y2
- coords[:, 4].clamp_(0, img0_shape[1]) # x3
- coords[:, 5].clamp_(0, img0_shape[0]) # y3
- coords[:, 6].clamp_(0, img0_shape[1]) # x4
- coords[:, 7].clamp_(0, img0_shape[0]) # y4
- coords[:, 8].clamp_(0, img0_shape[1]) # x5
- coords[:, 9].clamp_(0, img0_shape[0]) # y5
- return coords
diff --git a/CodeFormer/CodeFormer/facelib/detection/yolov5face/utils/torch_utils.py b/CodeFormer/CodeFormer/facelib/detection/yolov5face/utils/torch_utils.py
deleted file mode 100644
index af2d06587b2d07b2eab199a8484380fde1de5c3c..0000000000000000000000000000000000000000
--- a/CodeFormer/CodeFormer/facelib/detection/yolov5face/utils/torch_utils.py
+++ /dev/null
@@ -1,40 +0,0 @@
-import torch
-from torch import nn
-
-
-def fuse_conv_and_bn(conv, bn):
- # Fuse convolution and batchnorm layers https://tehnokv.com/posts/fusing-batchnorm-and-conv/
- fusedconv = (
- nn.Conv2d(
- conv.in_channels,
- conv.out_channels,
- kernel_size=conv.kernel_size,
- stride=conv.stride,
- padding=conv.padding,
- groups=conv.groups,
- bias=True,
- )
- .requires_grad_(False)
- .to(conv.weight.device)
- )
-
- # prepare filters
- w_conv = conv.weight.clone().view(conv.out_channels, -1)
- w_bn = torch.diag(bn.weight.div(torch.sqrt(bn.eps + bn.running_var)))
- fusedconv.weight.copy_(torch.mm(w_bn, w_conv).view(fusedconv.weight.size()))
-
- # prepare spatial bias
- b_conv = torch.zeros(conv.weight.size(0), device=conv.weight.device) if conv.bias is None else conv.bias
- b_bn = bn.bias - bn.weight.mul(bn.running_mean).div(torch.sqrt(bn.running_var + bn.eps))
- fusedconv.bias.copy_(torch.mm(w_bn, b_conv.reshape(-1, 1)).reshape(-1) + b_bn)
-
- return fusedconv
-
-
-def copy_attr(a, b, include=(), exclude=()):
- # Copy attributes from b to a, options to only include [...] and to exclude [...]
- for k, v in b.__dict__.items():
- if (include and k not in include) or k.startswith("_") or k in exclude:
- continue
-
- setattr(a, k, v)
diff --git a/CodeFormer/CodeFormer/facelib/parsing/__init__.py b/CodeFormer/CodeFormer/facelib/parsing/__init__.py
deleted file mode 100644
index 72656e4b5f61df8cd0838588b0c6488fcc886e16..0000000000000000000000000000000000000000
--- a/CodeFormer/CodeFormer/facelib/parsing/__init__.py
+++ /dev/null
@@ -1,23 +0,0 @@
-import torch
-
-from facelib.utils import load_file_from_url
-from .bisenet import BiSeNet
-from .parsenet import ParseNet
-
-
-def init_parsing_model(model_name='bisenet', half=False, device='cuda'):
- if model_name == 'bisenet':
- model = BiSeNet(num_class=19)
- model_url = 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/parsing_bisenet.pth'
- elif model_name == 'parsenet':
- model = ParseNet(in_size=512, out_size=512, parsing_ch=19)
- model_url = 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/parsing_parsenet.pth'
- else:
- raise NotImplementedError(f'{model_name} is not implemented.')
-
- model_path = load_file_from_url(url=model_url, model_dir='weights/facelib', progress=True, file_name=None)
- load_net = torch.load(model_path, map_location=lambda storage, loc: storage)
- model.load_state_dict(load_net, strict=True)
- model.eval()
- model = model.to(device)
- return model
diff --git a/CodeFormer/CodeFormer/facelib/parsing/__pycache__/__init__.cpython-310.pyc b/CodeFormer/CodeFormer/facelib/parsing/__pycache__/__init__.cpython-310.pyc
deleted file mode 100644
index e9457801673e548664ef2185196039efe6da7b10..0000000000000000000000000000000000000000
Binary files a/CodeFormer/CodeFormer/facelib/parsing/__pycache__/__init__.cpython-310.pyc and /dev/null differ
diff --git a/CodeFormer/CodeFormer/facelib/parsing/__pycache__/bisenet.cpython-310.pyc b/CodeFormer/CodeFormer/facelib/parsing/__pycache__/bisenet.cpython-310.pyc
deleted file mode 100644
index ae52ea7bcc356b6cf528d831c401fb97c648535a..0000000000000000000000000000000000000000
Binary files a/CodeFormer/CodeFormer/facelib/parsing/__pycache__/bisenet.cpython-310.pyc and /dev/null differ
diff --git a/CodeFormer/CodeFormer/facelib/parsing/__pycache__/parsenet.cpython-310.pyc b/CodeFormer/CodeFormer/facelib/parsing/__pycache__/parsenet.cpython-310.pyc
deleted file mode 100644
index 052f6ceba212fe7f28cdaf2dfa238a05434f01ac..0000000000000000000000000000000000000000
Binary files a/CodeFormer/CodeFormer/facelib/parsing/__pycache__/parsenet.cpython-310.pyc and /dev/null differ
diff --git a/CodeFormer/CodeFormer/facelib/parsing/__pycache__/resnet.cpython-310.pyc b/CodeFormer/CodeFormer/facelib/parsing/__pycache__/resnet.cpython-310.pyc
deleted file mode 100644
index 6698dd881c3eed0af2f38d207fcdcb5be27752c4..0000000000000000000000000000000000000000
Binary files a/CodeFormer/CodeFormer/facelib/parsing/__pycache__/resnet.cpython-310.pyc and /dev/null differ
diff --git a/CodeFormer/CodeFormer/facelib/parsing/bisenet.py b/CodeFormer/CodeFormer/facelib/parsing/bisenet.py
deleted file mode 100644
index 3898cab76ae5876459cd4899c54cafa14234971d..0000000000000000000000000000000000000000
--- a/CodeFormer/CodeFormer/facelib/parsing/bisenet.py
+++ /dev/null
@@ -1,140 +0,0 @@
-import torch
-import torch.nn as nn
-import torch.nn.functional as F
-
-from .resnet import ResNet18
-
-
-class ConvBNReLU(nn.Module):
-
- def __init__(self, in_chan, out_chan, ks=3, stride=1, padding=1):
- super(ConvBNReLU, self).__init__()
- self.conv = nn.Conv2d(in_chan, out_chan, kernel_size=ks, stride=stride, padding=padding, bias=False)
- self.bn = nn.BatchNorm2d(out_chan)
-
- def forward(self, x):
- x = self.conv(x)
- x = F.relu(self.bn(x))
- return x
-
-
-class BiSeNetOutput(nn.Module):
-
- def __init__(self, in_chan, mid_chan, num_class):
- super(BiSeNetOutput, self).__init__()
- self.conv = ConvBNReLU(in_chan, mid_chan, ks=3, stride=1, padding=1)
- self.conv_out = nn.Conv2d(mid_chan, num_class, kernel_size=1, bias=False)
-
- def forward(self, x):
- feat = self.conv(x)
- out = self.conv_out(feat)
- return out, feat
-
-
-class AttentionRefinementModule(nn.Module):
-
- def __init__(self, in_chan, out_chan):
- super(AttentionRefinementModule, self).__init__()
- self.conv = ConvBNReLU(in_chan, out_chan, ks=3, stride=1, padding=1)
- self.conv_atten = nn.Conv2d(out_chan, out_chan, kernel_size=1, bias=False)
- self.bn_atten = nn.BatchNorm2d(out_chan)
- self.sigmoid_atten = nn.Sigmoid()
-
- def forward(self, x):
- feat = self.conv(x)
- atten = F.avg_pool2d(feat, feat.size()[2:])
- atten = self.conv_atten(atten)
- atten = self.bn_atten(atten)
- atten = self.sigmoid_atten(atten)
- out = torch.mul(feat, atten)
- return out
-
-
-class ContextPath(nn.Module):
-
- def __init__(self):
- super(ContextPath, self).__init__()
- self.resnet = ResNet18()
- self.arm16 = AttentionRefinementModule(256, 128)
- self.arm32 = AttentionRefinementModule(512, 128)
- self.conv_head32 = ConvBNReLU(128, 128, ks=3, stride=1, padding=1)
- self.conv_head16 = ConvBNReLU(128, 128, ks=3, stride=1, padding=1)
- self.conv_avg = ConvBNReLU(512, 128, ks=1, stride=1, padding=0)
-
- def forward(self, x):
- feat8, feat16, feat32 = self.resnet(x)
- h8, w8 = feat8.size()[2:]
- h16, w16 = feat16.size()[2:]
- h32, w32 = feat32.size()[2:]
-
- avg = F.avg_pool2d(feat32, feat32.size()[2:])
- avg = self.conv_avg(avg)
- avg_up = F.interpolate(avg, (h32, w32), mode='nearest')
-
- feat32_arm = self.arm32(feat32)
- feat32_sum = feat32_arm + avg_up
- feat32_up = F.interpolate(feat32_sum, (h16, w16), mode='nearest')
- feat32_up = self.conv_head32(feat32_up)
-
- feat16_arm = self.arm16(feat16)
- feat16_sum = feat16_arm + feat32_up
- feat16_up = F.interpolate(feat16_sum, (h8, w8), mode='nearest')
- feat16_up = self.conv_head16(feat16_up)
-
- return feat8, feat16_up, feat32_up # x8, x8, x16
-
-
-class FeatureFusionModule(nn.Module):
-
- def __init__(self, in_chan, out_chan):
- super(FeatureFusionModule, self).__init__()
- self.convblk = ConvBNReLU(in_chan, out_chan, ks=1, stride=1, padding=0)
- self.conv1 = nn.Conv2d(out_chan, out_chan // 4, kernel_size=1, stride=1, padding=0, bias=False)
- self.conv2 = nn.Conv2d(out_chan // 4, out_chan, kernel_size=1, stride=1, padding=0, bias=False)
- self.relu = nn.ReLU(inplace=True)
- self.sigmoid = nn.Sigmoid()
-
- def forward(self, fsp, fcp):
- fcat = torch.cat([fsp, fcp], dim=1)
- feat = self.convblk(fcat)
- atten = F.avg_pool2d(feat, feat.size()[2:])
- atten = self.conv1(atten)
- atten = self.relu(atten)
- atten = self.conv2(atten)
- atten = self.sigmoid(atten)
- feat_atten = torch.mul(feat, atten)
- feat_out = feat_atten + feat
- return feat_out
-
-
-class BiSeNet(nn.Module):
-
- def __init__(self, num_class):
- super(BiSeNet, self).__init__()
- self.cp = ContextPath()
- self.ffm = FeatureFusionModule(256, 256)
- self.conv_out = BiSeNetOutput(256, 256, num_class)
- self.conv_out16 = BiSeNetOutput(128, 64, num_class)
- self.conv_out32 = BiSeNetOutput(128, 64, num_class)
-
- def forward(self, x, return_feat=False):
- h, w = x.size()[2:]
- feat_res8, feat_cp8, feat_cp16 = self.cp(x) # return res3b1 feature
- feat_sp = feat_res8 # replace spatial path feature with res3b1 feature
- feat_fuse = self.ffm(feat_sp, feat_cp8)
-
- out, feat = self.conv_out(feat_fuse)
- out16, feat16 = self.conv_out16(feat_cp8)
- out32, feat32 = self.conv_out32(feat_cp16)
-
- out = F.interpolate(out, (h, w), mode='bilinear', align_corners=True)
- out16 = F.interpolate(out16, (h, w), mode='bilinear', align_corners=True)
- out32 = F.interpolate(out32, (h, w), mode='bilinear', align_corners=True)
-
- if return_feat:
- feat = F.interpolate(feat, (h, w), mode='bilinear', align_corners=True)
- feat16 = F.interpolate(feat16, (h, w), mode='bilinear', align_corners=True)
- feat32 = F.interpolate(feat32, (h, w), mode='bilinear', align_corners=True)
- return out, out16, out32, feat, feat16, feat32
- else:
- return out, out16, out32
diff --git a/CodeFormer/CodeFormer/facelib/parsing/parsenet.py b/CodeFormer/CodeFormer/facelib/parsing/parsenet.py
deleted file mode 100644
index e178ebe43a1ef666aaea0bc0faf629485c22a24f..0000000000000000000000000000000000000000
--- a/CodeFormer/CodeFormer/facelib/parsing/parsenet.py
+++ /dev/null
@@ -1,194 +0,0 @@
-"""Modified from https://github.com/chaofengc/PSFRGAN
-"""
-import numpy as np
-import torch.nn as nn
-from torch.nn import functional as F
-
-
-class NormLayer(nn.Module):
- """Normalization Layers.
-
- Args:
- channels: input channels, for batch norm and instance norm.
- input_size: input shape without batch size, for layer norm.
- """
-
- def __init__(self, channels, normalize_shape=None, norm_type='bn'):
- super(NormLayer, self).__init__()
- norm_type = norm_type.lower()
- self.norm_type = norm_type
- if norm_type == 'bn':
- self.norm = nn.BatchNorm2d(channels, affine=True)
- elif norm_type == 'in':
- self.norm = nn.InstanceNorm2d(channels, affine=False)
- elif norm_type == 'gn':
- self.norm = nn.GroupNorm(32, channels, affine=True)
- elif norm_type == 'pixel':
- self.norm = lambda x: F.normalize(x, p=2, dim=1)
- elif norm_type == 'layer':
- self.norm = nn.LayerNorm(normalize_shape)
- elif norm_type == 'none':
- self.norm = lambda x: x * 1.0
- else:
- assert 1 == 0, f'Norm type {norm_type} not support.'
-
- def forward(self, x, ref=None):
- if self.norm_type == 'spade':
- return self.norm(x, ref)
- else:
- return self.norm(x)
-
-
-class ReluLayer(nn.Module):
- """Relu Layer.
