File size: 1,297 Bytes
f04c17e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 |
# %%
import multiprocessing as mp
import os
from glob import glob
import h5py
import numpy as np
import pandas as pd
from tqdm import tqdm
# %%
data_path = "waveform_h5"
result_path = "waveform_h5"
file_list = sorted(glob(f"{data_path}/*.h5"))
# %%
file_size = {file: os.path.getsize(file)/1e9 for file in file_list}
# %%
MAX_SIZE = 45 # GB
for file, size in file_size.items():
if size > MAX_SIZE:
# split into smaller files
NUM_FILES = int(np.ceil(size / MAX_SIZE))
with h5py.File(file, "r") as f:
event_ids = list(f.keys())
for event_id in tqdm(event_ids, desc=f"Processing {file}"):
index = int(event_id[-1]) % NUM_FILES
# with h5py.File(f"{result_path}/{file.split('/')[-1].replace('.h5', '')}_{index}.h5", "a") as g:
with h5py.File(f"{data_path}/{file.split('/')[-1].replace('.h5', '')}_{index}.h5", "a") as g:
# if event_id in g:
# print(f"Event {event_id} already exists in {file.split('/')[-1].replace('.h5', '')}_{index}.h5")
# continue
# copy
f.copy(event_id, g)
# else:
# print(f"Copying {file} to {result_path}")
# os.system(f"cp {file} {result_path}")
|