Datasets:

ArXiv:
License:
CEED / CEED.py
kylewhy's picture
update urls
a6afd6d
raw
history blame
16.2 kB
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# TODO: Address all TODOs and remove all explanatory comments
# Lint as: python3
"""CEED: California Earthquake Dataset for Machine Learning and Cloud Computing"""
from typing import Dict, List, Optional, Tuple, Union
import datasets
import fsspec
import h5py
import numpy as np
import torch
# TODO: Add BibTeX citation
# Find for instance the citation on arxiv or on the dataset repo/website
_CITATION = """\
@InProceedings{huggingface:dataset,
title = {CEED: California Earthquake Dataset for Machine Learning and Cloud Computing},
author={Zhu et al.},
year={2025}
}
"""
# TODO: Add description of the dataset here
# You can copy an official description
_DESCRIPTION = """\
A dataset of earthquake waveforms organized by earthquake events and based on the HDF5 format.
"""
# TODO: Add a link to an official homepage for the dataset here
_HOMEPAGE = ""
# TODO: Add the licence for the dataset here if you can find it
_LICENSE = ""
# TODO: Add link to the official dataset URLs here
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
_REPO_NC = "https://huggingface.co/datasets/AI4EPS/quakeflow_nc/resolve/main/waveform_h5"
_FILES_NC = [
"1987.h5",
"1988.h5",
"1989.h5",
"1990.h5",
"1991.h5",
"1992.h5",
"1993.h5",
"1994.h5",
"1995.h5",
"1996.h5",
"1997.h5",
"1998.h5",
"1999.h5",
"2000.h5",
"2001.h5",
"2002.h5",
"2003.h5",
"2004.h5",
"2005.h5",
"2006.h5",
"2007.h5",
"2008.h5",
"2009.h5",
"2010.h5",
"2011.h5",
"2012.h5",
"2013.h5",
"2014.h5",
"2015.h5",
"2016.h5",
"2017.h5",
"2018.h5",
"2019.h5",
"2020.h5",
"2021.h5",
"2022.h5",
"2023.h5",
]
_REPO_SC = "https://huggingface.co/datasets/AI4EPS/quakeflow_sc/resolve/main/waveform_h5"
_FILES_SC = [
"1999.h5",
"2000.h5",
"2001.h5",
"2002.h5",
"2003.h5",
"2004.h5",
"2005.h5",
"2006.h5",
"2007.h5",
"2008.h5",
"2009.h5",
"2010.h5",
"2011.h5",
"2012.h5",
"2013.h5",
"2014.h5",
"2015.h5",
"2016.h5",
"2017.h5",
"2018.h5",
"2019_0.h5",
"2019_1.h5",
"2019_2.h5",
"2020_0.h5",
"2020_1.h5",
"2021.h5",
"2022.h5",
"2023.h5",
]
_URLS = {
"train": [f"{_REPO_NC}/{x}" for x in _FILES_NC[:-1]] + [f"{_REPO_SC}/{x}" for x in _FILES_SC[:-1]],
"test": [f"{_REPO_NC}/{x}" for x in _FILES_NC[-1:]] + [f"{_REPO_SC}/{x}" for x in _FILES_SC[-1:]],
}
# TODO: Name of the dataset usually matches the script name with CamelCase instead of snake_case
class CEED(datasets.GeneratorBasedBuilder):
"""CEED: A dataset of earthquake waveforms organized by earthquake events and based on the HDF5 format."""
VERSION = datasets.Version("1.1.0")
nt = 8192
# This is an example of a dataset with multiple configurations.
# If you don't want/need to define several sub-sets in your dataset,
# just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
# If you need to make complex sub-parts in the datasets with configurable options
# You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
# BUILDER_CONFIG_CLASS = MyBuilderConfig
# You will be able to load one or the other configurations in the following list with
# data = datasets.load_dataset('my_dataset', 'first_domain')
# data = datasets.load_dataset('my_dataset', 'second_domain')
# default config, you can change batch_size and num_stations_list when use `datasets.load_dataset`
BUILDER_CONFIGS = [
datasets.BuilderConfig(
name="station", version=VERSION, description="yield station-based samples one by one of whole dataset"
),
datasets.BuilderConfig(
name="event", version=VERSION, description="yield event-based samples one by one of whole dataset"
),
datasets.BuilderConfig(
name="station_train",
version=VERSION,
description="yield station-based samples one by one of training dataset",
),
datasets.BuilderConfig(
name="event_train", version=VERSION, description="yield event-based samples one by one of training dataset"
),
datasets.BuilderConfig(
name="station_test", version=VERSION, description="yield station-based samples one by one of test dataset"
),
datasets.BuilderConfig(
name="event_test", version=VERSION, description="yield event-based samples one by one of test dataset"
),
]
DEFAULT_CONFIG_NAME = (
"station_test" # It's not mandatory to have a default configuration. Just use one if it make sense.