-
- Args:
- relu type: type of relu layer, candidates are
- - ReLU
- - LeakyReLU: default relu slope 0.2
- - PRelu
- - SELU
- - none: direct pass
- """
-
- def __init__(self, channels, relu_type='relu'):
- super(ReluLayer, self).__init__()
- relu_type = relu_type.lower()
- if relu_type == 'relu':
- self.func = nn.ReLU(True)
- elif relu_type == 'leakyrelu':
- self.func = nn.LeakyReLU(0.2, inplace=True)
- elif relu_type == 'prelu':
- self.func = nn.PReLU(channels)
- elif relu_type == 'selu':
- self.func = nn.SELU(True)
- elif relu_type == 'none':
- self.func = lambda x: x * 1.0
- else:
- assert 1 == 0, f'Relu type {relu_type} not support.'
-
- def forward(self, x):
- return self.func(x)
-
-
-class ConvLayer(nn.Module):
-
- def __init__(self,
- in_channels,
- out_channels,
- kernel_size=3,
- scale='none',
- norm_type='none',
- relu_type='none',
- use_pad=True,
- bias=True):
- super(ConvLayer, self).__init__()
- self.use_pad = use_pad
- self.norm_type = norm_type
- if norm_type in ['bn']:
- bias = False
-
- stride = 2 if scale == 'down' else 1
-
- self.scale_func = lambda x: x
- if scale == 'up':
- self.scale_func = lambda x: nn.functional.interpolate(x, scale_factor=2, mode='nearest')
-
- self.reflection_pad = nn.ReflectionPad2d(int(np.ceil((kernel_size - 1.) / 2)))
- self.conv2d = nn.Conv2d(in_channels, out_channels, kernel_size, stride, bias=bias)
-
- self.relu = ReluLayer(out_channels, relu_type)
- self.norm = NormLayer(out_channels, norm_type=norm_type)
-
- def forward(self, x):
- out = self.scale_func(x)
- if self.use_pad:
- out = self.reflection_pad(out)
- out = self.conv2d(out)
- out = self.norm(out)
- out = self.relu(out)
- return out
-
-
-class ResidualBlock(nn.Module):
- """
- Residual block recommended in: http://torch.ch/blog/2016/02/04/resnets.html
- """
-
- def __init__(self, c_in, c_out, relu_type='prelu', norm_type='bn', scale='none'):
- super(ResidualBlock, self).__init__()
-
- if scale == 'none' and c_in == c_out:
- self.shortcut_func = lambda x: x
- else:
- self.shortcut_func = ConvLayer(c_in, c_out, 3, scale)
-
- scale_config_dict = {'down': ['none', 'down'], 'up': ['up', 'none'], 'none': ['none', 'none']}
- scale_conf = scale_config_dict[scale]
-
- self.conv1 = ConvLayer(c_in, c_out, 3, scale_conf[0], norm_type=norm_type, relu_type=relu_type)
- self.conv2 = ConvLayer(c_out, c_out, 3, scale_conf[1], norm_type=norm_type, relu_type='none')
-
- def forward(self, x):
- identity = self.shortcut_func(x)
-
- res = self.conv1(x)
- res = self.conv2(res)
- return identity + res
-
-
-class ParseNet(nn.Module):
-
- def __init__(self,
- in_size=128,
- out_size=128,
- min_feat_size=32,
- base_ch=64,
- parsing_ch=19,
- res_depth=10,
- relu_type='LeakyReLU',
- norm_type='bn',
- ch_range=[32, 256]):
- super().__init__()
- self.res_depth = res_depth
- act_args = {'norm_type': norm_type, 'relu_type': relu_type}
- min_ch, max_ch = ch_range
-
- ch_clip = lambda x: max(min_ch, min(x, max_ch)) # noqa: E731
- min_feat_size = min(in_size, min_feat_size)
-
- down_steps = int(np.log2(in_size // min_feat_size))
- up_steps = int(np.log2(out_size // min_feat_size))
-
- # =============== define encoder-body-decoder ====================
- self.encoder = []
- self.encoder.append(ConvLayer(3, base_ch, 3, 1))
- head_ch = base_ch
- for i in range(down_steps):
- cin, cout = ch_clip(head_ch), ch_clip(head_ch * 2)
- self.encoder.append(ResidualBlock(cin, cout, scale='down', **act_args))
- head_ch = head_ch * 2
-
- self.body = []
- for i in range(res_depth):
- self.body.append(ResidualBlock(ch_clip(head_ch), ch_clip(head_ch), **act_args))
-
- self.decoder = []
- for i in range(up_steps):
- cin, cout = ch_clip(head_ch), ch_clip(head_ch // 2)
- self.decoder.append(ResidualBlock(cin, cout, scale='up', **act_args))
- head_ch = head_ch // 2
-
- self.encoder = nn.Sequential(*self.encoder)
- self.body = nn.Sequential(*self.body)
- self.decoder = nn.Sequential(*self.decoder)
- self.out_img_conv = ConvLayer(ch_clip(head_ch), 3)
- self.out_mask_conv = ConvLayer(ch_clip(head_ch), parsing_ch)
-
- def forward(self, x):
- feat = self.encoder(x)
- x = feat + self.body(feat)
- x = self.decoder(x)
- out_img = self.out_img_conv(x)
- out_mask = self.out_mask_conv(x)
- return out_mask, out_img
diff --git a/CodeFormer/CodeFormer/facelib/parsing/resnet.py b/CodeFormer/CodeFormer/facelib/parsing/resnet.py
deleted file mode 100644
index fec8e82cf64469fb51be21ad5130217052addbda..0000000000000000000000000000000000000000
--- a/CodeFormer/CodeFormer/facelib/parsing/resnet.py
+++ /dev/null
@@ -1,69 +0,0 @@
-import torch.nn as nn
-import torch.nn.functional as F
-
-
-def conv3x3(in_planes, out_planes, stride=1):
- """3x3 convolution with padding"""
- return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False)
-
-
-class BasicBlock(nn.Module):
-
- def __init__(self, in_chan, out_chan, stride=1):
- super(BasicBlock, self).__init__()
- self.conv1 = conv3x3(in_chan, out_chan, stride)
- self.bn1 = nn.BatchNorm2d(out_chan)
- self.conv2 = conv3x3(out_chan, out_chan)
- self.bn2 = nn.BatchNorm2d(out_chan)
- self.relu = nn.ReLU(inplace=True)
- self.downsample = None
- if in_chan != out_chan or stride != 1:
- self.downsample = nn.Sequential(
- nn.Conv2d(in_chan, out_chan, kernel_size=1, stride=stride, bias=False),
- nn.BatchNorm2d(out_chan),
- )
-
- def forward(self, x):
- residual = self.conv1(x)
- residual = F.relu(self.bn1(residual))
- residual = self.conv2(residual)
- residual = self.bn2(residual)
-
- shortcut = x
- if self.downsample is not None:
- shortcut = self.downsample(x)
-
- out = shortcut + residual
- out = self.relu(out)
- return out
-
-
-def create_layer_basic(in_chan, out_chan, bnum, stride=1):
- layers = [BasicBlock(in_chan, out_chan, stride=stride)]
- for i in range(bnum - 1):
- layers.append(BasicBlock(out_chan, out_chan, stride=1))
- return nn.Sequential(*layers)
-
-
-class ResNet18(nn.Module):
-
- def __init__(self):
- super(ResNet18, self).__init__()
- self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
- self.bn1 = nn.BatchNorm2d(64)
- self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
- self.layer1 = create_layer_basic(64, 64, bnum=2, stride=1)
- self.layer2 = create_layer_basic(64, 128, bnum=2, stride=2)
- self.layer3 = create_layer_basic(128, 256, bnum=2, stride=2)
- self.layer4 = create_layer_basic(256, 512, bnum=2, stride=2)
-
- def forward(self, x):
- x = self.conv1(x)
- x = F.relu(self.bn1(x))
- x = self.maxpool(x)
-
- x = self.layer1(x)
- feat8 = self.layer2(x) # 1/8
- feat16 = self.layer3(feat8) # 1/16
- feat32 = self.layer4(feat16) # 1/32
- return feat8, feat16, feat32
diff --git a/CodeFormer/CodeFormer/facelib/utils/__init__.py b/CodeFormer/CodeFormer/facelib/utils/__init__.py
deleted file mode 100644
index f03b1c2bafcd7759cb7e8722a0c6715f201a46dc..0000000000000000000000000000000000000000
--- a/CodeFormer/CodeFormer/facelib/utils/__init__.py
+++ /dev/null
@@ -1,7 +0,0 @@
-from .face_utils import align_crop_face_landmarks, compute_increased_bbox, get_valid_bboxes, paste_face_back
-from .misc import img2tensor, load_file_from_url, download_pretrained_models, scandir
-
-__all__ = [
- 'align_crop_face_landmarks', 'compute_increased_bbox', 'get_valid_bboxes', 'load_file_from_url',
- 'download_pretrained_models', 'paste_face_back', 'img2tensor', 'scandir'
-]
diff --git a/CodeFormer/CodeFormer/facelib/utils/__pycache__/__init__.cpython-310.pyc b/CodeFormer/CodeFormer/facelib/utils/__pycache__/__init__.cpython-310.pyc
deleted file mode 100644
index 67fd9343c1dd1e580cf77e314f12ae19e2e5f3aa..0000000000000000000000000000000000000000
Binary files a/CodeFormer/CodeFormer/facelib/utils/__pycache__/__init__.cpython-310.pyc and /dev/null differ
diff --git a/CodeFormer/CodeFormer/facelib/utils/__pycache__/face_restoration_helper.cpython-310.pyc b/CodeFormer/CodeFormer/facelib/utils/__pycache__/face_restoration_helper.cpython-310.pyc
deleted file mode 100644
index 1161f995d963935b0e96b217f96f888472a237e0..0000000000000000000000000000000000000000
Binary files a/CodeFormer/CodeFormer/facelib/utils/__pycache__/face_restoration_helper.cpython-310.pyc and /dev/null differ
diff --git a/CodeFormer/CodeFormer/facelib/utils/__pycache__/face_utils.cpython-310.pyc b/CodeFormer/CodeFormer/facelib/utils/__pycache__/face_utils.cpython-310.pyc
deleted file mode 100644
index 0f2348b121c11a4a21dec7e920c1248781046931..0000000000000000000000000000000000000000
Binary files a/CodeFormer/CodeFormer/facelib/utils/__pycache__/face_utils.cpython-310.pyc and /dev/null differ
diff --git a/CodeFormer/CodeFormer/facelib/utils/__pycache__/misc.cpython-310.pyc b/CodeFormer/CodeFormer/facelib/utils/__pycache__/misc.cpython-310.pyc
deleted file mode 100644
index 4dfa27d3c018dd777a579013325cf8c01806552d..0000000000000000000000000000000000000000
Binary files a/CodeFormer/CodeFormer/facelib/utils/__pycache__/misc.cpython-310.pyc and /dev/null differ
diff --git a/CodeFormer/CodeFormer/facelib/utils/face_restoration_helper.py b/CodeFormer/CodeFormer/facelib/utils/face_restoration_helper.py
deleted file mode 100644
index 5d3fb8f3b95ed9959610e64f6d7373ea8a56ece8..0000000000000000000000000000000000000000
--- a/CodeFormer/CodeFormer/facelib/utils/face_restoration_helper.py
+++ /dev/null
@@ -1,460 +0,0 @@
-import cv2
-import numpy as np
-import os
-import torch
-from torchvision.transforms.functional import normalize
-
-from facelib.detection import init_detection_model
-from facelib.parsing import init_parsing_model
-from facelib.utils.misc import img2tensor, imwrite, is_gray, bgr2gray
-
-
-def get_largest_face(det_faces, h, w):
-
- def get_location(val, length):
- if val < 0:
- return 0
- elif val > length:
- return length
- else:
- return val
-
- face_areas = []
- for det_face in det_faces:
- left = get_location(det_face[0], w)
- right = get_location(det_face[2], w)
- top = get_location(det_face[1], h)
- bottom = get_location(det_face[3], h)
- face_area = (right - left) * (bottom - top)
- face_areas.append(face_area)
- largest_idx = face_areas.index(max(face_areas))
- return det_faces[largest_idx], largest_idx
-
-
-def get_center_face(det_faces, h=0, w=0, center=None):
- if center is not None:
- center = np.array(center)
- else:
- center = np.array([w / 2, h / 2])
- center_dist = []
- for det_face in det_faces:
- face_center = np.array([(det_face[0] + det_face[2]) / 2, (det_face[1] + det_face[3]) / 2])
- dist = np.linalg.norm(face_center - center)
- center_dist.append(dist)
- center_idx = center_dist.index(min(center_dist))
- return det_faces[center_idx], center_idx
-
-
-class FaceRestoreHelper(object):
- """Helper for the face restoration pipeline (base class)."""
-
- def __init__(self,
- upscale_factor,
- face_size=512,
- crop_ratio=(1, 1),
- det_model='retinaface_resnet50',
- save_ext='png',
- template_3points=False,
- pad_blur=False,
- use_parse=False,
- device=None):
- self.template_3points = template_3points # improve robustness
- self.upscale_factor = int(upscale_factor)
- # the cropped face ratio based on the square face
- self.crop_ratio = crop_ratio # (h, w)
- assert (self.crop_ratio[0] >= 1 and self.crop_ratio[1] >= 1), 'crop ration only supports >=1'
- self.face_size = (int(face_size * self.crop_ratio[1]), int(face_size * self.crop_ratio[0]))
-
- if self.template_3points:
- self.face_template = np.array([[192, 240], [319, 240], [257, 371]])
- else:
- # standard 5 landmarks for FFHQ faces with 512 x 512
- # facexlib
- self.face_template = np.array([[192.98138, 239.94708], [318.90277, 240.1936], [256.63416, 314.01935],
- [201.26117, 371.41043], [313.08905, 371.15118]])
-
- # dlib: left_eye: 36:41 right_eye: 42:47 nose: 30,32,33,34 left mouth corner: 48 right mouth corner: 54
- # self.face_template = np.array([[193.65928, 242.98541], [318.32558, 243.06108], [255.67984, 328.82894],
- # [198.22603, 372.82502], [313.91018, 372.75659]])
-
-
- self.face_template = self.face_template * (face_size / 512.0)
- if self.crop_ratio[0] > 1:
- self.face_template[:, 1] += face_size * (self.crop_ratio[0] - 1) / 2
- if self.crop_ratio[1] > 1:
- self.face_template[:, 0] += face_size * (self.crop_ratio[1] - 1) / 2
- self.save_ext = save_ext
- self.pad_blur = pad_blur
- if self.pad_blur is True:
- self.template_3points = False
-
- self.all_landmarks_5 = []
- self.det_faces = []
- self.affine_matrices = []
- self.inverse_affine_matrices = []
- self.cropped_faces = []
- self.restored_faces = []
- self.pad_input_imgs = []
-
- if device is None:
- self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
- else:
- self.device = device
-
- # init face detection model
- self.face_det = init_detection_model(det_model, half=False, device=self.device)
-
- # init face parsing model
- self.use_parse = use_parse
- self.face_parse = init_parsing_model(model_name='parsenet', device=self.device)
-
- def set_upscale_factor(self, upscale_factor):
- self.upscale_factor = upscale_factor
-
- def read_image(self, img):
- """img can be image path or cv2 loaded image."""
