File size: 7,884 Bytes
5925089 8bd55d6 5925089 8bd55d6 5925089 5269046 5925089 b48888a 5925089 b48888a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 |
---
license: mit
---
## CEED: *C*alifornia *E*arthquake *E*vent *D*ataset for Machine Learning and Cloud Computing
The California Earthquake Event Dataset (CEED) is a dataset of earthquake waveforms and metadata for machine learning and cloud computing.
Detailed statistics about the dataset are available in this [arXiv paper](https://arxiv.org/abs/2502.11500).
### Acknowledgments
The seismic data used in this study were collected by (1) the Berkeley Digital Seismic Network (BDSN, doi:10.7932/BDSN) and the USGS Northern California Seismic Network (NCSN, doi:10.7914/SN/NC); and (2) the Southern California Seismic Network (SCSN, doi:10.7914/SN/CI).
The original waveform data, metadata, and data products for this study were accessed through the Northern California Earthquake Data Center (doi:10.7932/NCEDC) and the Southern California Earthquake Center (doi:10.7909/C3WD3xH1).
Please include acknowledgments and citations of the original data providers when using this dataset.
The dataset structure is shown below, and you can find more information about the format at [AI4EPS](https://ai4eps.github.io/homepage/ml4earth/seismic_event_format1/)
```
Group: / len:60424
|- Group: /ci38457511 len:35
| |-* begin_time = 2019-07-06T03:19:23.668000
| |-* depth_km = 8.0
| |-* end_time = 2019-07-06T03:21:23.668000
| |-* event_id = ci38457511
| |-* event_time = 2019-07-06T03:19:53.040000
| |-* event_time_index = 2937
| |-* latitude = 35.7695
| |-* longitude = -117.5993
| |-* magnitude = 7.1
| |-* magnitude_type = w
| |-* nt = 12000
| |-* nx = 35
| |-* sampling_rate = 100
| |-* source = SC
| |- Dataset: /ci38457511/CI.CCC..HH (shape:(3, 12000))
| | |- (dtype=float32)
| | | |-* azimuth = 141.849479
| | | |-* back_azimuth = 321.986302
| | | |-* component = ENZ
| | | |-* depth_km = -0.67
| | | |-* distance_km = 34.471389
| | | |-* dt_s = 0.01
| | | |-* elevation_m = 670.0
| | | |-* event_id = ['ci38457511' 'ci38457511' 'ci37260300']
| | | |-* instrument = HH
| | | |-* latitude = 35.52495
| | | |-* local_depth_m = 0.0
| | | |-* location =
| | | |-* longitude = -117.36453
| | | |-* network = CI
| | | |-* p_phase_index = 3575
| | | |-* p_phase_polarity = U
| | | |-* p_phase_score = 0.8
| | | |-* p_phase_status = manual
| | | |-* p_phase_time = 2019-07-06T03:19:59.422000
| | | |-* phase_index = [ 3575 4184 11826]
| | | |-* phase_picking_channel = ['HHZ' 'HNN' 'HHZ']
| | | |-* phase_polarity = ['U' 'N' 'N']
| | | |-* phase_remark = ['i' 'e' 'e']
| | | |-* phase_score = [0.8 0.5 0.5]
| | | |-* phase_status = manual
| | | |-* phase_time = ['2019-07-06T03:19:59.422000' '2019-07-06T03:20:05.509000' '2019-07-06T03:21:21.928000']
| | | |-* phase_type = ['P' 'S' 'P']
| | | |-* s_phase_index = 4184
| | | |-* s_phase_polarity = N
| | | |-* s_phase_score = 0.5
| | | |-* s_phase_status = manual
| | | |-* s_phase_time = 2019-07-06T03:20:05.509000
| | | |-* snr = [ 637.9865898 286.9100766 1433.04052911]
| | | |-* station = CCC
| | | |-* unit = 1e-6m/s
| |- Dataset: /ci38457511/CI.CCC..HN (shape:(3, 12000))
| | |- (dtype=float32)
| | | |-* azimuth = 141.849479
| | | |-* back_azimuth = 321.986302
| | | |-* component = ENZ
| | | |-* depth_km = -0.67
| | | |-* distance_km = 34.471389
| | | |-* dt_s = 0.01
| | | |-* elevation_m = 670.0
| | | |-* event_id = ['ci38457511' 'ci38457511' 'ci37260300']
......
