update doc
Browse files
README.md
CHANGED
@@ -2,4 +2,179 @@
|
|
2 |
license: mit
|
3 |
---
|
4 |
|
5 |
-
## CEED: *C*alifornia *E*arthquak*E* *D*ataset for Machine Learning and Cloud Computing
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
license: mit
|
3 |
---
|
4 |
|
5 |
+
## CEED: *C*alifornia *E*arthquak*E* *D*ataset for Machine Learning and Cloud Computing
|
6 |
+
|
7 |
+
The California EarthquakE Dataset (CEED) is a dataset of earthquake waveforms and metadata for machine learning and cloud computing. The dataset structure is shown below, and you can find more information about the format at [AI4EPS](https://ai4eps.github.io/homepage/ml4earth/seismic_event_format1/)
|
8 |
+
|
9 |
+
```
|
10 |
+
Group: / len:60424
|
11 |
+
|- Group: /ci38457511 len:35
|
12 |
+
| |-* begin_time = 2019-07-06T03:19:23.668000
|
13 |
+
| |-* depth_km = 8.0
|
14 |
+
| |-* end_time = 2019-07-06T03:21:23.668000
|
15 |
+
| |-* event_id = ci38457511
|
16 |
+
| |-* event_time = 2019-07-06T03:19:53.040000
|
17 |
+
| |-* event_time_index = 2937
|
18 |
+
| |-* latitude = 35.7695
|
19 |
+
| |-* longitude = -117.5993
|
20 |
+
| |-* magnitude = 7.1
|
21 |
+
| |-* magnitude_type = w
|
22 |
+
| |-* nt = 12000
|
23 |
+
| |-* nx = 35
|
24 |
+
| |-* sampling_rate = 100
|
25 |
+
| |-* source = SC
|
26 |
+
| |- Dataset: /ci38457511/CI.CCC..HH (shape:(3, 12000))
|
27 |
+
| | |- (dtype=float32)
|
28 |
+
| | | |-* azimuth = 141.849479
|
29 |
+
| | | |-* back_azimuth = 321.986302
|
30 |
+
| | | |-* component = ENZ
|
31 |
+
| | | |-* depth_km = -0.67
|
32 |
+
| | | |-* distance_km = 34.471389
|
33 |
+
| | | |-* dt_s = 0.01
|
34 |
+
| | | |-* elevation_m = 670.0
|
35 |
+
| | | |-* event_id = ['ci38457511' 'ci38457511' 'ci37260300']
|
36 |
+
| | | |-* instrument = HH
|
37 |
+
| | | |-* latitude = 35.52495
|
38 |
+
| | | |-* local_depth_m = 0.0
|
39 |
+
| | | |-* location =
|
40 |
+
| | | |-* longitude = -117.36453
|
41 |
+
| | | |-* network = CI
|
42 |
+
| | | |-* p_phase_index = 3575
|
43 |
+
| | | |-* p_phase_polarity = U
|
44 |
+
| | | |-* p_phase_score = 0.8
|
45 |
+
| | | |-* p_phase_status = manual
|
46 |
+
| | | |-* p_phase_time = 2019-07-06T03:19:59.422000
|
47 |
+
| | | |-* phase_index = [ 3575 4184 11826]
|
48 |
+
| | | |-* phase_picking_channel = ['HHZ' 'HNN' 'HHZ']
|
49 |
+
| | | |-* phase_polarity = ['U' 'N' 'N']
|
50 |
+
| | | |-* phase_remark = ['i' 'e' 'e']
|
51 |
+
| | | |-* phase_score = [0.8 0.5 0.5]
|
52 |
+
| | | |-* phase_status = manual
|
53 |
+
| | | |-* phase_time = ['2019-07-06T03:19:59.422000' '2019-07-06T03:20:05.509000' '2019-07-06T03:21:21.928000']
|
54 |
+
| | | |-* phase_type = ['P' 'S' 'P']
|
55 |
+
| | | |-* s_phase_index = 4184
|
56 |
+
| | | |-* s_phase_polarity = N
|
57 |
+
| | | |-* s_phase_score = 0.5
|
58 |
+
| | | |-* s_phase_status = manual
|
59 |
+
| | | |-* s_phase_time = 2019-07-06T03:20:05.509000
|
60 |
+
| | | |-* snr = [ 637.9865898 286.9100766 1433.04052911]
|
61 |
+
| | | |-* station = CCC
|
62 |
+
| | | |-* unit = 1e-6m/s
|
63 |
+
| |- Dataset: /ci38457511/CI.CCC..HN (shape:(3, 12000))
|
64 |
+
| | |- (dtype=float32)
|
65 |
+
| | | |-* azimuth = 141.849479
|
66 |
+
| | | |-* back_azimuth = 321.986302
|
67 |
+
| | | |-* component = ENZ
|
68 |
+
| | | |-* depth_km = -0.67
|
69 |
+
| | | |-* distance_km = 34.471389
|
70 |
+
| | | |-* dt_s = 0.01
|
71 |
+
| | | |-* elevation_m = 670.0
|
72 |
+
| | | |-* event_id = ['ci38457511' 'ci38457511' 'ci37260300']
|
73 |
+
......
