# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # TODO: Address all TODOs and remove all explanatory comments # Lint as: python3 """CEED: California Earthquake Dataset for Machine Learning and Cloud Computing""" from typing import Dict, List, Optional, Tuple, Union import datasets import fsspec import h5py import numpy as np import torch # TODO: Add BibTeX citation # Find for instance the citation on arxiv or on the dataset repo/website _CITATION = """\ @InProceedings{huggingface:dataset, title = {CEED: California Earthquake Dataset for Machine Learning and Cloud Computing}, author={Zhu et al.}, year={2025} } """ # TODO: Add description of the dataset here # You can copy an official description _DESCRIPTION = """\ A dataset of earthquake waveforms organized by earthquake events and based on the HDF5 format. """ # TODO: Add a link to an official homepage for the dataset here _HOMEPAGE = "" # TODO: Add the licence for the dataset here if you can find it _LICENSE = "" # TODO: Add link to the official dataset URLs here # The HuggingFace Datasets library doesn't host the datasets but only points to the original files. # This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method) _REPO_NC = "https://huggingface.co/datasets/AI4EPS/quakeflow_nc/resolve/main/waveform_h5" _FILES_NC = [ "1987.h5", "1988.h5", "1989.h5", "1990.h5", "1991.h5", "1992.h5", "1993.h5", "1994.h5", "1995.h5", "1996.h5", "1997.h5", "1998.h5", "1999.h5", "2000.h5", "2001.h5", "2002.h5", "2003.h5", "2004.h5", "2005.h5", "2006.h5", "2007.h5", "2008.h5", "2009.h5", "2010.h5", "2011.h5", "2012.h5", "2013.h5", "2014.h5", "2015.h5", "2016.h5", "2017.h5", "2018.h5", "2019.h5", "2020.h5", "2021.h5", "2022.h5", "2023.h5", ] _REPO_SC = "https://huggingface.co/datasets/AI4EPS/quakeflow_sc/resolve/main/waveform_h5" _FILES_SC = [ "1999.h5", "2000.h5", "2001.h5", "2002.h5", "2003.h5", "2004.h5", "2005.h5", "2006.h5", "2007.h5", "2008.h5", "2009.h5", "2010.h5", "2011.h5", "2012.h5", "2013.h5", "2014.h5", "2015.h5", "2016.h5", "2017.h5", "2018.h5", "2019_0.h5", "2019_1.h5", "2019_2.h5", "2020_0.h5", "2020_1.h5", "2021.h5", "2022.h5", "2023.h5", ] _URLS = { "train": [f"{_REPO_NC}/{x}" for x in _FILES_NC[:-1]] + [f"{_REPO_SC}/{x}" for x in _FILES_SC[:-1]], "test": [f"{_REPO_NC}/{x}" for x in _FILES_NC[-1:]] + [f"{_REPO_SC}/{x}" for x in _FILES_SC[-1:]], } # TODO: Name of the dataset usually matches the script name with CamelCase instead of snake_case class CEED(datasets.GeneratorBasedBuilder): """CEED: A dataset of earthquake waveforms organized by earthquake events and based on the HDF5 format.""" VERSION = datasets.Version("1.1.0") nt = 8192 # This is an example of a dataset with multiple configurations. # If you don't want/need to define several sub-sets in your dataset, # just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes. # If you need to make complex sub-parts in the datasets with configurable options # You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig # BUILDER_CONFIG_CLASS = MyBuilderConfig # You will be able to load one or the other configurations in the following list with # data = datasets.load_dataset('my_dataset', 'first_domain') # data = datasets.load_dataset('my_dataset', 'second_domain') # default config, you can change batch_size and num_stations_list when use `datasets.load_dataset` BUILDER_CONFIGS = [ datasets.BuilderConfig( name="station", version=VERSION, description="yield station-based samples one by one of whole dataset" ), datasets.BuilderConfig( name="event", version=VERSION, description="yield event-based samples one by one of whole dataset" ), datasets.BuilderConfig( name="station_train", version=VERSION, description="yield station-based samples one by one of training dataset", ), datasets.BuilderConfig( name="event_train", version=VERSION, description="yield event-based samples one by one of training dataset" ), datasets.BuilderConfig( name="station_test", version=VERSION, description="yield station-based samples one by one of test dataset" ), datasets.BuilderConfig( name="event_test", version=VERSION, description="yield event-based samples one by one of test dataset" ), ] DEFAULT_CONFIG_NAME = ( "station_test" # It's not mandatory to have a default configuration. Just use one if it make sense. ) def _info(self): # TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset if ( (self.config.name == "station") or (self.config.name == "station_train") or (self.config.name == "station_test") ): features = datasets.Features( { "data": datasets.Array2D(shape=(3, self.nt), dtype="float32"), "phase_time": datasets.Sequence(datasets.Value("string")), "phase_index": datasets.Sequence(datasets.Value("int32")), "phase_type": datasets.Sequence(datasets.Value("string")), "phase_polarity": datasets.Sequence(datasets.Value("string")), "begin_time": datasets.Value("string"), "end_time": datasets.Value("string"), "event_time": datasets.Value("string"), "event_time_index": datasets.Value("int32"), "event_location": datasets.Sequence(datasets.Value("float32")), "station_location": datasets.Sequence(datasets.Value("float32")), }, ) elif (self.config.name == "event") or (self.config.name == "event_train") or (self.config.name == "event_test"): features = datasets.Features( { "data": datasets.Array3D(shape=(None, 