|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""CEED: California Earthquake Dataset for Machine Learning and Cloud Computing""" |
|
|
|
|
|
from typing import Dict, List, Optional, Tuple, Union |
|
|
|
import datasets |
|
import fsspec |
|
import h5py |
|
import numpy as np |
|
import torch |
|
|
|
|
|
|
|
_CITATION = """\ |
|
@InProceedings{huggingface:dataset, |
|
title = {CEED: California Earthquake Dataset for Machine Learning and Cloud Computing}, |
|
author={Zhu et al.}, |
|
year={2025} |
|
} |
|
""" |
|
|
|
|
|
|
|
_DESCRIPTION = """\ |
|
A dataset of earthquake waveforms organized by earthquake events and based on the HDF5 format. |
|
""" |
|
|
|
|
|
_HOMEPAGE = "" |
|
|
|
|
|
_LICENSE = "" |
|
|
|
|
|
|
|
|
|
_REPO_NC = "https://huggingface.co/datasets/AI4EPS/quakeflow_nc/resolve/main/waveform_h5" |
|
_FILES_NC = [ |
|
"1987.h5", |
|
"1988.h5", |
|
"1989.h5", |
|
"1990.h5", |
|
"1991.h5", |
|
"1992.h5", |
|
"1993.h5", |
|
"1994.h5", |
|
"1995.h5", |
|
"1996.h5", |
|
"1997.h5", |
|
"1998.h5", |
|
"1999.h5", |
|
"2000.h5", |
|
"2001.h5", |
|
"2002.h5", |
|
"2003.h5", |
|
"2004.h5", |
|
"2005.h5", |
|
"2006.h5", |
|
"2007.h5", |
|
"2008.h5", |
|
"2009.h5", |
|
"2010.h5", |
|
"2011.h5", |
|
"2012.h5", |
|
"2013.h5", |
|
"2014.h5", |
|
"2015.h5", |
|
"2016.h5", |
|
"2017.h5", |
|
"2018.h5", |
|
"2019.h5", |
|
"2020.h5", |
|
"2021.h5", |
|
"2022.h5", |
|
"2023.h5", |
|
] |
|
_REPO_SC = "https://huggingface.co/datasets/AI4EPS/quakeflow_sc/resolve/main/waveform_h5" |
|
_FILES_SC = [ |
|
"1999.h5", |
|
"2000.h5", |
|
"2001.h5", |
|
"2002.h5", |
|
"2003.h5", |
|
"2004.h5", |
|
"2005.h5", |
|
"2006.h5", |
|
"2007.h5", |
|
"2008.h5", |
|
"2009.h5", |
|
"2010.h5", |
|
"2011.h5", |
|
"2012.h5", |
|
"2013.h5", |
|
"2014.h5", |
|
"2015.h5", |
|
"2016.h5", |
|
"2017.h5", |
|
"2018.h5", |
|
"2019_0.h5", |
|
"2019_1.h5", |
|
"2019_2.h5", |
|
"2020_0.h5", |
|
"2020_1.h5", |
|
"2021.h5", |
|
"2022.h5", |
|
"2023.h5", |
|
] |
|
|
|
_URLS = { |
|
"train": [f"{_REPO_NC}/{x}" for x in _FILES_NC[:-1]] + [f"{_REPO_SC}/{x}" for x in _FILES_SC[:-1]], |
|
"test": [f"{_REPO_NC}/{x}" for x in _FILES_NC[-1:]] + [f"{_REPO_SC}/{x}" for x in _FILES_SC[-1:]], |
|
} |
|
|
|
|
|
|
|
class CEED(datasets.GeneratorBasedBuilder): |
|
"""CEED: A dataset of earthquake waveforms organized by earthquake events and based on the HDF5 format.""" |
|
|
|
VERSION = datasets.Version("1.1.0") |
|
|
|
nt = 8192 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig( |
|
name="station", version=VERSION, description="yield station-based samples one by one of whole dataset" |
|
), |
|
datasets.BuilderConfig( |
|
name="event", version=VERSION, description="yield event-based samples one by one of whole dataset" |
|
), |
|
datasets.BuilderConfig( |
|
name="station_train", |
|
version=VERSION, |
|
description="yield station-based samples one by one of training dataset", |
|
), |
|
datasets.BuilderConfig( |
|
name="event_train", version=VERSION, description="yield event-based samples one by one of training dataset" |
|
), |
|
datasets.BuilderConfig( |
|