- # self.input_img is Numpy array, (h, w, c), BGR, uint8, [0, 255]
- if isinstance(img, str):
- img = cv2.imread(img)
-
- if np.max(img) > 256: # 16-bit image
- img = img / 65535 * 255
- if len(img.shape) == 2: # gray image
- img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
- elif img.shape[2] == 4: # BGRA image with alpha channel
- img = img[:, :, 0:3]
-
- self.input_img = img
- self.is_gray = is_gray(img, threshold=5)
- if self.is_gray:
- print('Grayscale input: True')
-
- if min(self.input_img.shape[:2])<512:
- f = 512.0/min(self.input_img.shape[:2])
- self.input_img = cv2.resize(self.input_img, (0,0), fx=f, fy=f, interpolation=cv2.INTER_LINEAR)
-
- def get_face_landmarks_5(self,
- only_keep_largest=False,
- only_center_face=False,
- resize=None,
- blur_ratio=0.01,
- eye_dist_threshold=None):
- if resize is None:
- scale = 1
- input_img = self.input_img
- else:
- h, w = self.input_img.shape[0:2]
- scale = resize / min(h, w)
- scale = max(1, scale) # always scale up
- h, w = int(h * scale), int(w * scale)
- interp = cv2.INTER_AREA if scale < 1 else cv2.INTER_LINEAR
- input_img = cv2.resize(self.input_img, (w, h), interpolation=interp)
-
- with torch.no_grad():
- bboxes = self.face_det.detect_faces(input_img)
-
- if bboxes is None or bboxes.shape[0] == 0:
- return 0
- else:
- bboxes = bboxes / scale
-
- for bbox in bboxes:
- # remove faces with too small eye distance: side faces or too small faces
- eye_dist = np.linalg.norm([bbox[6] - bbox[8], bbox[7] - bbox[9]])
- if eye_dist_threshold is not None and (eye_dist < eye_dist_threshold):
- continue
-
- if self.template_3points:
- landmark = np.array([[bbox[i], bbox[i + 1]] for i in range(5, 11, 2)])
- else:
- landmark = np.array([[bbox[i], bbox[i + 1]] for i in range(5, 15, 2)])
- self.all_landmarks_5.append(landmark)
- self.det_faces.append(bbox[0:5])
-
- if len(self.det_faces) == 0:
- return 0
- if only_keep_largest:
- h, w, _ = self.input_img.shape
- self.det_faces, largest_idx = get_largest_face(self.det_faces, h, w)
- self.all_landmarks_5 = [self.all_landmarks_5[largest_idx]]
- elif only_center_face:
- h, w, _ = self.input_img.shape
- self.det_faces, center_idx = get_center_face(self.det_faces, h, w)
- self.all_landmarks_5 = [self.all_landmarks_5[center_idx]]
-
- # pad blurry images
- if self.pad_blur:
- self.pad_input_imgs = []
- for landmarks in self.all_landmarks_5:
- # get landmarks
- eye_left = landmarks[0, :]
- eye_right = landmarks[1, :]
- eye_avg = (eye_left + eye_right) * 0.5
- mouth_avg = (landmarks[3, :] + landmarks[4, :]) * 0.5
- eye_to_eye = eye_right - eye_left
- eye_to_mouth = mouth_avg - eye_avg
-
- # Get the oriented crop rectangle
- # x: half width of the oriented crop rectangle
- x = eye_to_eye - np.flipud(eye_to_mouth) * [-1, 1]
- # - np.flipud(eye_to_mouth) * [-1, 1]: rotate 90 clockwise
- # norm with the hypotenuse: get the direction
- x /= np.hypot(*x) # get the hypotenuse of a right triangle
- rect_scale = 1.5
- x *= max(np.hypot(*eye_to_eye) * 2.0 * rect_scale, np.hypot(*eye_to_mouth) * 1.8 * rect_scale)
- # y: half height of the oriented crop rectangle
- y = np.flipud(x) * [-1, 1]
-
- # c: center
- c = eye_avg + eye_to_mouth * 0.1
- # quad: (left_top, left_bottom, right_bottom, right_top)
- quad = np.stack([c - x - y, c - x + y, c + x + y, c + x - y])
- # qsize: side length of the square
- qsize = np.hypot(*x) * 2
- border = max(int(np.rint(qsize * 0.1)), 3)
-
- # get pad
- # pad: (width_left, height_top, width_right, height_bottom)
- pad = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), int(np.ceil(max(quad[:, 0]))),
- int(np.ceil(max(quad[:, 1]))))
- pad = [
- max(-pad[0] + border, 1),
- max(-pad[1] + border, 1),
- max(pad[2] - self.input_img.shape[0] + border, 1),
- max(pad[3] - self.input_img.shape[1] + border, 1)
- ]
-
- if max(pad) > 1:
- # pad image
- pad_img = np.pad(self.input_img, ((pad[1], pad[3]), (pad[0], pad[2]), (0, 0)), 'reflect')
- # modify landmark coords
- landmarks[:, 0] += pad[0]
- landmarks[:, 1] += pad[1]
- # blur pad images
- h, w, _ = pad_img.shape
- y, x, _ = np.ogrid[:h, :w, :1]
- mask = np.maximum(1.0 - np.minimum(np.float32(x) / pad[0],
- np.float32(w - 1 - x) / pad[2]),
- 1.0 - np.minimum(np.float32(y) / pad[1],
- np.float32(h - 1 - y) / pad[3]))
- blur = int(qsize * blur_ratio)
- if blur % 2 == 0:
- blur += 1
- blur_img = cv2.boxFilter(pad_img, 0, ksize=(blur, blur))
- # blur_img = cv2.GaussianBlur(pad_img, (blur, blur), 0)
-
- pad_img = pad_img.astype('float32')
- pad_img += (blur_img - pad_img) * np.clip(mask * 3.0 + 1.0, 0.0, 1.0)
- pad_img += (np.median(pad_img, axis=(0, 1)) - pad_img) * np.clip(mask, 0.0, 1.0)
- pad_img = np.clip(pad_img, 0, 255) # float32, [0, 255]
- self.pad_input_imgs.append(pad_img)
- else:
- self.pad_input_imgs.append(np.copy(self.input_img))
-
- return len(self.all_landmarks_5)
-
- def align_warp_face(self, save_cropped_path=None, border_mode='constant'):
- """Align and warp faces with face template.
- """
- if self.pad_blur:
- assert len(self.pad_input_imgs) == len(
- self.all_landmarks_5), f'Mismatched samples: {len(self.pad_input_imgs)} and {len(self.all_landmarks_5)}'
- for idx, landmark in enumerate(self.all_landmarks_5):
- # use 5 landmarks to get affine matrix
- # use cv2.LMEDS method for the equivalence to skimage transform
- # ref: https://blog.csdn.net/yichxi/article/details/115827338
- affine_matrix = cv2.estimateAffinePartial2D(landmark, self.face_template, method=cv2.LMEDS)[0]
- self.affine_matrices.append(affine_matrix)
- # warp and crop faces
- if border_mode == 'constant':
- border_mode = cv2.BORDER_CONSTANT
- elif border_mode == 'reflect101':
- border_mode = cv2.BORDER_REFLECT101
- elif border_mode == 'reflect':
- border_mode = cv2.BORDER_REFLECT
- if self.pad_blur:
- input_img = self.pad_input_imgs[idx]
- else:
- input_img = self.input_img
- cropped_face = cv2.warpAffine(
- input_img, affine_matrix, self.face_size, borderMode=border_mode, borderValue=(135, 133, 132)) # gray
- self.cropped_faces.append(cropped_face)
- # save the cropped face
- if save_cropped_path is not None:
- path = os.path.splitext(save_cropped_path)[0]
- save_path = f'{path}_{idx:02d}.{self.save_ext}'
- imwrite(cropped_face, save_path)
-
- def get_inverse_affine(self, save_inverse_affine_path=None):
- """Get inverse affine matrix."""
- for idx, affine_matrix in enumerate(self.affine_matrices):
- inverse_affine = cv2.invertAffineTransform(affine_matrix)
- inverse_affine *= self.upscale_factor
- self.inverse_affine_matrices.append(inverse_affine)
- # save inverse affine matrices
- if save_inverse_affine_path is not None:
- path, _ = os.path.splitext(save_inverse_affine_path)
- save_path = f'{path}_{idx:02d}.pth'
- torch.save(inverse_affine, save_path)
-
-
- def add_restored_face(self, face):
- if self.is_gray:
- face = bgr2gray(face) # convert img into grayscale
- self.restored_faces.append(face)
-
-
- def paste_faces_to_input_image(self, save_path=None, upsample_img=None, draw_box=False, face_upsampler=None):
- h, w, _ = self.input_img.shape
- h_up, w_up = int(h * self.upscale_factor), int(w * self.upscale_factor)
-
- if upsample_img is None:
- # simply resize the background
- # upsample_img = cv2.resize(self.input_img, (w_up, h_up), interpolation=cv2.INTER_LANCZOS4)
- upsample_img = cv2.resize(self.input_img, (w_up, h_up), interpolation=cv2.INTER_LINEAR)
- else:
- upsample_img = cv2.resize(upsample_img, (w_up, h_up), interpolation=cv2.INTER_LANCZOS4)
-
- assert len(self.restored_faces) == len(
- self.inverse_affine_matrices), ('length of restored_faces and affine_matrices are different.')
-
- inv_mask_borders = []
- for restored_face, inverse_affine in zip(self.restored_faces, self.inverse_affine_matrices):
- if face_upsampler is not None:
- restored_face = face_upsampler.enhance(restored_face, outscale=self.upscale_factor)[0]
- inverse_affine /= self.upscale_factor
- inverse_affine[:, 2] *= self.upscale_factor
- face_size = (self.face_size[0]*self.upscale_factor, self.face_size[1]*self.upscale_factor)
- else:
- # Add an offset to inverse affine matrix, for more precise back alignment
- if self.upscale_factor > 1:
- extra_offset = 0.5 * self.upscale_factor
- else:
- extra_offset = 0
- inverse_affine[:, 2] += extra_offset
- face_size = self.face_size
- inv_restored = cv2.warpAffine(restored_face, inverse_affine, (w_up, h_up))
-
- # if draw_box or not self.use_parse: # use square parse maps
- # mask = np.ones(face_size, dtype=np.float32)
- # inv_mask = cv2.warpAffine(mask, inverse_affine, (w_up, h_up))
- # # remove the black borders
- # inv_mask_erosion = cv2.erode(
- # inv_mask, np.ones((int(2 * self.upscale_factor), int(2 * self.upscale_factor)), np.uint8))
- # pasted_face = inv_mask_erosion[:, :, None] * inv_restored
- # total_face_area = np.sum(inv_mask_erosion) # // 3
- # # add border
- # if draw_box:
- # h, w = face_size
- # mask_border = np.ones((h, w, 3), dtype=np.float32)
- # border = int(1400/np.sqrt(total_face_area))
- # mask_border[border:h-border, border:w-border,:] = 0
- # inv_mask_border = cv2.warpAffine(mask_border, inverse_affine, (w_up, h_up))
- # inv_mask_borders.append(inv_mask_border)
- # if not self.use_parse:
- # # compute the fusion edge based on the area of face
- # w_edge = int(total_face_area**0.5) // 20
- # erosion_radius = w_edge * 2
- # inv_mask_center = cv2.erode(inv_mask_erosion, np.ones((erosion_radius, erosion_radius), np.uint8))
- # blur_size = w_edge * 2
- # inv_soft_mask = cv2.GaussianBlur(inv_mask_center, (blur_size + 1, blur_size + 1), 0)
- # if len(upsample_img.shape) == 2: # upsample_img is gray image
- # upsample_img = upsample_img[:, :, None]
- # inv_soft_mask = inv_soft_mask[:, :, None]
-
- # always use square mask
- mask = np.ones(face_size, dtype=np.float32)
- inv_mask = cv2.warpAffine(mask, inverse_affine, (w_up, h_up))
- # remove the black borders
- inv_mask_erosion = cv2.erode(
- inv_mask, np.ones((int(2 * self.upscale_factor), int(2 * self.upscale_factor)), np.uint8))
- pasted_face = inv_mask_erosion[:, :, None] * inv_restored
- total_face_area = np.sum(inv_mask_erosion) # // 3
- # add border
- if draw_box:
- h, w = face_size
- mask_border = np.ones((h, w, 3), dtype=np.float32)
- border = int(1400/np.sqrt(total_face_area))
- mask_border[border:h-border, border:w-border,:] = 0
- inv_mask_border = cv2.warpAffine(mask_border, inverse_affine, (w_up, h_up))
- inv_mask_borders.append(inv_mask_border)
- # compute the fusion edge based on the area of face
- w_edge = int(total_face_area**0.5) // 20
- erosion_radius = w_edge * 2
- inv_mask_center = cv2.erode(inv_mask_erosion, np.ones((erosion_radius, erosion_radius), np.uint8))
- blur_size = w_edge * 2
- inv_soft_mask = cv2.GaussianBlur(inv_mask_center, (blur_size + 1, blur_size + 1), 0)
- if len(upsample_img.shape) == 2: # upsample_img is gray image
- upsample_img = upsample_img[:, :, None]
- inv_soft_mask = inv_soft_mask[:, :, None]
-
- # parse mask
- if self.use_parse:
- # inference
- face_input = cv2.resize(restored_face, (512, 512), interpolation=cv2.INTER_LINEAR)
- face_input = img2tensor(face_input.astype('float32') / 255., bgr2rgb=True, float32=True)
- normalize(face_input, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True)
- face_input = torch.unsqueeze(face_input, 0).to(self.device)
- with torch.no_grad():
- out = self.face_parse(face_input)[0]
- out = out.argmax(dim=1).squeeze().cpu().numpy()
-
- parse_mask = np.zeros(out.shape)
- MASK_COLORMAP = [0, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 0, 255, 0, 0, 0]
- for idx, color in enumerate(MASK_COLORMAP):
- parse_mask[out == idx] = color
- # blur the mask
- parse_mask = cv2.GaussianBlur(parse_mask, (101, 101), 11)
- parse_mask = cv2.GaussianBlur(parse_mask, (101, 101), 11)
- # remove the black borders
- thres = 10
- parse_mask[:thres, :] = 0
- parse_mask[-thres:, :] = 0
- parse_mask[:, :thres] = 0
- parse_mask[:, -thres:] = 0
- parse_mask = parse_mask / 255.