|
74 |
+
```
|
75 |
+
|
76 |
+
## Getting Started
|
77 |
+
|
78 |
+
### Requirements
|
79 |
+
- datasets
|
80 |
+
- h5py
|
81 |
+
- fsspec
|
82 |
+
- pytorch
|
83 |
+
|
84 |
+
### Usage
|
85 |
+
Import the necessary packages:
|
86 |
+
```python
|
87 |
+
import h5py
|
88 |
+
import numpy as np
|
89 |
+
import torch
|
90 |
+
from datasets import load_dataset
|
91 |
+
```
|
92 |
+
We have 6 configurations for the dataset:
|
93 |
+
- "station"
|
94 |
+
- "event"
|
95 |
+
- "station_train"
|
96 |
+
- "event_train"
|
97 |
+
- "station_test"
|
98 |
+
- "event_test"
|
99 |
+
|
100 |
+
"station" yields station-based samples one by one, while "event" yields event-based samples one by one. The configurations with no suffix are the full dataset, while the configurations with suffix "_train" and "_test" only have corresponding split of the full dataset. Train split contains data from 1970 to 2019, while test split contains data in 2020.
|
101 |
+
|
102 |
+
The sample of `station` is a dictionary with the following keys:
|
103 |
+
- `data`: the waveform with shape `(3, nt)`, the default time length is 8192
|
104 |
+
- `begin_time`: the begin time of the waveform data
|
105 |
+
- `end_time`: the end time of the waveform data
|
106 |
+
- `phase_time`: the phase arrival time
|
107 |
+
- `phase_index`: the time point index of the phase arrival time
|
108 |
+
- `phase_type`: the phase type
|
109 |
+
- `phase_polarity`: the phase polarity in ('U', 'D', 'N')
|
110 |
+
- `event_time`: the event time
|
111 |
+
- `event_time_index`: the time point index of the event time
|
112 |
+
- `event_location`: the event location with shape `(3,)`, including latitude, longitude, depth
|
113 |
+
- `station_location`: the station location with shape `(3,)`, including latitude, longitude and depth
|
114 |
+
|
115 |
+
The sample of `event` is a dictionary with the following keys:
|
116 |
+
- `data`: the waveform with shape `(n_station, 3, nt)`, the default time length is 8192
|
117 |
+
- `begin_time`: the begin time of the waveform data
|
118 |
+
- `end_time`: the end time of the waveform data
|
119 |
+
- `phase_time`: the phase arrival time with shape `(n_station,)`
|
120 |
+
- `phase_index`: the time point index of the phase arrival time with shape `(n_station,)`
|
121 |
+
- `phase_type`: the phase type with shape `(n_station,)`
|
122 |
+
- `phase_polarity`: the phase polarity in ('U', 'D', 'N') with shape `(n_station,)`
|
123 |
+
- `event_time`: the event time
|
124 |
+
- `event_time_index`: the time point index of the event time
|
125 |
+
- `event_location`: the space-time coordinates of the event with shape `(n_staion, 3)`
|
126 |
+
- `station_location`: the space coordinates of the station with shape `(n_station, 3)`, including latitude, longitude and depth
|
127 |
+
|
128 |
+
The default configuration is `station_test`. You can specify the configuration by argument `name`. For example:
|
129 |
+
```python
|
130 |
+
# load dataset
|
131 |
+
# ATTENTION: Streaming(Iterable Dataset) is complex to support because of the feature of HDF5
|
132 |
+
# So we recommend to directly load the dataset and convert it into iterable later
|
133 |
+
# The dataset is very large, so you need to wait for some time at the first time
|
134 |
+
|
135 |
+
# to load "station_test" with test split
|
136 |
+
ceed = load_dataset("AI4EPS/CEED", split="test")
|
137 |
+
# or
|
138 |
+
ceed = load_dataset("AI4EPS/CEED", name="station_test", split="test")
|
139 |
+
|
140 |
+
# to load "event" with train split
|
141 |
+
ceed = load_dataset("AI4EPS/CEED", name="event", split="train")
|
142 |
+
```
|
143 |
+
|
144 |
+
#### Example loading the dataset
|
145 |
+
```python
|
146 |
+
ceed = load_dataset("AI4EPS/CEED", name="station_test", split="test")
|
147 |
+
|
148 |
+
# print the first sample of the iterable dataset
|
149 |
+
for example in ceed:
|
150 |
+
print("\nIterable test\n")
|
151 |
+
print(example.keys())
|
152 |
+
for key in example.keys():
|
153 |
+
if key == "data":
|
154 |
+
print(key, np.array(example[key]).shape)
|
155 |
+
else:
|
156 |
+
print(key, example[key])
|
157 |
+
break
|
158 |
+
|
159 |
+
# %%
|
160 |
+
ceed = ceed.with_format("torch")
|
161 |
+
dataloader = DataLoader(ceed, batch_size=8, num_workers=0, collate_fn=lambda x: x)
|
162 |
+
|
163 |
+
for batch in dataloader:
|
164 |
+
print("\nDataloader test\n")
|
165 |
+
print(f"Batch size: {len(batch)}")
|
166 |
+
print(batch[0].keys())
|
167 |
+
for key in batch[0].keys():
|
168 |
+
if key == "data":
|
169 |
+
print(key, np.array(batch[0][key]).shape)
|
170 |
+
else:
|
171 |
+
print(key, batch[0][key])
|
172 |
+
break
|
173 |
+
```
|
174 |
+
|
175 |
+
#### Extension
|
176 |
+
|
177 |
+
If you want to introduce new features in to labels, we recommend to make a copy of `CEED.py` and modify the `_generate_examples` method. Check [AI4EPS/EQNet](https://github.com/AI4EPS/EQNet/blob/master/eqnet/data/quakeflow_nc.py) for an example. To load the dataset with your modified script, specify the path to the script in `load_dataset` function:
|
178 |
+
```python
|
179 |
+
ceed = load_dataset("path/to/your/CEED.py", name="station_test", split="test", trust_remote_code=True)
|
180 |
+
```
|