Datasets:

ArXiv:
License:
zhuwq0 commited on
Commit
aa710d9
·
1 Parent(s): 7e5ff96

add example

Browse files
Files changed (2) hide show
  1. ceed.py +1 -1
  2. example.py +41 -0
ceed.py CHANGED
@@ -50,7 +50,7 @@ _LICENSE = ""
50
  # TODO: Add link to the official dataset URLs here
51
  # The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
52
  # This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
53
- _REPO_NC = ("https://huggingface.co/datasets/AI4EPS/quakeflow_nc/resolve/main/waveform_h5",)
54
  _FILES_NC = [
55
  "1987.h5",
56
  "1988.h5",
 
50
  # TODO: Add link to the official dataset URLs here
51
  # The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
52
  # This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
53
+ _REPO_NC = "https://huggingface.co/datasets/AI4EPS/quakeflow_nc/resolve/main/waveform_h5"
54
  _FILES_NC = [
55
  "1987.h5",
56
  "1988.h5",
example.py ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # %%
2
+ import numpy as np
3
+ from datasets import load_dataset
4
+ from torch.utils.data import DataLoader
5
+
6
+ # %%
7
+ ceed = load_dataset(
8
+ "./ceed.py",
9
+ name="station_test",
10
+ # name="event_test",
11
+ split="test",
12
+ download_mode="force_redownload",
13
+ )
14
+
15
+ # print the first sample of the iterable dataset
16
+ for example in ceed:
17
+ print("\nIterable test\n")
18
+ print(example.keys())
19
+ for key in example.keys():
20
+ if key == "data":
21
+ print(key, np.array(example[key]).shape)
22
+ else:
23
+ print(key, example[key])
24
+ break
25
+
26
+ # %%
27
+ ceed = ceed.with_format("torch")
28
+ dataloader = DataLoader(ceed, batch_size=8, num_workers=0, collate_fn=lambda x: x)
29
+
30
+ for batch in dataloader:
31
+ print("\nDataloader test\n")
32
+ print(f"Batch size: {len(batch)}")
33
+ print(batch[0].keys())
34
+ for key in batch[0].keys():
35
+ if key == "data":
36
+ print(key, np.array(batch[0][key]).shape)
37
+ else:
38
+ print(key, batch[0][key])
39
+ break
40
+
41
+ # %%