-
- parse_mask = cv2.resize(parse_mask, face_size)
- parse_mask = cv2.warpAffine(parse_mask, inverse_affine, (w_up, h_up), flags=3)
- inv_soft_parse_mask = parse_mask[:, :, None]
- # pasted_face = inv_restored
- fuse_mask = (inv_soft_parse_mask 256: # 16-bit image
- upsample_img = upsample_img.astype(np.uint16)
- else:
- upsample_img = upsample_img.astype(np.uint8)
-
- # draw bounding box
- if draw_box:
- # upsample_input_img = cv2.resize(input_img, (w_up, h_up))
- img_color = np.ones([*upsample_img.shape], dtype=np.float32)
- img_color[:,:,0] = 0
- img_color[:,:,1] = 255
- img_color[:,:,2] = 0
- for inv_mask_border in inv_mask_borders:
- upsample_img = inv_mask_border * img_color + (1 - inv_mask_border) * upsample_img
- # upsample_input_img = inv_mask_border * img_color + (1 - inv_mask_border) * upsample_input_img
-
- if save_path is not None:
- path = os.path.splitext(save_path)[0]
- save_path = f'{path}.{self.save_ext}'
- imwrite(upsample_img, save_path)
- return upsample_img
-
- def clean_all(self):
- self.all_landmarks_5 = []
- self.restored_faces = []
- self.affine_matrices = []
- self.cropped_faces = []
- self.inverse_affine_matrices = []
- self.det_faces = []
- self.pad_input_imgs = []
\ No newline at end of file
diff --git a/CodeFormer/CodeFormer/facelib/utils/face_utils.py b/CodeFormer/CodeFormer/facelib/utils/face_utils.py
deleted file mode 100644
index f1474a2a4419b6b62fab8a919ef805b802556464..0000000000000000000000000000000000000000
--- a/CodeFormer/CodeFormer/facelib/utils/face_utils.py
+++ /dev/null
@@ -1,248 +0,0 @@
-import cv2
-import numpy as np
-import torch
-
-
-def compute_increased_bbox(bbox, increase_area, preserve_aspect=True):
- left, top, right, bot = bbox
- width = right - left
- height = bot - top
-
- if preserve_aspect:
- width_increase = max(increase_area, ((1 + 2 * increase_area) * height - width) / (2 * width))
- height_increase = max(increase_area, ((1 + 2 * increase_area) * width - height) / (2 * height))
- else:
- width_increase = height_increase = increase_area
- left = int(left - width_increase * width)
- top = int(top - height_increase * height)
- right = int(right + width_increase * width)
- bot = int(bot + height_increase * height)
- return (left, top, right, bot)
-
-
-def get_valid_bboxes(bboxes, h, w):
- left = max(bboxes[0], 0)
- top = max(bboxes[1], 0)
- right = min(bboxes[2], w)
- bottom = min(bboxes[3], h)
- return (left, top, right, bottom)
-
-
-def align_crop_face_landmarks(img,
- landmarks,
- output_size,
- transform_size=None,
- enable_padding=True,
- return_inverse_affine=False,
- shrink_ratio=(1, 1)):
- """Align and crop face with landmarks.
-
- The output_size and transform_size are based on width. The height is
- adjusted based on shrink_ratio_h/shring_ration_w.
-
- Modified from:
- https://github.com/NVlabs/ffhq-dataset/blob/master/download_ffhq.py
-
- Args:
- img (Numpy array): Input image.
- landmarks (Numpy array): 5 or 68 or 98 landmarks.
- output_size (int): Output face size.
- transform_size (ing): Transform size. Usually the four time of
- output_size.
- enable_padding (float): Default: True.
- shrink_ratio (float | tuple[float] | list[float]): Shring the whole
- face for height and width (crop larger area). Default: (1, 1).
-
- Returns:
- (Numpy array): Cropped face.
- """
- lm_type = 'retinaface_5' # Options: dlib_5, retinaface_5
-
- if isinstance(shrink_ratio, (float, int)):
- shrink_ratio = (shrink_ratio, shrink_ratio)
- if transform_size is None:
- transform_size = output_size * 4
-
- # Parse landmarks
- lm = np.array(landmarks)
- if lm.shape[0] == 5 and lm_type == 'retinaface_5':
- eye_left = lm[0]
- eye_right = lm[1]
- mouth_avg = (lm[3] + lm[4]) * 0.5
- elif lm.shape[0] == 5 and lm_type == 'dlib_5':
- lm_eye_left = lm[2:4]
- lm_eye_right = lm[0:2]
- eye_left = np.mean(lm_eye_left, axis=0)
- eye_right = np.mean(lm_eye_right, axis=0)
- mouth_avg = lm[4]
- elif lm.shape[0] == 68:
- lm_eye_left = lm[36:42]
- lm_eye_right = lm[42:48]
- eye_left = np.mean(lm_eye_left, axis=0)
- eye_right = np.mean(lm_eye_right, axis=0)
- mouth_avg = (lm[48] + lm[54]) * 0.5
- elif lm.shape[0] == 98:
- lm_eye_left = lm[60:68]
- lm_eye_right = lm[68:76]
- eye_left = np.mean(lm_eye_left, axis=0)
- eye_right = np.mean(lm_eye_right, axis=0)
- mouth_avg = (lm[76] + lm[82]) * 0.5
-
- eye_avg = (eye_left + eye_right) * 0.5
- eye_to_eye = eye_right - eye_left
- eye_to_mouth = mouth_avg - eye_avg
-
- # Get the oriented crop rectangle
- # x: half width of the oriented crop rectangle
- x = eye_to_eye - np.flipud(eye_to_mouth) * [-1, 1]
- # - np.flipud(eye_to_mouth) * [-1, 1]: rotate 90 clockwise
- # norm with the hypotenuse: get the direction
- x /= np.hypot(*x) # get the hypotenuse of a right triangle
- rect_scale = 1 # TODO: you can edit it to get larger rect
- x *= max(np.hypot(*eye_to_eye) * 2.0 * rect_scale, np.hypot(*eye_to_mouth) * 1.8 * rect_scale)
- # y: half height of the oriented crop rectangle
- y = np.flipud(x) * [-1, 1]
-
- x *= shrink_ratio[1] # width
- y *= shrink_ratio[0] # height
-
- # c: center
- c = eye_avg + eye_to_mouth * 0.1
- # quad: (left_top, left_bottom, right_bottom, right_top)
- quad = np.stack([c - x - y, c - x + y, c + x + y, c + x - y])
- # qsize: side length of the square
- qsize = np.hypot(*x) * 2
-
- quad_ori = np.copy(quad)
- # Shrink, for large face
- # TODO: do we really need shrink
- shrink = int(np.floor(qsize / output_size * 0.5))
- if shrink > 1:
- h, w = img.shape[0:2]
- rsize = (int(np.rint(float(w) / shrink)), int(np.rint(float(h) / shrink)))
- img = cv2.resize(img, rsize, interpolation=cv2.INTER_AREA)
- quad /= shrink
- qsize /= shrink
-
- # Crop
- h, w = img.shape[0:2]
- border = max(int(np.rint(qsize * 0.1)), 3)
- crop = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), int(np.ceil(max(quad[:, 0]))),
- int(np.ceil(max(quad[:, 1]))))
- crop = (max(crop[0] - border, 0), max(crop[1] - border, 0), min(crop[2] + border, w), min(crop[3] + border, h))
- if crop[2] - crop[0] < w or crop[3] - crop[1] < h:
- img = img[crop[1]:crop[3], crop[0]:crop[2], :]
- quad -= crop[0:2]
-
- # Pad
- # pad: (width_left, height_top, width_right, height_bottom)
- h, w = img.shape[0:2]
- pad = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), int(np.ceil(max(quad[:, 0]))),
- int(np.ceil(max(quad[:, 1]))))
- pad = (max(-pad[0] + border, 0), max(-pad[1] + border, 0), max(pad[2] - w + border, 0), max(pad[3] - h + border, 0))
- if enable_padding and max(pad) > border - 4:
- pad = np.maximum(pad, int(np.rint(qsize * 0.3)))
- img = np.pad(img, ((pad[1], pad[3]), (pad[0], pad[2]), (0, 0)), 'reflect')
- h, w = img.shape[0:2]
- y, x, _ = np.ogrid[:h, :w, :1]
- mask = np.maximum(1.0 - np.minimum(np.float32(x) / pad[0],
- np.float32(w - 1 - x) / pad[2]),
- 1.0 - np.minimum(np.float32(y) / pad[1],
- np.float32(h - 1 - y) / pad[3]))
- blur = int(qsize * 0.02)
- if blur % 2 == 0:
- blur += 1
- blur_img = cv2.boxFilter(img, 0, ksize=(blur, blur))
-
- img = img.astype('float32')
- img += (blur_img - img) * np.clip(mask * 3.0 + 1.0, 0.0, 1.0)
- img += (np.median(img, axis=(0, 1)) - img) * np.clip(mask, 0.0, 1.0)
- img = np.clip(img, 0, 255) # float32, [0, 255]
- quad += pad[:2]
-
- # Transform use cv2
- h_ratio = shrink_ratio[0] / shrink_ratio[1]
- dst_h, dst_w = int(transform_size * h_ratio), transform_size
- template = np.array([[0, 0], [0, dst_h], [dst_w, dst_h], [dst_w, 0]])
- # use cv2.LMEDS method for the equivalence to skimage transform
- # ref: https://blog.csdn.net/yichxi/article/details/115827338
- affine_matrix = cv2.estimateAffinePartial2D(quad, template, method=cv2.LMEDS)[0]
- cropped_face = cv2.warpAffine(
- img, affine_matrix, (dst_w, dst_h), borderMode=cv2.BORDER_CONSTANT, borderValue=(135, 133, 132)) # gray
-
- if output_size < transform_size:
- cropped_face = cv2.resize(
- cropped_face, (output_size, int(output_size * h_ratio)), interpolation=cv2.INTER_LINEAR)
-
- if return_inverse_affine:
- dst_h, dst_w = int(output_size * h_ratio), output_size
- template = np.array([[0, 0], [0, dst_h], [dst_w, dst_h], [dst_w, 0]])
- # use cv2.LMEDS method for the equivalence to skimage transform
- # ref: https://blog.csdn.net/yichxi/article/details/115827338
- affine_matrix = cv2.estimateAffinePartial2D(
- quad_ori, np.array([[0, 0], [0, output_size], [dst_w, dst_h], [dst_w, 0]]), method=cv2.LMEDS)[0]
- inverse_affine = cv2.invertAffineTransform(affine_matrix)
- else:
- inverse_affine = None
- return cropped_face, inverse_affine
-
-
-def paste_face_back(img, face, inverse_affine):
- h, w = img.shape[0:2]
- face_h, face_w = face.shape[0:2]
- inv_restored = cv2.warpAffine(face, inverse_affine, (w, h))
- mask = np.ones((face_h, face_w, 3), dtype=np.float32)
- inv_mask = cv2.warpAffine(mask, inverse_affine, (w, h))
- # remove the black borders
- inv_mask_erosion = cv2.erode(inv_mask, np.ones((2, 2), np.uint8))
- inv_restored_remove_border = inv_mask_erosion * inv_restored
- total_face_area = np.sum(inv_mask_erosion) // 3
- # compute the fusion edge based on the area of face
- w_edge = int(total_face_area**0.5) // 20
- erosion_radius = w_edge * 2
- inv_mask_center = cv2.erode(inv_mask_erosion, np.ones((erosion_radius, erosion_radius), np.uint8))
- blur_size = w_edge * 2
- inv_soft_mask = cv2.GaussianBlur(inv_mask_center, (blur_size + 1, blur_size + 1), 0)
- img = inv_soft_mask * inv_restored_remove_border + (1 - inv_soft_mask) * img
- # float32, [0, 255]
- return img
-
-
-if __name__ == '__main__':
- import os
-
- from facelib.detection import init_detection_model
- from facelib.utils.face_restoration_helper import get_largest_face
-
- img_path = '/home/wxt/datasets/ffhq/ffhq_wild/00009.png'
- img_name = os.splitext(os.path.basename(img_path))[0]
-
- # initialize model
- det_net = init_detection_model('retinaface_resnet50', half=False)
- img_ori = cv2.imread(img_path)
- h, w = img_ori.shape[0:2]
- # if larger than 800, scale it
- scale = max(h / 800, w / 800)
- if scale > 1:
- img = cv2.resize(img_ori, (int(w / scale), int(h / scale)), interpolation=cv2.INTER_LINEAR)
-
- with torch.no_grad():
- bboxes = det_net.detect_faces(img, 0.97)
- if scale > 1:
- bboxes *= scale # the score is incorrect
- bboxes = get_largest_face(bboxes, h, w)[0]
-
- landmarks = np.array([[bboxes[i], bboxes[i + 1]] for i in range(5, 15, 2)])
-
- cropped_face, inverse_affine = align_crop_face_landmarks(
- img_ori,
- landmarks,
- output_size=512,
- transform_size=None,
- enable_padding=True,
- return_inverse_affine=True,
- shrink_ratio=(1, 1))
-
- cv2.imwrite(f'tmp/{img_name}_cropeed_face.png', cropped_face)
- img = paste_face_back(img_ori, cropped_face, inverse_affine)
- cv2.imwrite(f'tmp/{img_name}_back.png', img)
diff --git a/CodeFormer/CodeFormer/facelib/utils/misc.py b/CodeFormer/CodeFormer/facelib/utils/misc.py
deleted file mode 100644
index 52e2c0343f972d5bd5c735c5cfbf8b28bca6dd55..0000000000000000000000000000000000000000
--- a/CodeFormer/CodeFormer/facelib/utils/misc.py
+++ /dev/null
@@ -1,174 +0,0 @@
-import cv2
-import os
-import os.path as osp
-import numpy as np
-from PIL import Image
-import torch
-from torch.hub import download_url_to_file, get_dir
-from urllib.parse import urlparse
-# from basicsr.utils.download_util import download_file_from_google_drive
-# import gdown
-
-
-ROOT_DIR = os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
-
-
-def download_pretrained_models(file_ids, save_path_root):
- os.makedirs(save_path_root, exist_ok=True)
-
- for file_name, file_id in file_ids.items():
- file_url = 'https://drive.google.com/uc?id='+file_id
- save_path = osp.abspath(osp.join(save_path_root, file_name))
- if osp.exists(save_path):
- user_response = input(f'{file_name} already exist. Do you want to cover it? Y/N\n')
- if user_response.lower() == 'y':
- print(f'Covering {file_name} to {save_path}')
- # gdown.download(file_url, save_path, quiet=False)
- # download_file_from_google_drive(file_id, save_path)
- elif user_response.lower() == 'n':
- print(f'Skipping {file_name}')
- else:
- raise ValueError('Wrong input. Only accepts Y/N.')
