Datasets:

Modalities:
Text
Formats:
csv
ArXiv:
Libraries:
Datasets
pandas
License:
tyang816 mkbig commited on
Commit
a80e67c
·
verified ·
1 Parent(s): b121333

Update README.md (#1)

Browse files

- Update README.md (828cf2cb92e52eebd3ae1e92ada083f5a4ac2910)


Co-authored-by: moyu <[email protected]>

Files changed (1) hide show
  1. README.md +44 -33
README.md CHANGED
@@ -1,34 +1,45 @@
1
- ---
2
- license: apache-2.0
3
- task_categories:
4
- - text-classification
5
- tags:
6
- - protein
7
- - downstream task
8
- ---
9
-
10
- # EC Dataset
11
-
12
- - Description: The Enzyme Commission number (EC number) is a numerical classification scheme for enzymes, based on the chemical reactions they catalyze.
13
- - Number of labels: 585
14
- - Problem Type: multi_label_classification
15
- - Columns:
16
- - aa_seq: protein amino acid sequence
17
-
18
- # Github
19
-
20
- Simple, Efficient and Scalable Structure-aware Adapter Boosts Protein Language Models
21
-
22
- https://github.com/tyang816/SES-Adapter
23
-
24
- # Citation
25
- Please cite our work if you use our dataset.
26
- ```
27
- @article{tan2024ses-adapter,
28
- title={Simple, Efficient, and Scalable Structure-Aware Adapter Boosts Protein Language Models},
29
- author={Tan, Yang and Li, Mingchen and Zhou, Bingxin and Zhong, Bozitao and Zheng, Lirong and Tan, Pan and Zhou, Ziyi and Yu, Huiqun and Fan, Guisheng and Hong, Liang},
30
- journal={Journal of Chemical Information and Modeling},
31
- year={2024},
32
- publisher={ACS Publications}
33
- }
 
 
 
 
 
 
 
 
 
 
 
34
  ```
 
1
+ ---
2
+ license: apache-2.0
3
+ task_categories:
4
+ - text-classification
5
+ tags:
6
+ - protein
7
+ - downstream task
8
+ ---
9
+
10
+ # EC Dataset
11
+
12
+ - Description: The Enzyme Commission number (EC number) is a numerical classification scheme for enzymes, based on the chemical reactions they catalyze.
13
+ - Number of labels: 585
14
+ - Problem Type: multi_label_classification
15
+ - Columns:
16
+ - aa_seq: protein amino acid sequence
17
+
18
+ # Github
19
+
20
+ Simple, Efficient and Scalable Structure-aware Adapter Boosts Protein Language Models
21
+
22
+ https://github.com/tyang816/SES-Adapter
23
+
24
+ VenusFactory: A Unified Platform for Protein Engineering Data Retrieval and Language Model Fine-Tuning
25
+
26
+ https://github.com/ai4protein/VenusFactory
27
+
28
+ # Citation
29
+ Please cite our work if you use our dataset.
30
+ ```
31
+ @article{tan2024ses-adapter,
32
+ title={Simple, Efficient, and Scalable Structure-Aware Adapter Boosts Protein Language Models},
33
+ author={Tan, Yang and Li, Mingchen and Zhou, Bingxin and Zhong, Bozitao and Zheng, Lirong and Tan, Pan and Zhou, Ziyi and Yu, Huiqun and Fan, Guisheng and Hong, Liang},
34
+ journal={Journal of Chemical Information and Modeling},
35
+ year={2024},
36
+ publisher={ACS Publications}
37
+ }
38
+
39
+ @article{tan2025venusfactory,
40
+ title={VenusFactory: A Unified Platform for Protein Engineering Data Retrieval and Language Model Fine-Tuning},
41
+ author={Tan, Yang and Liu, Chen and Gao, Jingyuan and Wu, Banghao and Li, Mingchen and Wang, Ruilin and Zhang, Lingrong and Yu, Huiqun and Fan, Guisheng and Hong, Liang and Zhou, Bingxin},
42
+ journal={arXiv preprint arXiv:2503.15438},
43
+ year={2025}
44
+ }
45
  ```