File size: 1,693 Bytes
0aa8d40
 
 
 
 
 
 
 
 
0f6d5ac
0aa8d40
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d7007d
 
 
 
0aa8d40
 
 
 
49e689a
0aa8d40
49e689a
 
 
0aa8d40
1d7007d
 
 
 
 
 
 
0aa8d40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
---
license: apache-2.0
task_categories:
- text-classification
tags:
- protein
- downstream task
---

# DeepLocBinary Dataset with AlphaFold2 Structural Sequence

- Description: Protein localization encompasses the processes that establish and maintain proteins at specific locations.
- Number of labels: 2
- Problem Type: single_label_classification
- Columns:
  - aa_seq: protein amino acid sequence
  - foldseek_seq: foldseek 20 3di structural sequence
  - ss8_seq: DSSP 8 secondary structure sequence
  - location: On the membrane or not

# Github

Simple, Efficient and Scalable Structure-aware Adapter Boosts Protein Language Models

https://github.com/tyang816/SES-Adapter

VenusFactory: A Unified Platform for Protein Engineering Data Retrieval and Language Model Fine-Tuning

https://github.com/ai4protein/VenusFactory

# Citation
Please cite our work if you use our dataset.
```
@article{tan2024ses-adapter,
  title={Simple, Efficient, and Scalable Structure-Aware Adapter Boosts Protein Language Models},
  author={Tan, Yang and Li, Mingchen and Zhou, Bingxin and Zhong, Bozitao and Zheng, Lirong and Tan, Pan and Zhou, Ziyi and Yu, Huiqun and Fan, Guisheng and Hong, Liang},
  journal={Journal of Chemical Information and Modeling},
  year={2024},
  publisher={ACS Publications}
}

@article{tan2025venusfactory,
  title={VenusFactory: A Unified Platform for Protein Engineering Data Retrieval and Language Model Fine-Tuning},
  author={Tan, Yang and Liu, Chen and Gao, Jingyuan and Wu, Banghao and Li, Mingchen and Wang, Ruilin and Zhang, Lingrong and Yu, Huiqun and Fan, Guisheng and Hong, Liang and Zhou, Bingxin},
  journal={arXiv preprint arXiv:2503.15438},
  year={2025}
}
```