- else:
- print(f'Downloading {file_name} to {save_path}')
- # gdown.download(file_url, save_path, quiet=False)
- # download_file_from_google_drive(file_id, save_path)
-
-
-def imwrite(img, file_path, params=None, auto_mkdir=True):
- """Write image to file.
-
- Args:
- img (ndarray): Image array to be written.
- file_path (str): Image file path.
- params (None or list): Same as opencv's :func:`imwrite` interface.
- auto_mkdir (bool): If the parent folder of `file_path` does not exist,
- whether to create it automatically.
-
- Returns:
- bool: Successful or not.
- """
- if auto_mkdir:
- dir_name = os.path.abspath(os.path.dirname(file_path))
- os.makedirs(dir_name, exist_ok=True)
- return cv2.imwrite(file_path, img, params)
-
-
-def img2tensor(imgs, bgr2rgb=True, float32=True):
- """Numpy array to tensor.
-
- Args:
- imgs (list[ndarray] | ndarray): Input images.
- bgr2rgb (bool): Whether to change bgr to rgb.
- float32 (bool): Whether to change to float32.
-
- Returns:
- list[tensor] | tensor: Tensor images. If returned results only have
- one element, just return tensor.
- """
-
- def _totensor(img, bgr2rgb, float32):
- if img.shape[2] == 3 and bgr2rgb:
- if img.dtype == 'float64':
- img = img.astype('float32')
- img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
- img = torch.from_numpy(img.transpose(2, 0, 1))
- if float32:
- img = img.float()
- return img
-
- if isinstance(imgs, list):
- return [_totensor(img, bgr2rgb, float32) for img in imgs]
- else:
- return _totensor(imgs, bgr2rgb, float32)
-
-
-def load_file_from_url(url, model_dir=None, progress=True, file_name=None):
- """Ref:https://github.com/1adrianb/face-alignment/blob/master/face_alignment/utils.py
- """
- if model_dir is None:
- hub_dir = get_dir()
- model_dir = os.path.join(hub_dir, 'checkpoints')
-
- os.makedirs(os.path.join(ROOT_DIR, model_dir), exist_ok=True)
-
- parts = urlparse(url)
- filename = os.path.basename(parts.path)
- if file_name is not None:
- filename = file_name
- cached_file = os.path.abspath(os.path.join(ROOT_DIR, model_dir, filename))
- if not os.path.exists(cached_file):
- print(f'Downloading: "{url}" to {cached_file}\n')
- download_url_to_file(url, cached_file, hash_prefix=None, progress=progress)
- return cached_file
-
-
-def scandir(dir_path, suffix=None, recursive=False, full_path=False):
- """Scan a directory to find the interested files.
- Args:
- dir_path (str): Path of the directory.
- suffix (str | tuple(str), optional): File suffix that we are
- interested in. Default: None.
- recursive (bool, optional): If set to True, recursively scan the
- directory. Default: False.
- full_path (bool, optional): If set to True, include the dir_path.
- Default: False.
- Returns:
- A generator for all the interested files with relative paths.
- """
-
- if (suffix is not None) and not isinstance(suffix, (str, tuple)):
- raise TypeError('"suffix" must be a string or tuple of strings')
-
- root = dir_path
-
- def _scandir(dir_path, suffix, recursive):
- for entry in os.scandir(dir_path):
- if not entry.name.startswith('.') and entry.is_file():
- if full_path:
- return_path = entry.path
- else:
- return_path = osp.relpath(entry.path, root)
-
- if suffix is None:
- yield return_path
- elif return_path.endswith(suffix):
- yield return_path
- else:
- if recursive:
- yield from _scandir(entry.path, suffix=suffix, recursive=recursive)
- else:
- continue
-
- return _scandir(dir_path, suffix=suffix, recursive=recursive)
-
-
-def is_gray(img, threshold=10):
- img = Image.fromarray(img)
- if len(img.getbands()) == 1:
- return True
- img1 = np.asarray(img.getchannel(channel=0), dtype=np.int16)
- img2 = np.asarray(img.getchannel(channel=1), dtype=np.int16)
- img3 = np.asarray(img.getchannel(channel=2), dtype=np.int16)
- diff1 = (img1 - img2).var()
- diff2 = (img2 - img3).var()
- diff3 = (img3 - img1).var()
- diff_sum = (diff1 + diff2 + diff3) / 3.0
- if diff_sum <= threshold:
- return True
- else:
- return False
-
-def rgb2gray(img, out_channel=3):
- r, g, b = img[:,:,0], img[:,:,1], img[:,:,2]
- gray = 0.2989 * r + 0.5870 * g + 0.1140 * b
- if out_channel == 3:
- gray = gray[:,:,np.newaxis].repeat(3, axis=2)
- return gray
-
-def bgr2gray(img, out_channel=3):
- b, g, r = img[:,:,0], img[:,:,1], img[:,:,2]
- gray = 0.2989 * r + 0.5870 * g + 0.1140 * b
- if out_channel == 3:
- gray = gray[:,:,np.newaxis].repeat(3, axis=2)
- return gray
diff --git a/CodeFormer/CodeFormer/inference_codeformer.py b/CodeFormer/CodeFormer/inference_codeformer.py
deleted file mode 100644
index fdfe8b301cc7c20c2fb653618e379d243603a108..0000000000000000000000000000000000000000
--- a/CodeFormer/CodeFormer/inference_codeformer.py
+++ /dev/null
@@ -1,189 +0,0 @@
-# Modified by Shangchen Zhou from: https://github.com/TencentARC/GFPGAN/blob/master/inference_gfpgan.py
-import os
-import cv2
-import argparse
-import glob
-import torch
-from torchvision.transforms.functional import normalize
-from basicsr.utils import imwrite, img2tensor, tensor2img
-from basicsr.utils.download_util import load_file_from_url
-from facelib.utils.face_restoration_helper import FaceRestoreHelper
-import torch.nn.functional as F
-
-from basicsr.utils.registry import ARCH_REGISTRY
-
-pretrain_model_url = {
- 'restoration': 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/codeformer.pth',
-}
-
-def set_realesrgan():
- if not torch.cuda.is_available(): # CPU
- import warnings
- warnings.warn('The unoptimized RealESRGAN is slow on CPU. We do not use it. '
- 'If you really want to use it, please modify the corresponding codes.',
- category=RuntimeWarning)
- bg_upsampler = None
- else:
- from basicsr.archs.rrdbnet_arch import RRDBNet
- from basicsr.utils.realesrgan_utils import RealESRGANer
- model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=2)
- bg_upsampler = RealESRGANer(
- scale=2,
- model_path='https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.1/RealESRGAN_x2plus.pth',
- model=model,
- tile=args.bg_tile,
- tile_pad=40,
- pre_pad=0,
- half=True) # need to set False in CPU mode
- return bg_upsampler
-
-if __name__ == '__main__':
- device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
- parser = argparse.ArgumentParser()
-
- parser.add_argument('--w', type=float, default=0.5, help='Balance the quality and fidelity')
- parser.add_argument('--upscale', type=int, default=2, help='The final upsampling scale of the image. Default: 2')
- parser.add_argument('--test_path', type=str, default='./inputs/cropped_faces')
- parser.add_argument('--has_aligned', action='store_true', help='Input are cropped and aligned faces')
- parser.add_argument('--only_center_face', action='store_true', help='Only restore the center face')
- # large det_model: 'YOLOv5l', 'retinaface_resnet50'
- # small det_model: 'YOLOv5n', 'retinaface_mobile0.25'
- parser.add_argument('--detection_model', type=str, default='retinaface_resnet50')
- parser.add_argument('--draw_box', action='store_true')
- parser.add_argument('--bg_upsampler', type=str, default='None', help='background upsampler. Optional: realesrgan')
- parser.add_argument('--face_upsample', action='store_true', help='face upsampler after enhancement.')
- parser.add_argument('--bg_tile', type=int, default=400, help='Tile size for background sampler. Default: 400')
-
- args = parser.parse_args()
-
- # ------------------------ input & output ------------------------
- if args.test_path.endswith('/'): # solve when path ends with /
- args.test_path = args.test_path[:-1]
-
- w = args.w
- result_root = f'results/{os.path.basename(args.test_path)}_{w}'
-
- # ------------------ set up background upsampler ------------------
- if args.bg_upsampler == 'realesrgan':
- bg_upsampler = set_realesrgan()
- else:
- bg_upsampler = None
-
- # ------------------ set up face upsampler ------------------
- if args.face_upsample:
- if bg_upsampler is not None:
- face_upsampler = bg_upsampler
- else:
- face_upsampler = set_realesrgan()
- else:
- face_upsampler = None
-
- # ------------------ set up CodeFormer restorer -------------------
- net = ARCH_REGISTRY.get('CodeFormer')(dim_embd=512, codebook_size=1024, n_head=8, n_layers=9,
- connect_list=['32', '64', '128', '256']).to(device)
-
- # ckpt_path = 'weights/CodeFormer/codeformer.pth'
- ckpt_path = load_file_from_url(url=pretrain_model_url['restoration'],
- model_dir='weights/CodeFormer', progress=True, file_name=None)
- checkpoint = torch.load(ckpt_path)['params_ema']
- net.load_state_dict(checkpoint)
- net.eval()
-
- # ------------------ set up FaceRestoreHelper -------------------
- # large det_model: 'YOLOv5l', 'retinaface_resnet50'
- # small det_model: 'YOLOv5n', 'retinaface_mobile0.25'
- if not args.has_aligned:
- print(f'Face detection model: {args.detection_model}')
- if bg_upsampler is not None:
- print(f'Background upsampling: True, Face upsampling: {args.face_upsample}')
- else:
- print(f'Background upsampling: False, Face upsampling: {args.face_upsample}')
-
- face_helper = FaceRestoreHelper(
- args.upscale,
- face_size=512,
- crop_ratio=(1, 1),
- det_model = args.detection_model,
- save_ext='png',
- use_parse=True,
- device=device)
-
- # -------------------- start to processing ---------------------
- # scan all the jpg and png images
- for img_path in sorted(glob.glob(os.path.join(args.test_path, '*.[jp][pn]g'))):
- # clean all the intermediate results to process the next image
- face_helper.clean_all()
-
- img_name = os.path.basename(img_path)
- print(f'Processing: {img_name}')
- basename, ext = os.path.splitext(img_name)
- img = cv2.imread(img_path, cv2.IMREAD_COLOR)
-
- if args.has_aligned:
- # the input faces are already cropped and aligned
- img = cv2.resize(img, (512, 512), interpolation=cv2.INTER_LINEAR)
- face_helper.cropped_faces = [img]
- else:
- face_helper.read_image(img)
- # get face landmarks for each face
- num_det_faces = face_helper.get_face_landmarks_5(
- only_center_face=args.only_center_face, resize=640, eye_dist_threshold=5)
- print(f'\tdetect {num_det_faces} faces')
- # align and warp each face
- face_helper.align_warp_face()
-
- # face restoration for each cropped face
- for idx, cropped_face in enumerate(face_helper.cropped_faces):
- # prepare data
- cropped_face_t = img2tensor(cropped_face / 255., bgr2rgb=True, float32=True)
- normalize(cropped_face_t, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True)
- cropped_face_t = cropped_face_t.unsqueeze(0).to(device)
-
- try:
- with torch.no_grad():
- output = net(cropped_face_t, w=w, adain=True)[0]
- restored_face = tensor2img(output, rgb2bgr=True, min_max=(-1, 1))
- del output
- torch.cuda.empty_cache()
- except Exception as error:
- print(f'\tFailed inference for CodeFormer: {error}')
- restored_face = tensor2img(cropped_face_t, rgb2bgr=True, min_max=(-1, 1))
-
- restored_face = restored_face.astype('uint8')
- face_helper.add_restored_face(restored_face)
-
- # paste_back
- if not args.has_aligned:
- # upsample the background
- if bg_upsampler is not None:
- # Now only support RealESRGAN for upsampling background
- bg_img = bg_upsampler.enhance(img, outscale=args.upscale)[0]
- else:
- bg_img = None
- face_helper.get_inverse_affine(None)
- # paste each restored face to the input image
- if args.face_upsample and face_upsampler is not None:
- restored_img = face_helper.paste_faces_to_input_image(upsample_img=bg_img, draw_box=args.draw_box, face_upsampler=face_upsampler)
- else:
- restored_img = face_helper.paste_faces_to_input_image(upsample_img=bg_img, draw_box=args.draw_box)
-
- # save faces
- for idx, (cropped_face, restored_face) in enumerate(zip(face_helper.cropped_faces, face_helper.restored_faces)):
- # save cropped face
- if not args.has_aligned:
- save_crop_path = os.path.join(result_root, 'cropped_faces', f'{basename}_{idx:02d}.png')
- imwrite(cropped_face, save_crop_path)
- # save restored face
- if args.has_aligned:
- save_face_name = f'{basename}.png'
- else:
- save_face_name = f'{basename}_{idx:02d}.png'
- save_restore_path = os.path.join(result_root, 'restored_faces', save_face_name)
- imwrite(restored_face, save_restore_path)
-
- # save restored img
- if not args.has_aligned and restored_img is not None:
- save_restore_path = os.path.join(result_root, 'final_results', f'{basename}.png')
- imwrite(restored_img, save_restore_path)
-
- print(f'\nAll results are saved in {result_root}')
diff --git a/CodeFormer/CodeFormer/requirements.txt b/CodeFormer/CodeFormer/requirements.txt
deleted file mode 100644
index f97dfde85ebe83708fc1f6f7234a0ef69f18bde5..0000000000000000000000000000000000000000
--- a/CodeFormer/CodeFormer/requirements.txt
+++ /dev/null
@@ -1,20 +0,0 @@
-addict
-future
-lmdb
-numpy
-opencv-python
-Pillow
-pyyaml
-requests
-scikit-image
-scipy
-tb-nightly
-torch>=1.7.1
-torchvision
-tqdm
-yapf
-lpips
-gdown # supports downloading the large file from Google Drive
-# cmake
-# dlib
-# conda install -c conda-forge dlib
\ No newline at end of file
diff --git a/CodeFormer/CodeFormer/scripts/crop_align_face.py b/CodeFormer/CodeFormer/scripts/crop_align_face.py
deleted file mode 100644
index 31e66266ac0e5f818fa18b6409993151086bbc8b..0000000000000000000000000000000000000000
--- a/CodeFormer/CodeFormer/scripts/crop_align_face.py
+++ /dev/null
@@ -1,192 +0,0 @@
-"""
-brief: face alignment with FFHQ method (https://github.com/NVlabs/ffhq-dataset)
-author: lzhbrian (https://lzhbrian.me)
-link: https://gist.github.com/lzhbrian/bde87ab23b499dd02ba4f588258f57d5
-date: 2020.1.5
-note: code is heavily borrowed from
- https://github.com/NVlabs/ffhq-dataset
- http://dlib.net/face_landmark_detection.py.html
-requirements:
- conda install Pillow numpy scipy
- conda install -c conda-forge dlib
- # download face landmark model from:
- # http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2
-"""
-
-import cv2
-import dlib
-import glob
-import numpy as np
-import os
-import PIL
-import PIL.Image
-import scipy
-import scipy.ndimage
-import sys
-import argparse
-
-# download model from: http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2
-predictor = dlib.shape_predictor('weights/dlib/shape_predictor_68_face_landmarks-fbdc2cb8.dat')
-
-
-def get_landmark(filepath, only_keep_largest=True):
- """get landmark with dlib
- :return: np.array shape=(68, 2)
- """
- detector = dlib.get_frontal_face_detector()
-
- img = dlib.load_rgb_image(filepath)
- dets = detector(img, 1)
-
- # Shangchen modified
- print("Number of faces detected: {}".format(len(dets)))
- if only_keep_largest:
- print('Detect several faces and only keep the largest.')