name="station_test", version=VERSION, description="yield station-based samples one by one of test dataset" |
|
), |
|
datasets.BuilderConfig( |
|
name="event_test", version=VERSION, description="yield event-based samples one by one of test dataset" |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = ( |
|
"station_test" |
|
) |
|
|
|
def _info(self): |
|
|
|
if ( |
|
(self.config.name == "station") |
|
or (self.config.name == "station_train") |
|
or (self.config.name == "station_test") |
|
): |
|
features = datasets.Features( |
|
{ |
|
"data": datasets.Array2D(shape=(3, self.nt), dtype="float32"), |
|
"phase_time": datasets.Sequence(datasets.Value("string")), |
|
"phase_index": datasets.Sequence(datasets.Value("int32")), |
|
"phase_type": datasets.Sequence(datasets.Value("string")), |
|
"phase_polarity": datasets.Sequence(datasets.Value("string")), |
|
"begin_time": datasets.Value("string"), |
|
"end_time": datasets.Value("string"), |
|
"event_time": datasets.Value("string"), |
|
"event_time_index": datasets.Value("int32"), |
|
"event_location": datasets.Sequence(datasets.Value("float32")), |
|
"station_location": datasets.Sequence(datasets.Value("float32")), |
|
}, |
|
) |
|
elif (self.config.name == "event") or (self.config.name == "event_train") or (self.config.name == "event_test"): |
|
features = datasets.Features( |
|
{ |
|
"data": datasets.Array3D(shape=(None, 3, self.nt), dtype="float32"), |
|
"phase_time": datasets.Sequence(datasets.Sequence(datasets.Value("string"))), |
|
"phase_index": datasets.Sequence(datasets.Sequence(datasets.Value("int32"))), |
|
"phase_type": datasets.Sequence(datasets.Sequence(datasets.Value("string"))), |
|
"phase_polarity": datasets.Sequence(datasets.Sequence(datasets.Value("string"))), |
|
"begin_time": datasets.Value("string"), |
|
"end_time": datasets.Value("string"), |
|
"event_time": datasets.Value("string"), |
|
"event_time_index": datasets.Value("int32"), |
|
"event_location": datasets.Sequence(datasets.Value("float32")), |
|
"station_location": datasets.Sequence(datasets.Sequence(datasets.Value("float32"))), |
|
}, |
|
) |
|
else: |
|
raise ValueError(f"config.name = {self.config.name} is not in BUILDER_CONFIGS") |
|
|
|
return datasets.DatasetInfo( |
|
|
|
description=_DESCRIPTION, |
|
|
|
features=features, |
|
|
|
|
|
|
|
|
|
homepage=_HOMEPAGE, |
|
|
|
license=_LICENSE, |
|
|
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
|
|
|
|
|
|
|
|
|
|
|
|
if self.config.name in ["station", "event"]: |
|
urls = _URLS["train"] + _URLS["test"] |
|
elif self.config.name in ["station_train", "event_train"]: |
|
urls = _URLS["train"] |
|
elif self.config.name in ["station_test", "event_test"]: |
|
urls = _URLS["test"] |
|
else: |
|
raise ValueError("config.name is not in BUILDER_CONFIGS") |
|
|
|
|
|
files = dl_manager.download_and_extract(urls) |
|
|
|
print(files) |
|
|
|
if self.config.name == "station" or self.config.name == "event": |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
|
|
gen_kwargs={ |
|
"filepath": files[:-2], |
|
"split": "train", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={"filepath": files[-2:], "split": "test"}, |