)
def _info(self):
# TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset
if (
(self.config.name == "station")
or (self.config.name == "station_train")
or (self.config.name == "station_test")
):
features = datasets.Features(
{
"data": datasets.Array2D(shape=(3, self.nt), dtype="float32"),
"phase_time": datasets.Sequence(datasets.Value("string")),
"phase_index": datasets.Sequence(datasets.Value("int32")),
"phase_type": datasets.Sequence(datasets.Value("string")),
"phase_polarity": datasets.Sequence(datasets.Value("string")),
"begin_time": datasets.Value("string"),
"end_time": datasets.Value("string"),
"event_time": datasets.Value("string"),
"event_time_index": datasets.Value("int32"),
"event_location": datasets.Sequence(datasets.Value("float32")),
"station_location": datasets.Sequence(datasets.Value("float32")),
},
)
elif (self.config.name == "event") or (self.config.name == "event_train") or (self.config.name == "event_test"):
features = datasets.Features(
{
"data": datasets.Array3D(shape=(None, 3, self.nt), dtype="float32"),
"phase_time": datasets.Sequence(datasets.Sequence(datasets.Value("string"))),
"phase_index": datasets.Sequence(datasets.Sequence(datasets.Value("int32"))),
"phase_type": datasets.Sequence(datasets.Sequence(datasets.Value("string"))),
"phase_polarity": datasets.Sequence(datasets.Sequence(datasets.Value("string"))),
"begin_time": datasets.Value("string"),
"end_time": datasets.Value("string"),
"event_time": datasets.Value("string"),
"event_time_index": datasets.Value("int32"),
"event_location": datasets.Sequence(datasets.Value("float32")),
"station_location": datasets.Sequence(datasets.Sequence(datasets.Value("float32"))),
},
)
else:
raise ValueError(f"config.name = {self.config.name} is not in BUILDER_CONFIGS")
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# This defines the different columns of the dataset and their types
features=features, # Here we define them above because they are different between the two configurations
# If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
# specify them. They'll be used if as_supervised=True in builder.as_dataset.
# supervised_keys=("sentence", "label"),
# Homepage of the dataset for documentation
homepage=_HOMEPAGE,
# License for the dataset if available
license=_LICENSE,
# Citation for the dataset
citation=_CITATION,
)
def _split_generators(self, dl_manager):
# TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
# If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
if self.config.name in ["station", "event"]:
urls = _URLS["train"] + _URLS["test"]
elif self.config.name in ["station_train", "event_train"]:
urls = _URLS["train"]
elif self.config.name in ["station_test", "event_test"]:
urls = _URLS["test"]
else:
raise ValueError("config.name is not in BUILDER_CONFIGS")
# files = dl_manager.download(urls)
files = dl_manager.download_and_extract(urls)
# files = ["waveform_h5/1989.h5", "waveform_h5/1990.h5"]
print(files)
if self.config.name == "station" or self.config.name == "event":
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": files[:-2],
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={"filepath": files[-2:], "split": "test"},
),
]
elif self.config.name == "station_train" or self.config.name == "event_train":
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": files,
"split": "train",
},
),
]
elif self.config.name == "station_test" or self.config.name == "event_test":
return [
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={"filepath": files, "split": "test"},
),
]
else:
raise ValueError("config.name is not in BUILDER_CONFIGS")
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
def _generate_examples(self, filepath, split):
# TODO: This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
# The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
for file in filepath:
with fsspec.open(file, "rb") as fs:
with h5py.File(fs, "r") as fp:
event_ids = list(fp.keys())
for event_id in event_ids:
event = fp[event_id]
event_attrs = event.attrs
begin_time = event_attrs["begin_time"]
end_time = event_attrs["end_time"]
event_location = [
event_attrs["longitude"],
event_attrs["latitude"],
event_attrs["depth_km"],
]
event_time = event_attrs["event_time"]
event_time_index = event_attrs["event_time_index"]
station_ids = list(event.keys())
if len(station_ids) == 0:
continue
if ("station" in self.config.name):
waveforms = np.zeros([3, self.nt], dtype="float32")
for i, sta_id in enumerate(station_ids):
waveforms[:, : self.nt] = event[sta_id][:, : self.nt]
attrs = event[sta_id].attrs
phase_type = attrs["phase_type"]
phase_time = attrs["phase_time"]
phase_index = attrs["phase_index"]
phase_polarity = attrs["phase_polarity"]
station_location = [attrs["longitude"], attrs["latitude"], -attrs["elevation_m"] / 1e3]
yield f"{event_id}/{sta_id}", {
"data": waveforms,
"phase_time": phase_time,
"phase_index": phase_index,
"phase_type": phase_type,
"phase_polarity": phase_polarity,
"begin_time": begin_time,
"end_time": end_time,
"event_time": event_time,
"event_time_index": event_time_index,
"event_location": event_location,
"station_location": station_location,
}
elif ("event" in self.config.name):
waveforms = np.zeros([len(station_ids), 3, self.nt], dtype="float32")
phase_type = []
phase_time = []
phase_index = []
phase_polarity = []
station_location = []
for i, sta_id in enumerate(station_ids):
waveforms[i, :, : self.nt] = event[sta_id][:, : self.nt]
attrs = event[sta_id].attrs
phase_type.append(list(attrs["phase_type"]))
phase_time.append(list(attrs["phase_time"]))
phase_index.append(list(attrs["phase_index"]))
phase_polarity.append(list(attrs["phase_polarity"]))
station_location.append(
[attrs["longitude"], attrs["latitude"], -attrs["elevation_m"] / 1e3]
)
yield event_id, {
"data": waveforms,
"phase_time": phase_time,
"phase_index": phase_index,
"phase_type": phase_type,
"phase_polarity": phase_polarity,
"begin_time": begin_time,
"end_time": end_time,
"event_time": event_time,
"event_time_index": event_time_index,
"event_location": event_location,
"station_location": station_location,
}