- face_areas = []
- for k, d in enumerate(dets):
- face_area = (d.right() - d.left()) * (d.bottom() - d.top())
- face_areas.append(face_area)
-
- largest_idx = face_areas.index(max(face_areas))
- d = dets[largest_idx]
- shape = predictor(img, d)
- print("Part 0: {}, Part 1: {} ...".format(
- shape.part(0), shape.part(1)))
- else:
- for k, d in enumerate(dets):
- print("Detection {}: Left: {} Top: {} Right: {} Bottom: {}".format(
- k, d.left(), d.top(), d.right(), d.bottom()))
- # Get the landmarks/parts for the face in box d.
- shape = predictor(img, d)
- print("Part 0: {}, Part 1: {} ...".format(
- shape.part(0), shape.part(1)))
-
- t = list(shape.parts())
- a = []
- for tt in t:
- a.append([tt.x, tt.y])
- lm = np.array(a)
- # lm is a shape=(68,2) np.array
- return lm
-
-def align_face(filepath, out_path):
- """
- :param filepath: str
- :return: PIL Image
- """
- try:
- lm = get_landmark(filepath)
- except:
- print('No landmark ...')
- return
-
- lm_chin = lm[0:17] # left-right
- lm_eyebrow_left = lm[17:22] # left-right
- lm_eyebrow_right = lm[22:27] # left-right
- lm_nose = lm[27:31] # top-down
- lm_nostrils = lm[31:36] # top-down
- lm_eye_left = lm[36:42] # left-clockwise
- lm_eye_right = lm[42:48] # left-clockwise
- lm_mouth_outer = lm[48:60] # left-clockwise
- lm_mouth_inner = lm[60:68] # left-clockwise
-
- # Calculate auxiliary vectors.
- eye_left = np.mean(lm_eye_left, axis=0)
- eye_right = np.mean(lm_eye_right, axis=0)
- eye_avg = (eye_left + eye_right) * 0.5
- eye_to_eye = eye_right - eye_left
- mouth_left = lm_mouth_outer[0]
- mouth_right = lm_mouth_outer[6]
- mouth_avg = (mouth_left + mouth_right) * 0.5
- eye_to_mouth = mouth_avg - eye_avg
-
- # Choose oriented crop rectangle.
- x = eye_to_eye - np.flipud(eye_to_mouth) * [-1, 1]
- x /= np.hypot(*x)
- x *= max(np.hypot(*eye_to_eye) * 2.0, np.hypot(*eye_to_mouth) * 1.8)
- y = np.flipud(x) * [-1, 1]
- c = eye_avg + eye_to_mouth * 0.1
- quad = np.stack([c - x - y, c - x + y, c + x + y, c + x - y])
- qsize = np.hypot(*x) * 2
-
- # read image
- img = PIL.Image.open(filepath)
-
- output_size = 512
- transform_size = 4096
- enable_padding = False
-
- # Shrink.
- shrink = int(np.floor(qsize / output_size * 0.5))
- if shrink > 1:
- rsize = (int(np.rint(float(img.size[0]) / shrink)),
- int(np.rint(float(img.size[1]) / shrink)))
- img = img.resize(rsize, PIL.Image.ANTIALIAS)
- quad /= shrink
- qsize /= shrink
-
- # Crop.
- border = max(int(np.rint(qsize * 0.1)), 3)
- crop = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))),
- int(np.ceil(max(quad[:, 0]))), int(np.ceil(max(quad[:, 1]))))
- crop = (max(crop[0] - border, 0), max(crop[1] - border, 0),
- min(crop[2] + border,
- img.size[0]), min(crop[3] + border, img.size[1]))
- if crop[2] - crop[0] < img.size[0] or crop[3] - crop[1] < img.size[1]:
- img = img.crop(crop)
- quad -= crop[0:2]
-
- # Pad.
- pad = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))),
- int(np.ceil(max(quad[:, 0]))), int(np.ceil(max(quad[:, 1]))))
- pad = (max(-pad[0] + border,
- 0), max(-pad[1] + border,
- 0), max(pad[2] - img.size[0] + border,
- 0), max(pad[3] - img.size[1] + border, 0))
- if enable_padding and max(pad) > border - 4:
- pad = np.maximum(pad, int(np.rint(qsize * 0.3)))
- img = np.pad(
- np.float32(img), ((pad[1], pad[3]), (pad[0], pad[2]), (0, 0)),
- 'reflect')
- h, w, _ = img.shape
- y, x, _ = np.ogrid[:h, :w, :1]
- mask = np.maximum(
- 1.0 -
- np.minimum(np.float32(x) / pad[0],
- np.float32(w - 1 - x) / pad[2]), 1.0 -
- np.minimum(np.float32(y) / pad[1],
- np.float32(h - 1 - y) / pad[3]))
- blur = qsize * 0.02
- img += (scipy.ndimage.gaussian_filter(img, [blur, blur, 0]) -
- img) * np.clip(mask * 3.0 + 1.0, 0.0, 1.0)
- img += (np.median(img, axis=(0, 1)) - img) * np.clip(mask, 0.0, 1.0)
- img = PIL.Image.fromarray(
- np.uint8(np.clip(np.rint(img), 0, 255)), 'RGB')
- quad += pad[:2]
-
- img = img.transform((transform_size, transform_size), PIL.Image.QUAD,
- (quad + 0.5).flatten(), PIL.Image.BILINEAR)
-
- if output_size < transform_size:
- img = img.resize((output_size, output_size), PIL.Image.ANTIALIAS)
-
- # Save aligned image.
- print('saveing: ', out_path)
- img.save(out_path)
-
- return img, np.max(quad[:, 0]) - np.min(quad[:, 0])
-
-
-if __name__ == '__main__':
- parser = argparse.ArgumentParser()
- parser.add_argument('--in_dir', type=str, default='./inputs/whole_imgs')
- parser.add_argument('--out_dir', type=str, default='./inputs/cropped_faces')
- args = parser.parse_args()
-
- img_list = sorted(glob.glob(f'{args.in_dir}/*.png'))
- img_list = sorted(img_list)
-
- for in_path in img_list:
- out_path = os.path.join(args.out_dir, in_path.split("/")[-1])
- out_path = out_path.replace('.jpg', '.png')
- size_ = align_face(in_path, out_path)
\ No newline at end of file
diff --git a/CodeFormer/CodeFormer/scripts/download_pretrained_models.py b/CodeFormer/CodeFormer/scripts/download_pretrained_models.py
deleted file mode 100644
index daa6e8ca14ea91c89a318e85d9f182eb7d1bf025..0000000000000000000000000000000000000000
--- a/CodeFormer/CodeFormer/scripts/download_pretrained_models.py
+++ /dev/null
@@ -1,40 +0,0 @@
-import argparse
-import os
-from os import path as osp
-
-from basicsr.utils.download_util import load_file_from_url
-
-
-def download_pretrained_models(method, file_urls):
- save_path_root = f'./weights/{method}'
- os.makedirs(save_path_root, exist_ok=True)
-
- for file_name, file_url in file_urls.items():
- save_path = load_file_from_url(url=file_url, model_dir=save_path_root, progress=True, file_name=file_name)
-
-
-if __name__ == '__main__':
- parser = argparse.ArgumentParser()
-
- parser.add_argument(
- 'method',
- type=str,
- help=("Options: 'CodeFormer' 'facelib'. Set to 'all' to download all the models."))
- args = parser.parse_args()
-
- file_urls = {
- 'CodeFormer': {
- 'codeformer.pth': 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/codeformer.pth'
- },
- 'facelib': {
- # 'yolov5l-face.pth': 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/yolov5l-face.pth',
- 'detection_Resnet50_Final.pth': 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/detection_Resnet50_Final.pth',
- 'parsing_parsenet.pth': 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/parsing_parsenet.pth'
- }
- }
-
- if args.method == 'all':
- for method in file_urls.keys():
- download_pretrained_models(method, file_urls[method])
- else:
- download_pretrained_models(args.method, file_urls[args.method])
\ No newline at end of file
diff --git a/CodeFormer/CodeFormer/scripts/download_pretrained_models_from_gdrive.py b/CodeFormer/CodeFormer/scripts/download_pretrained_models_from_gdrive.py
deleted file mode 100644
index 7df5be6fc260394ee9bbd0a7ae377e2ca657fe83..0000000000000000000000000000000000000000
--- a/CodeFormer/CodeFormer/scripts/download_pretrained_models_from_gdrive.py
+++ /dev/null
@@ -1,60 +0,0 @@
-import argparse
-import os
-from os import path as osp
-
-# from basicsr.utils.download_util import download_file_from_google_drive
-import gdown
-
-
-def download_pretrained_models(method, file_ids):
- save_path_root = f'./weights/{method}'
- os.makedirs(save_path_root, exist_ok=True)
-
- for file_name, file_id in file_ids.items():
- file_url = 'https://drive.google.com/uc?id='+file_id
- save_path = osp.abspath(osp.join(save_path_root, file_name))
- if osp.exists(save_path):
- user_response = input(f'{file_name} already exist. Do you want to cover it? Y/N\n')
- if user_response.lower() == 'y':
- print(f'Covering {file_name} to {save_path}')
- gdown.download(file_url, save_path, quiet=False)
- # download_file_from_google_drive(file_id, save_path)
- elif user_response.lower() == 'n':
- print(f'Skipping {file_name}')
- else:
- raise ValueError('Wrong input. Only accepts Y/N.')
- else:
- print(f'Downloading {file_name} to {save_path}')
- gdown.download(file_url, save_path, quiet=False)
- # download_file_from_google_drive(file_id, save_path)
-
-if __name__ == '__main__':
- parser = argparse.ArgumentParser()
-
- parser.add_argument(
- 'method',
- type=str,
- help=("Options: 'CodeFormer' 'facelib'. Set to 'all' to download all the models."))