|
), |
|
] |
|
elif self.config.name == "station_train" or self.config.name == "event_train": |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": files, |
|
"split": "train", |
|
}, |
|
), |
|
] |
|
elif self.config.name == "station_test" or self.config.name == "event_test": |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={"filepath": files, "split": "test"}, |
|
), |
|
] |
|
else: |
|
raise ValueError("config.name is not in BUILDER_CONFIGS") |
|
|
|
|
|
def _generate_examples(self, filepath, split): |
|
|
|
|
|
|
|
for file in filepath: |
|
with fsspec.open(file, "rb") as fs: |
|
with h5py.File(fs, "r") as fp: |
|
event_ids = list(fp.keys()) |
|
for event_id in event_ids: |
|
event = fp[event_id] |
|
event_attrs = event.attrs |
|
begin_time = event_attrs["begin_time"] |
|
end_time = event_attrs["end_time"] |
|
event_location = [ |
|
event_attrs["longitude"], |
|
event_attrs["latitude"], |
|
event_attrs["depth_km"], |
|
] |
|
event_time = event_attrs["event_time"] |
|
event_time_index = event_attrs["event_time_index"] |
|
station_ids = list(event.keys()) |
|
if len(station_ids) == 0: |
|
continue |
|
if ("station" in self.config.name): |
|
waveforms = np.zeros([3, self.nt], dtype="float32") |
|
|
|
for i, sta_id in enumerate(station_ids): |
|
waveforms[:, : self.nt] = event[sta_id][:, : self.nt] |
|
attrs = event[sta_id].attrs |
|
phase_type = attrs["phase_type"] |
|
phase_time = attrs["phase_time"] |
|
phase_index = attrs["phase_index"] |
|
phase_polarity = attrs["phase_polarity"] |
|
station_location = [attrs["longitude"], attrs["latitude"], -attrs["elevation_m"] / 1e3] |
|
|
|
yield f"{event_id}/{sta_id}", { |
|
"data": waveforms, |
|
"phase_time": phase_time, |
|
"phase_index": phase_index, |
|
"phase_type": phase_type, |
|
"phase_polarity": phase_polarity, |
|
"begin_time": begin_time, |
|
"end_time": end_time, |
|
"event_time": event_time, |
|
"event_time_index": event_time_index, |
|
"event_location": event_location, |
|
"station_location": station_location, |
|
} |
|
|
|
elif ("event" in self.config.name): |
|
waveforms = np.zeros([len(station_ids), 3, self.nt], dtype="float32") |
|
phase_type = [] |
|
phase_time = [] |
|
phase_index = [] |
|
phase_polarity = [] |
|
station_location = [] |
|
|
|
for i, sta_id in enumerate(station_ids): |
|
waveforms[i, :, : self.nt] = event[sta_id][:, : self.nt] |
|
attrs = event[sta_id].attrs |
|
phase_type.append(list(attrs["phase_type"])) |
|
phase_time.append(list(attrs["phase_time"])) |
|
phase_index.append(list(attrs["phase_index"])) |
|
phase_polarity.append(list(attrs["phase_polarity"])) |
|
station_location.append( |
|
[attrs["longitude"], attrs["latitude"], -attrs["elevation_m"] / 1e3] |
|
) |
|
yield event_id, { |
|
"data": waveforms, |
|
"phase_time": phase_time, |
|
"phase_index": phase_index, |
|
"phase_type": phase_type, |
|
"phase_polarity": phase_polarity, |
|
"begin_time": begin_time, |
|
"end_time": end_time, |
|
"event_time": event_time, |
|
"event_time_index": event_time_index, |
|
"event_location": event_location, |
|
"station_location": station_location, |
|
} |
|
|