3, self.nt), dtype="float32"), "phase_time": datasets.Sequence(datasets.Sequence(datasets.Value("string"))), "phase_index": datasets.Sequence(datasets.Sequence(datasets.Value("int32"))), "phase_type": datasets.Sequence(datasets.Sequence(datasets.Value("string"))), "phase_polarity": datasets.Sequence(datasets.Sequence(datasets.Value("string"))), "begin_time": datasets.Value("string"), "end_time": datasets.Value("string"), "event_time": datasets.Value("string"), "event_time_index": datasets.Value("int32"), "event_location": datasets.Sequence(datasets.Value("float32")), "station_location": datasets.Sequence(datasets.Sequence(datasets.Value("float32"))), }, ) else: raise ValueError(f"config.name = {self.config.name} is not in BUILDER_CONFIGS") return datasets.DatasetInfo( # This is the description that will appear on the datasets page. description=_DESCRIPTION, # This defines the different columns of the dataset and their types features=features, # Here we define them above because they are different between the two configurations # If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and # specify them. They'll be used if as_supervised=True in builder.as_dataset. # supervised_keys=("sentence", "label"), # Homepage of the dataset for documentation homepage=_HOMEPAGE, # License for the dataset if available license=_LICENSE, # Citation for the dataset citation=_CITATION, ) def _split_generators(self, dl_manager): # TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration # If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name # dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS # It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files. # By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive if self.config.name in ["station", "event"]: urls = _URLS["train"] + _URLS["test"] elif self.config.name in ["station_train", "event_train"]: urls = _URLS["train"] elif self.config.name in ["station_test", "event_test"]: urls = _URLS["test"] else: raise ValueError("config.name is not in BUILDER_CONFIGS") # files = dl_manager.download(urls) files = dl_manager.download_and_extract(urls) # files = ["waveform_h5/1989.h5", "waveform_h5/1990.h5"] print(files) if self.config.name == "station" or self.config.name == "event": return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, # These kwargs will be passed to _generate_examples gen_kwargs={ "filepath": files[:-2], "split": "train", }, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={"filepath": files[-2:], "split": "test"}, ), ] elif self.config.name == "station_train" or self.config.name == "event_train": return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "filepath": files, "split": "train", }, ), ] elif self.config.name == "station_test" or self.config.name == "event_test": return [ datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={"filepath": files, "split": "test"}, ), ] else: raise ValueError("config.name is not in BUILDER_CONFIGS") # method parameters are unpacked from `gen_kwargs` as given in `_split_generators` def _generate_examples(self, filepath, split): # TODO: This method handles input defined in _split_generators to yield (key, example) tuples from the dataset. # The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example. for file in filepath: with fsspec.open(file, "rb") as fs: with h5py.File(fs, "r") as fp: event_ids = list(fp.keys()) for event_id in event_ids: event = fp[event_id] event_attrs = event.attrs begin_time = event_attrs["begin_time"] end_time = event_attrs["end_time"] event_location = [ event_attrs["longitude"], event_attrs["latitude"], event_attrs["depth_km"], ] event_time = event_attrs["event_time"] event_time_index = event_attrs["event_time_index"] station_ids = list(event.keys()) if len(station_ids) == 0: continue if ("station" in self.config.name): waveforms = np.zeros([3, self.nt], dtype="float32") for i, sta_id in enumerate(station_ids): waveforms[:, : self.nt] = event[sta_id][:, : self.nt] attrs = event[sta_id].attrs phase_type = attrs["phase_type"] phase_time = attrs["phase_time"] phase_index = attrs["phase_index"] phase_polarity = attrs["phase_polarity"] station_location = [attrs["longitude"], attrs["latitude"], -attrs["elevation_m"] / 1e3] yield f"{event_id}/{sta_id}", { "data": waveforms, "phase_time": phase_time, "phase_index": phase_index, "phase_type": phase_type, "phase_polarity": phase_polarity, "begin_time": begin_time, "end_time": end_time, "event_time": event_time, "event_time_index": event_time_index, "event_location": event_location, "station_location": station_location, } elif ("event" in self.config.name): waveforms = np.zeros([len(station_ids), 3, self.nt], dtype="float32") phase_type = [] phase_time = [] phase_index = [] phase_polarity = [] station_location = [] for i, sta_id in enumerate(station_ids): waveforms[i, :, : self.nt] = event[sta_id][:, : self.nt] attrs = event[sta_id].attrs phase_type.append(list(attrs["phase_type"])) phase_time.append(list(attrs["phase_time"])) phase_index.append(list(attrs["phase_index"])) phase_polarity.append(list(attrs["phase_polarity"])) station_location.append( [attrs["longitude"], attrs["latitude"], -attrs["elevation_m"] / 1e3] ) yield event_id, { "data": waveforms, "phase_time": phase_time, "phase_index": phase_index, "phase_type": phase_type, "phase_polarity": phase_polarity, "begin_time": begin_time, "end_time": end_time, "event_time": event_time, "event_time_index": event_time_index, "event_location": event_location, "station_location": station_location, }