- args = parser.parse_args()
-
- # file name: file id
- # 'dlib': {
- # 'mmod_human_face_detector-4cb19393.dat': '1qD-OqY8M6j4PWUP_FtqfwUPFPRMu6ubX',
- # 'shape_predictor_5_face_landmarks-c4b1e980.dat': '1vF3WBUApw4662v9Pw6wke3uk1qxnmLdg',
- # 'shape_predictor_68_face_landmarks-fbdc2cb8.dat': '1tJyIVdCHaU6IDMDx86BZCxLGZfsWB8yq'
- # }
- file_ids = {
- 'CodeFormer': {
- 'codeformer.pth': '1v_E_vZvP-dQPF55Kc5SRCjaKTQXDz-JB'
- },
- 'facelib': {
- 'yolov5l-face.pth': '131578zMA6B2x8VQHyHfa6GEPtulMCNzV',
- 'parsing_parsenet.pth': '16pkohyZZ8ViHGBk3QtVqxLZKzdo466bK'
- }
- }
-
- if args.method == 'all':
- for method in file_ids.keys():
- download_pretrained_models(method, file_ids[method])
- else:
- download_pretrained_models(args.method, file_ids[args.method])
\ No newline at end of file
diff --git a/CodeFormer/CodeFormer/weights/CodeFormer/codeformer.pth b/CodeFormer/CodeFormer/weights/CodeFormer/codeformer.pth
deleted file mode 100644
index edd450da13c5ff890f70d726c992af569813f6af..0000000000000000000000000000000000000000
--- a/CodeFormer/CodeFormer/weights/CodeFormer/codeformer.pth
+++ /dev/null
@@ -1,3 +0,0 @@
-version https://git-lfs.github.com/spec/v1
-oid sha256:1009e537e0c2a07d4cabce6355f53cb66767cd4b4297ec7a4a64ca4b8a5684b7
-size 376637898
diff --git a/CodeFormer/CodeFormer/weights/README.md b/CodeFormer/CodeFormer/weights/README.md
deleted file mode 100644
index 67ad334bd672eeb9f82813cd54e8885331bbb2f2..0000000000000000000000000000000000000000
--- a/CodeFormer/CodeFormer/weights/README.md
+++ /dev/null
@@ -1,3 +0,0 @@
-# Weights
-
-Put the downloaded pre-trained models to this folder.
\ No newline at end of file
diff --git a/CodeFormer/CodeFormer/weights/facelib/detection_Resnet50_Final.pth b/CodeFormer/CodeFormer/weights/facelib/detection_Resnet50_Final.pth
deleted file mode 100644
index 16546738ce0a00a9fd47585e0fc52744d31cc117..0000000000000000000000000000000000000000
--- a/CodeFormer/CodeFormer/weights/facelib/detection_Resnet50_Final.pth
+++ /dev/null
@@ -1,3 +0,0 @@
-version https://git-lfs.github.com/spec/v1
-oid sha256:6d1de9c2944f2ccddca5f5e010ea5ae64a39845a86311af6fdf30841b0a5a16d
-size 109497761
diff --git a/CodeFormer/CodeFormer/weights/facelib/parsing_parsenet.pth b/CodeFormer/CodeFormer/weights/facelib/parsing_parsenet.pth
deleted file mode 100644
index 1ac2efc50360a79c9905dbac57d9d99cbfbe863c..0000000000000000000000000000000000000000
--- a/CodeFormer/CodeFormer/weights/facelib/parsing_parsenet.pth
+++ /dev/null
@@ -1,3 +0,0 @@
-version https://git-lfs.github.com/spec/v1
-oid sha256:3d558d8d0e42c20224f13cf5a29c79eba2d59913419f945545d8cf7b72920de2
-size 85331193
diff --git a/CodeFormer/CodeFormer/weights/realesrgan/RealESRGAN_x2plus.pth b/CodeFormer/CodeFormer/weights/realesrgan/RealESRGAN_x2plus.pth
deleted file mode 100644
index 77cc0ef1e8d238fa5cfb409cda2e619a9459ddc9..0000000000000000000000000000000000000000
--- a/CodeFormer/CodeFormer/weights/realesrgan/RealESRGAN_x2plus.pth
+++ /dev/null
@@ -1,3 +0,0 @@
-version https://git-lfs.github.com/spec/v1
-oid sha256:49fafd45f8fd7aa8d31ab2a22d14d91b536c34494a5cfe31eb5d89c2fa266abb
-size 67061725
diff --git a/CodeFormer/README.md b/CodeFormer/README.md
deleted file mode 100644
index d7ab51b64598867642cbfd674f9f367d69b40f8e..0000000000000000000000000000000000000000
--- a/CodeFormer/README.md
+++ /dev/null
@@ -1,12 +0,0 @@
----
-title: CodeFormer
-emoji: 🐼
-colorFrom: blue
-colorTo: green
-sdk: gradio
-sdk_version: 3.37.0
-app_file: app.py
-pinned: false
----
-
-Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
diff --git a/CodeFormer/app.py b/CodeFormer/app.py
deleted file mode 100644
index fdeeed998c950f4d162592f64d1b07223bfb84a3..0000000000000000000000000000000000000000
--- a/CodeFormer/app.py
+++ /dev/null
@@ -1,304 +0,0 @@
-"""
-This file is used for deploying hugging face demo:
-https://huggingface.co/spaces/sczhou/CodeFormer
-"""
-
-import sys
-sys.path.append('CodeFormer')
-import os
-import cv2
-import torch
-import torch.nn.functional as F
-import gradio as gr
-
-from torchvision.transforms.functional import normalize
-
-from basicsr.utils import imwrite, img2tensor, tensor2img
-from basicsr.utils.download_util import load_file_from_url
-from facelib.utils.face_restoration_helper import FaceRestoreHelper
-from facelib.utils.misc import is_gray
-from basicsr.archs.rrdbnet_arch import RRDBNet
-from basicsr.utils.realesrgan_utils import RealESRGANer
-
-from basicsr.utils.registry import ARCH_REGISTRY
-
-
-os.system("pip freeze")
-
-pretrain_model_url = {
- 'codeformer': 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/codeformer.pth',
- 'detection': 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/detection_Resnet50_Final.pth',
- 'parsing': 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/parsing_parsenet.pth',
- 'realesrgan': 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/RealESRGAN_x2plus.pth'
-}
-# download weights
-if not os.path.exists('CodeFormer/weights/CodeFormer/codeformer.pth'):
- load_file_from_url(url=pretrain_model_url['codeformer'], model_dir='CodeFormer/weights/CodeFormer', progress=True, file_name=None)
-if not os.path.exists('CodeFormer/weights/facelib/detection_Resnet50_Final.pth'):
- load_file_from_url(url=pretrain_model_url['detection'], model_dir='CodeFormer/weights/facelib', progress=True, file_name=None)
-if not os.path.exists('CodeFormer/weights/facelib/parsing_parsenet.pth'):
- load_file_from_url(url=pretrain_model_url['parsing'], model_dir='CodeFormer/weights/facelib', progress=True, file_name=None)
-if not os.path.exists('CodeFormer/weights/realesrgan/RealESRGAN_x2plus.pth'):
- load_file_from_url(url=pretrain_model_url['realesrgan'], model_dir='CodeFormer/weights/realesrgan', progress=True, file_name=None)
-
-# download images
-torch.hub.download_url_to_file(
- 'https://replicate.com/api/models/sczhou/codeformer/files/fa3fe3d1-76b0-4ca8-ac0d-0a925cb0ff54/06.png',
- '01.png')
-torch.hub.download_url_to_file(
- 'https://replicate.com/api/models/sczhou/codeformer/files/a1daba8e-af14-4b00-86a4-69cec9619b53/04.jpg',
- '02.jpg')
-torch.hub.download_url_to_file(
- 'https://replicate.com/api/models/sczhou/codeformer/files/542d64f9-1712-4de7-85f7-3863009a7c3d/03.jpg',
- '03.jpg')
-torch.hub.download_url_to_file(
- 'https://replicate.com/api/models/sczhou/codeformer/files/a11098b0-a18a-4c02-a19a-9a7045d68426/010.jpg',
- '04.jpg')
-torch.hub.download_url_to_file(
- 'https://replicate.com/api/models/sczhou/codeformer/files/7cf19c2c-e0cf-4712-9af8-cf5bdbb8d0ee/012.jpg',
- '05.jpg')
-torch.hub.download_url_to_file(
- 'https://raw.githubusercontent.com/sczhou/CodeFormer/master/inputs/cropped_faces/0729.png',
- '06.png')
-
-def imread(img_path):
- img = cv2.imread(img_path)
- img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
- return img
-
-# set enhancer with RealESRGAN
-def set_realesrgan():
- half = True if torch.cuda.is_available() else False
- model = RRDBNet(
- num_in_ch=3,
- num_out_ch=3,
- num_feat=64,
- num_block=23,
- num_grow_ch=32,
- scale=2,
- )
- upsampler = RealESRGANer(
- scale=2,
- model_path="CodeFormer/weights/realesrgan/RealESRGAN_x2plus.pth",
- model=model,
- tile=400,
- tile_pad=40,
- pre_pad=0,
- half=half,
- )
- return upsampler
-
-upsampler = set_realesrgan()
-device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
-codeformer_net = ARCH_REGISTRY.get("CodeFormer")(
- dim_embd=512,
- codebook_size=1024,
- n_head=8,
- n_layers=9,
- connect_list=["32", "64", "128", "256"],
-).to(device)
-ckpt_path = "CodeFormer/weights/CodeFormer/codeformer.pth"
-checkpoint = torch.load(ckpt_path)["params_ema"]
-codeformer_net.load_state_dict(checkpoint)
-codeformer_net.eval()
-
-os.makedirs('output', exist_ok=True)
-
-def inference(image, face_align, background_enhance, face_upsample, upscale, codeformer_fidelity):
- """Run a single prediction on the model"""
- try: # global try
- # take the default setting for the demo
- only_center_face = False
- draw_box = False
- detection_model = "retinaface_resnet50"
-
- print('Inp:', image, background_enhance, face_upsample, upscale, codeformer_fidelity)
- face_align = face_align if face_align is not None else True
- background_enhance = background_enhance if background_enhance is not None else True
- face_upsample = face_upsample if face_upsample is not None else True
- upscale = upscale if (upscale is not None and upscale > 0) else 2
-
- has_aligned = not face_align
- upscale = 1 if has_aligned else upscale
-
- img = cv2.imread(str(image), cv2.IMREAD_COLOR)
- print('\timage size:', img.shape)
-
- upscale = int(upscale) # convert type to int
- if upscale > 4: # avoid memory exceeded due to too large upscale
- upscale = 4
- if upscale > 2 and max(img.shape[:2])>1000: # avoid memory exceeded due to too large img resolution
- upscale = 2
- if max(img.shape[:2]) > 1500: # avoid memory exceeded due to too large img resolution
- upscale = 1
- background_enhance = False
- face_upsample = False
-
- face_helper = FaceRestoreHelper(
- upscale,
- face_size=512,
- crop_ratio=(1, 1),
- det_model=detection_model,
- save_ext="png",
- use_parse=True,
- device=device,
- )
- bg_upsampler = upsampler if background_enhance else None
- face_upsampler = upsampler if face_upsample else None
-
- if has_aligned:
- # the input faces are already cropped and aligned
- img = cv2.resize(img, (512, 512), interpolation=cv2.INTER_LINEAR)
- face_helper.is_gray = is_gray(img, threshold=5)
- if face_helper.is_gray:
- print('\tgrayscale input: True')
- face_helper.cropped_faces = [img]
- else:
- face_helper.read_image(img)
- # get face landmarks for each face
- num_det_faces = face_helper.get_face_landmarks_5(
- only_center_face=only_center_face, resize=640, eye_dist_threshold=5
- )
- print(f'\tdetect {num_det_faces} faces')
- # align and warp each face
- face_helper.align_warp_face()
-
- # face restoration for each cropped face
- for idx, cropped_face in enumerate(face_helper.cropped_faces):
- # prepare data
- cropped_face_t = img2tensor(
- cropped_face / 255.0, bgr2rgb=True, float32=True
- )
- normalize(cropped_face_t, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True)
- cropped_face_t = cropped_face_t.unsqueeze(0).to(device)
-
- try:
- with torch.no_grad():
- output = codeformer_net(
- cropped_face_t, w=codeformer_fidelity, adain=True
- )[0]
- restored_face = tensor2img(output, rgb2bgr=True, min_max=(-1, 1))
- del output
- torch.cuda.empty_cache()
- except RuntimeError as error:
- print(f"Failed inference for CodeFormer: {error}")
- restored_face = tensor2img(
- cropped_face_t, rgb2bgr=True, min_max=(-1, 1)
- )
-
- restored_face = restored_face.astype("uint8")
- face_helper.add_restored_face(restored_face)
-
- # paste_back
- if not has_aligned:
- # upsample the background
- if bg_upsampler is not None:
- # Now only support RealESRGAN for upsampling background
- bg_img = bg_upsampler.enhance(img, outscale=upscale)[0]
- else:
- bg_img = None
- face_helper.get_inverse_affine(None)
- # paste each restored face to the input image
- if face_upsample and face_upsampler is not None:
- restored_img = face_helper.paste_faces_to_input_image(
- upsample_img=bg_img,
- draw_box=draw_box,
- face_upsampler=face_upsampler,
- )
- else:
- restored_img = face_helper.paste_faces_to_input_image(
- upsample_img=bg_img, draw_box=draw_box
- )
- else:
- restored_img = restored_face
-
- # save restored img
- save_path = f'output/out.png'
- imwrite(restored_img, str(save_path))
-
- restored_img = cv2.cvtColor(restored_img, cv2.COLOR_BGR2RGB)
- return restored_img
- except Exception as error:
- print('Global exception', error)
- return None, None
-
-
-title = "CodeFormer: Robust Face Restoration and Enhancement Network"
-
-description = r"""
-
-Official Gradio demo for Towards Robust Blind Face Restoration with Codebook Lookup Transformer (NeurIPS 2022)
-🔥 CodeFormer is a robust face restoration algorithm for old photos or AI-generated faces.
-🤗 Try CodeFormer for improved stable-diffusion generation!
-"""
-
-article = r"""
-If CodeFormer is helpful, please help to ⭐ the Github Repo. Thanks!
-[](https://github.com/sczhou/CodeFormer)
-
----
-
-📝 **Citation**
-
-If our work is useful for your research, please consider citing:
-```bibtex
-@inproceedings{zhou2022codeformer,
- author = {Zhou, Shangchen and Chan, Kelvin C.K. and Li, Chongyi and Loy, Chen Change},
- title = {Towards Robust Blind Face Restoration with Codebook Lookup TransFormer},
- booktitle = {NeurIPS},
- year = {2022}
-}
-```
-
-📋 **License**
-
-This project is licensed under S-Lab License 1.0.
-Redistribution and use for non-commercial purposes should follow this license.
-
-📧 **Contact**
-
-If you have any questions, please feel free to reach me out at shangchenzhou@gmail.com.