```
## Getting Started
### Requirements
- datasets
- h5py
- fsspec
- pytorch
### Usage
Import the necessary packages:
```python
import h5py
import numpy as np
import torch
from datasets import load_dataset
```
We have 6 configurations for the dataset:
- "station"
- "event"
- "station_train"
- "event_train"
- "station_test"
- "event_test"
"station" yields station-based samples one by one, while "event" yields event-based samples one by one. The configurations with no suffix are the full dataset, while the configurations with suffix "_train" and "_test" only have corresponding split of the full dataset. Train split contains data from 1970 to 2019, while test split contains data in 2020.
The sample of `station` is a dictionary with the following keys:
- `data`: the waveform with shape `(3, nt)`, the default time length is 8192
- `begin_time`: the begin time of the waveform data
- `end_time`: the end time of the waveform data
- `phase_time`: the phase arrival time
- `phase_index`: the time point index of the phase arrival time
- `phase_type`: the phase type
- `phase_polarity`: the phase polarity in ('U', 'D', 'N')
- `event_time`: the event time
- `event_time_index`: the time point index of the event time
- `event_location`: the event location with shape `(3,)`, including latitude, longitude, depth
- `station_location`: the station location with shape `(3,)`, including latitude, longitude and depth
The sample of `event` is a dictionary with the following keys:
- `data`: the waveform with shape `(n_station, 3, nt)`, the default time length is 8192
- `begin_time`: the begin time of the waveform data
- `end_time`: the end time of the waveform data
- `phase_time`: the phase arrival time with shape `(n_station,)`
- `phase_index`: the time point index of the phase arrival time with shape `(n_station,)`
- `phase_type`: the phase type with shape `(n_station,)`
- `phase_polarity`: the phase polarity in ('U', 'D', 'N') with shape `(n_station,)`
- `event_time`: the event time
- `event_time_index`: the time point index of the event time
- `event_location`: the space-time coordinates of the event with shape `(n_staion, 3)`
- `station_location`: the space coordinates of the station with shape `(n_station, 3)`, including latitude, longitude and depth
The default configuration is `station_test`. You can specify the configuration by argument `name`. For example:
```python
# load dataset
# ATTENTION: Streaming(Iterable Dataset) is complex to support because of the feature of HDF5
# So we recommend to directly load the dataset and convert it into iterable later
# The dataset is very large, so you need to wait for some time at the first time
# to load "station_test" with test split
ceed = load_dataset("AI4EPS/CEED", split="test")
# or
ceed = load_dataset("AI4EPS/CEED", name="station_test", split="test")
# to load "event" with train split
ceed = load_dataset("AI4EPS/CEED", name="event", split="train")
```
#### Example loading the dataset
```python
ceed = load_dataset("AI4EPS/CEED", name="station_test", split="test")
# print the first sample of the iterable dataset
for example in ceed:
print("\nIterable test\n")
print(example.keys())
for key in example.keys():
if key == "data":
print(key, np.array(example[key]).shape)
else:
print(key, example[key])
break
# %%
ceed = ceed.with_format("torch")
dataloader = DataLoader(ceed, batch_size=8, num_workers=0, collate_fn=lambda x: x)
for batch in dataloader:
print("\nDataloader test\n")
print(f"Batch size: {len(batch)}")
print(batch[0].keys())
for key in batch[0].keys():
if key == "data":
print(key, np.array(batch[0][key]).shape)
else:
print(key, batch[0][key])
break
```
<!-- #### Extension
If you want to introduce new features in to labels, we recommend to make a copy of `CEED.py` and modify the `_generate_examples` method. Check [AI4EPS/EQNet](https://github.com/AI4EPS/EQNet/blob/master/eqnet/data/quakeflow_nc.py) for an example. To load the dataset with your modified script, specify the path to the script in `load_dataset` function:
```python
ceed = load_dataset("path/to/your/CEED.py", name="station_test", split="test", trust_remote_code=True)
```
--> |