-
-🤗 **Find Me:**
-
-
-
-
-  |
-  |
-
-
-
-
-"""
-
-demo = gr.Interface(
- inference, [
- gr.Image(type="filepath", label="Input"),
- gr.Checkbox(value=True, label="Pre_Face_Align"),
- gr.Checkbox(value=True, label="Background_Enhance"),
- gr.Checkbox(value=True, label="Face_Upsample"),
- gr.Number(value=2, label="Rescaling_Factor (up to 4)"),
- gr.Slider(0, 1, value=0.5, step=0.01, label='Codeformer_Fidelity (0 for better quality, 1 for better identity)')
- ], [
- gr.Image(type="numpy", label="Output").style(height='auto')
- ],
- title=title,
- description=description,
- article=article,
- examples=[
- ['01.png', True, True, True, 2, 0.7],
- ['02.jpg', True, True, True, 2, 0.7],
- ['03.jpg', True, True, True, 2, 0.7],
- ['04.jpg', True, True, True, 2, 0.1],
- ['05.jpg', True, True, True, 2, 0.1],
- ['06.png', False, True, True, 1, 0.5]
- ])
-
-DEBUG = os.getenv('DEBUG') == '1'
-demo.queue(api_open=False, concurrency_count=2, max_size=10)
-demo.launch(debug=DEBUG,share=True)
\ No newline at end of file
diff --git a/CodeFormer/app_2.py b/CodeFormer/app_2.py
deleted file mode 100644
index 72411526ce70e2b3246caa7c4e49825ab6b6c7d6..0000000000000000000000000000000000000000
--- a/CodeFormer/app_2.py
+++ /dev/null
@@ -1,306 +0,0 @@
-"""
-This file is used for deploying hugging face demo:
-https://huggingface.co/spaces/sczhou/CodeFormer
-"""
-
-import sys
-sys.path.append('CodeFormer')
-import os
-import cv2
-import torch
-import torch.nn.functional as F
-import gradio as gr
-from itertools import chain
-
-from torchvision.transforms.functional import normalize
-
-from basicsr.utils import imwrite, img2tensor, tensor2img
-from basicsr.utils.download_util import load_file_from_url
-from facelib.utils.face_restoration_helper import FaceRestoreHelper
-from facelib.utils.misc import is_gray
-from basicsr.archs.rrdbnet_arch import RRDBNet
-from basicsr.utils.realesrgan_utils import RealESRGANer
-
-from basicsr.utils.registry import ARCH_REGISTRY
-
-
-os.system("pip freeze")
-
-pretrain_model_url = {
- 'codeformer': 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/codeformer.pth',
- 'detection': 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/detection_Resnet50_Final.pth',
- 'parsing': 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/parsing_parsenet.pth',
- 'realesrgan': 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/RealESRGAN_x2plus.pth'
-}
-# download weights
-if not os.path.exists('CodeFormer/weights/CodeFormer/codeformer.pth'):
- load_file_from_url(url=pretrain_model_url['codeformer'], model_dir='CodeFormer/weights/CodeFormer', progress=True, file_name=None)
-if not os.path.exists('CodeFormer/weights/facelib/detection_Resnet50_Final.pth'):
- load_file_from_url(url=pretrain_model_url['detection'], model_dir='CodeFormer/weights/facelib', progress=True, file_name=None)
-if not os.path.exists('CodeFormer/weights/facelib/parsing_parsenet.pth'):
- load_file_from_url(url=pretrain_model_url['parsing'], model_dir='CodeFormer/weights/facelib', progress=True, file_name=None)
-if not os.path.exists('CodeFormer/weights/realesrgan/RealESRGAN_x2plus.pth'):
- load_file_from_url(url=pretrain_model_url['realesrgan'], model_dir='CodeFormer/weights/realesrgan', progress=True, file_name=None)
-
-# download images
-torch.hub.download_url_to_file(
- 'https://replicate.com/api/models/sczhou/codeformer/files/fa3fe3d1-76b0-4ca8-ac0d-0a925cb0ff54/06.png',
- '01.png')
-torch.hub.download_url_to_file(
- 'https://replicate.com/api/models/sczhou/codeformer/files/a1daba8e-af14-4b00-86a4-69cec9619b53/04.jpg',
- '02.jpg')
-torch.hub.download_url_to_file(
- 'https://replicate.com/api/models/sczhou/codeformer/files/542d64f9-1712-4de7-85f7-3863009a7c3d/03.jpg',
- '03.jpg')
-torch.hub.download_url_to_file(
- 'https://replicate.com/api/models/sczhou/codeformer/files/a11098b0-a18a-4c02-a19a-9a7045d68426/010.jpg',
- '04.jpg')
-torch.hub.download_url_to_file(
- 'https://replicate.com/api/models/sczhou/codeformer/files/7cf19c2c-e0cf-4712-9af8-cf5bdbb8d0ee/012.jpg',
- '05.jpg')
-
-def imread(img_path):
- img = cv2.imread(img_path)
- img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
- return img
-
-# set enhancer with RealESRGAN
-def set_realesrgan():
- half = True if torch.cuda.is_available() else False
- model = RRDBNet(
- num_in_ch=3,
- num_out_ch=3,
- num_feat=64,
- num_block=23,
- num_grow_ch=32,
- scale=2,
- )
- upsampler = RealESRGANer(
- scale=2,
- model_path="CodeFormer/weights/realesrgan/RealESRGAN_x2plus.pth",
- model=model,
- tile=400,
- tile_pad=40,
- pre_pad=0,
- half=half,
- )
- return upsampler
-
-upsampler = set_realesrgan()
-device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
-codeformer_net = ARCH_REGISTRY.get("CodeFormer")(
- dim_embd=512,
- codebook_size=1024,
- n_head=8,
- n_layers=9,
- connect_list=["32", "64", "128", "256"],
-).to(device)
-ckpt_path = "CodeFormer/weights/CodeFormer/codeformer.pth"
-checkpoint = torch.load(ckpt_path)["params_ema"]
-codeformer_net.load_state_dict(checkpoint)
-codeformer_net.eval()
-
-os.makedirs('output', exist_ok=True)
-
-def inference(image, background_enhance, face_upsample, upscale, codeformer_fidelity):
- """Run a single prediction on the model"""
- try: # global try
- # take the default setting for the demo
- has_aligned = False
- only_center_face = False
- draw_box = False
- detection_model = "retinaface_resnet50"
- print('Inp:', image, background_enhance, face_upsample, upscale, codeformer_fidelity)
-
- if background_enhance is None: background_enhance = True
- if face_upsample is None: face_upsample = True
- if upscale is None: upscale = 2
-
- img = cv2.imread(str(image), cv2.IMREAD_COLOR)
- print('\timage size:', img.shape)
-
- upscale = int(upscale) # convert type to int
- if upscale > 4: # avoid memory exceeded due to too large upscale
- upscale = 4
- if upscale > 2 and max(img.shape[:2])>1000: # avoid memory exceeded due to too large img resolution
- upscale = 2
- if max(img.shape[:2]) > 1500: # avoid memory exceeded due to too large img resolution
- upscale = 1
- background_enhance = False
- face_upsample = False
-
- face_helper = FaceRestoreHelper(
- upscale,
- face_size=512,
- crop_ratio=(1, 1),
- det_model=detection_model,
- save_ext="png",
- use_parse=True,
- device=device,
- )
- bg_upsampler = upsampler if background_enhance else None
- face_upsampler = upsampler if face_upsample else None
-
- if has_aligned:
- # the input faces are already cropped and aligned
- img = cv2.resize(img, (512, 512), interpolation=cv2.INTER_LINEAR)
- face_helper.is_gray = is_gray(img, threshold=5)
- if face_helper.is_gray:
- print('\tgrayscale input: True')
- face_helper.cropped_faces = [img]
- else:
- face_helper.read_image(img)
- # get face landmarks for each face
- num_det_faces = face_helper.get_face_landmarks_5(
- only_center_face=only_center_face, resize=640, eye_dist_threshold=5
- )
- print(f'\tdetect {num_det_faces} faces')
- # align and warp each face
- face_helper.align_warp_face()
-
- # face restoration for each cropped face
- for idx, cropped_face in enumerate(face_helper.cropped_faces):
- # prepare data
- cropped_face_t = img2tensor(
- cropped_face / 255.0, bgr2rgb=True, float32=True
- )
- normalize(cropped_face_t, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True)
- cropped_face_t = cropped_face_t.unsqueeze(0).to(device)
-
- try:
- with torch.no_grad():
- output = codeformer_net(
- cropped_face_t, w=codeformer_fidelity, adain=True
- )[0]
- restored_face = tensor2img(output, rgb2bgr=True, min_max=(-1, 1))
- del output
- torch.cuda.empty_cache()
- except RuntimeError as error:
- print(f"Failed inference for CodeFormer: {error}")
- restored_face = tensor2img(
- cropped_face_t, rgb2bgr=True, min_max=(-1, 1)
- )
-
- restored_face = restored_face.astype("uint8")
- face_helper.add_restored_face(restored_face)
-
- # paste_back
- if not has_aligned:
- # upsample the background
- if bg_upsampler is not None:
- # Now only support RealESRGAN for upsampling background
- bg_img = bg_upsampler.enhance(img, outscale=upscale)[0]
- else:
- bg_img = None
- face_helper.get_inverse_affine(None)
- # paste each restored face to the input image
- if face_upsample and face_upsampler is not None:
- restored_img = face_helper.paste_faces_to_input_image(
- upsample_img=bg_img,
- draw_box=draw_box,
- face_upsampler=face_upsampler,
- )
- else:
- restored_img = face_helper.paste_faces_to_input_image(
- upsample_img=bg_img, draw_box=draw_box
- )
-
- # save restored img
- save_path = f'output/out.png'
- imwrite(restored_img, str(save_path))
-
- restored_img = cv2.cvtColor(restored_img, cv2.COLOR_BGR2RGB)
- return restored_img
- except Exception as error:
- print('Global exception', error)
- return None, None
-
-
-title = "CodeFormer: Robust Face Restoration and Enhancement Network"
-
-description = r"""
-
-Official Gradio demo for Towards Robust Blind Face Restoration with Codebook Lookup Transformer (NeurIPS 2022)
-🔥 CodeFormer is a robust face restoration algorithm for old photos or AI-generated faces.
-🤗 Try CodeFormer for improved stable-diffusion generation!
-"""
-
-article = r"""
-If CodeFormer is helpful, please help to ⭐ the Github Repo. Thanks!
-[](https://github.com/sczhou/CodeFormer)
-
----
-
-📝 **Citation**
-
-If our work is useful for your research, please consider citing:
-```bibtex
-@inproceedings{zhou2022codeformer,
- author = {Zhou, Shangchen and Chan, Kelvin C.K. and Li, Chongyi and Loy, Chen Change},
- title = {Towards Robust Blind Face Restoration with Codebook Lookup TransFormer},
- booktitle = {NeurIPS},
- year = {2022}
-}
-```
-
-📋 **License**
-
-This project is licensed under S-Lab License 1.0.
-Redistribution and use for non-commercial purposes should follow this license.
-
-📧 **Contact**
-
-If you have any questions, please feel free to reach me out at shangchenzhou@gmail.com.
-
-🤗 **Find Me:**
-
-
-
-
-  |
-  |
-
-
-
-
-"""
-
-with gr.Blocks() as demo:
- gr.Markdown(title)
- gr.Markdown(description)
- with gr.Box():
- with gr.Column():
- input_img = gr.Image(type="filepath", label="Input")
- background_enhance = gr.Checkbox(value=True, label="Background_Enhance")
- face_enhance = gr.Checkbox(value=True, label="Face_Upsample")
- upscale_factor = gr.Number(value=2, label="Rescaling_Factor (up to 4)")
- codeformer_fidelity = gr.Slider(0, 1, value=0.5, step=0.01, label='Codeformer_Fidelity (0 for better quality, 1 for better identity)')
- submit = gr.Button('Enhance Image')
- with gr.Column():
- output_img = gr.Image(type="numpy", label="Output").style(height='auto')
-
- inps = [input_img, background_enhance, face_enhance, upscale_factor, codeformer_fidelity]
- submit.click(fn=inference, inputs=inps, outputs=[output_img])
-
- ex = gr.Examples([
- ['01.png', True, True, 2, 0.7],
- ['02.jpg', True, True, 2, 0.7],
- ['03.jpg', True, True, 2, 0.7],
- ['04.jpg', True, True, 2, 0.1],
- ['05.jpg', True, True, 2, 0.1]
- ],
- fn=inference,
- inputs=inps,
- outputs=[output_img],
- cache_examples=True)
-
- gr.Markdown(article)
-
-
-DEBUG = os.getenv('DEBUG') == '1'
-demo.queue(api_open=False, concurrency_count=2, max_size=10)
-demo.launch(debug=DEBUG)
\ No newline at end of file
diff --git a/CodeFormer/output/out.png b/CodeFormer/output/out.png
deleted file mode 100644
index e0ed30ca9c8cffff4a8675a51c516341e03ef655..0000000000000000000000000000000000000000
--- a/CodeFormer/output/out.png
+++ /dev/null
@@ -1,3 +0,0 @@
-version https://git-lfs.github.com/spec/v1
-oid sha256:64cc473354177dd8a188c765fb94cad4a3767122e0efe3ba8414bbf06cbb5151
-size 6077803
diff --git a/CodeFormer/packages.txt b/CodeFormer/packages.txt
deleted file mode 100644
index 4649f711d1c528342fa2dc4bd39ab6730af6dbde..0000000000000000000000000000000000000000
--- a/CodeFormer/packages.txt
+++ /dev/null
@@ -1,3 +0,0 @@
-ffmpeg
-libsm6
-libxext6
\ No newline at end of file
diff --git a/CodeFormer/requirements.txt b/CodeFormer/requirements.txt
deleted file mode 100644
index f97dfde85ebe83708fc1f6f7234a0ef69f18bde5..0000000000000000000000000000000000000000
--- a/CodeFormer/requirements.txt
+++ /dev/null
@@ -1,20 +0,0 @@
-addict
-future
-lmdb
-numpy
-opencv-python
-Pillow
-pyyaml
-requests
-scikit-image
-scipy
-tb-nightly
-torch>=1.7.1
-torchvision
-tqdm
-yapf
-lpips
-gdown # supports downloading the large file from Google Drive
-# cmake
-# dlib
-# conda install -c conda-forge dlib
\ No newline at end of file