sasha HF staff commited on
Commit
a934c7c
1 Parent(s): 18f6fa6

Upload folder using huggingface_hub

Browse files
runs/text_classification/Emanuel/twitter-emotion-deberta-v3-base/2024-10-08-12-58-29/.hydra/config.yaml ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ backend:
2
+ name: pytorch
3
+ version: 2.4.0
4
+ _target_: optimum_benchmark.backends.pytorch.backend.PyTorchBackend
5
+ task: text-classification
6
+ model: Emanuel/twitter-emotion-deberta-v3-base
7
+ processor: Emanuel/twitter-emotion-deberta-v3-base
8
+ library: null
9
+ device: cuda
10
+ device_ids: '0'
11
+ seed: 42
12
+ inter_op_num_threads: null
13
+ intra_op_num_threads: null
14
+ hub_kwargs: {}
15
+ no_weights: true
16
+ device_map: null
17
+ torch_dtype: null
18
+ amp_autocast: false
19
+ amp_dtype: null
20
+ eval_mode: true
21
+ to_bettertransformer: false
22
+ low_cpu_mem_usage: null
23
+ attn_implementation: null
24
+ cache_implementation: null
25
+ torch_compile: false
26
+ torch_compile_config: {}
27
+ quantization_scheme: null
28
+ quantization_config: {}
29
+ deepspeed_inference: false
30
+ deepspeed_inference_config: {}
31
+ peft_type: null
32
+ peft_config: {}
33
+ launcher:
34
+ name: process
35
+ _target_: optimum_benchmark.launchers.process.launcher.ProcessLauncher
36
+ device_isolation: true
37
+ device_isolation_action: warn
38
+ start_method: spawn
39
+ benchmark:
40
+ name: energy_star
41
+ _target_: optimum_benchmark.benchmarks.energy_star.benchmark.EnergyStarBenchmark
42
+ dataset_name: EnergyStarAI/text_classification
43
+ dataset_config: ''
44
+ dataset_split: train
45
+ num_samples: 1000
46
+ input_shapes:
47
+ batch_size: 1
48
+ text_column_name: text
49
+ truncation: true
50
+ max_length: -1
51
+ dataset_prefix1: ''
52
+ dataset_prefix2: ''
53
+ t5_task: ''
54
+ image_column_name: image
55
+ resize: false
56
+ question_column_name: question
57
+ context_column_name: context
58
+ sentence1_column_name: sentence1
59
+ sentence2_column_name: sentence2
60
+ audio_column_name: audio
61
+ iterations: 10
62
+ warmup_runs: 10
63
+ energy: true
64
+ forward_kwargs: {}
65
+ generate_kwargs: {}
66
+ call_kwargs: {}
67
+ experiment_name: text_classification
68
+ environment:
69
+ cpu: ' AMD EPYC 7R32'
70
+ cpu_count: 48
71
+ cpu_ram_mb: 200472.73984
72
+ system: Linux
73
+ machine: x86_64
74
+ platform: Linux-5.10.192-183.736.amzn2.x86_64-x86_64-with-glibc2.35
75
+ processor: x86_64
76
+ python_version: 3.9.20
77
+ gpu:
78
+ - NVIDIA A10G
79
+ gpu_count: 1
80
+ gpu_vram_mb: 24146608128
81
+ optimum_benchmark_version: 0.2.0
82
+ optimum_benchmark_commit: null
83
+ transformers_version: 4.44.0
84
+ transformers_commit: null
85
+ accelerate_version: 0.33.0
86
+ accelerate_commit: null
87
+ diffusers_version: 0.30.0
88
+ diffusers_commit: null
89
+ optimum_version: null
90
+ optimum_commit: null
91
+ timm_version: null
92
+ timm_commit: null
93
+ peft_version: null
94
+ peft_commit: null
runs/text_classification/Emanuel/twitter-emotion-deberta-v3-base/2024-10-08-12-58-29/.hydra/hydra.yaml ADDED
@@ -0,0 +1,175 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ hydra:
2
+ run:
3
+ dir: ./runs/text_classification/Emanuel/twitter-emotion-deberta-v3-base/2024-10-08-12-58-29
4
+ sweep:
5
+ dir: sweeps/${experiment_name}/${now:%Y-%m-%d-%H-%M-%S}
6
+ subdir: ${hydra.job.num}
7
+ launcher:
8
+ _target_: hydra._internal.core_plugins.basic_launcher.BasicLauncher
9
+ sweeper:
10
+ _target_: hydra._internal.core_plugins.basic_sweeper.BasicSweeper
11
+ max_batch_size: null
12
+ params: null
13
+ help:
14
+ app_name: ${hydra.job.name}
15
+ header: '${hydra.help.app_name} is powered by Hydra.
16
+
17
+ '
18
+ footer: 'Powered by Hydra (https://hydra.cc)
19
+
20
+ Use --hydra-help to view Hydra specific help
21
+
22
+ '
23
+ template: '${hydra.help.header}
24
+
25
+ == Configuration groups ==
26
+
27
+ Compose your configuration from those groups (group=option)
28
+
29
+
30
+ $APP_CONFIG_GROUPS
31
+
32
+
33
+ == Config ==
34
+
35
+ Override anything in the config (foo.bar=value)
36
+
37
+
38
+ $CONFIG
39
+
40
+
41
+ ${hydra.help.footer}
42
+
43
+ '
44
+ hydra_help:
45
+ template: 'Hydra (${hydra.runtime.version})
46
+
47
+ See https://hydra.cc for more info.
48
+
49
+
50
+ == Flags ==
51
+
52
+ $FLAGS_HELP
53
+
54
+
55
+ == Configuration groups ==
56
+
57
+ Compose your configuration from those groups (For example, append hydra/job_logging=disabled
58
+ to command line)
59
+
60
+
61
+ $HYDRA_CONFIG_GROUPS
62
+
63
+
64
+ Use ''--cfg hydra'' to Show the Hydra config.
65
+
66
+ '
67
+ hydra_help: ???
68
+ hydra_logging:
69
+ version: 1
70
+ formatters:
71
+ colorlog:
72
+ (): colorlog.ColoredFormatter
73
+ format: '[%(cyan)s%(asctime)s%(reset)s][%(purple)sHYDRA%(reset)s] %(message)s'
74
+ handlers:
75
+ console:
76
+ class: logging.StreamHandler
77
+ formatter: colorlog
78
+ stream: ext://sys.stdout
79
+ root:
80
+ level: INFO
81
+ handlers:
82
+ - console
83
+ disable_existing_loggers: false
84
+ job_logging:
85
+ version: 1
86
+ formatters:
87
+ simple:
88
+ format: '[%(asctime)s][%(name)s][%(levelname)s] - %(message)s'
89
+ colorlog:
90
+ (): colorlog.ColoredFormatter
91
+ format: '[%(cyan)s%(asctime)s%(reset)s][%(blue)s%(name)s%(reset)s][%(log_color)s%(levelname)s%(reset)s]
92
+ - %(message)s'
93
+ log_colors:
94
+ DEBUG: purple
95
+ INFO: green
96
+ WARNING: yellow
97
+ ERROR: red
98
+ CRITICAL: red
99
+ handlers:
100
+ console:
101
+ class: logging.StreamHandler
102
+ formatter: colorlog
103
+ stream: ext://sys.stdout
104
+ file:
105
+ class: logging.FileHandler
106
+ formatter: simple
107
+ filename: ${hydra.job.name}.log
108
+ root:
109
+ level: INFO
110
+ handlers:
111
+ - console
112
+ - file
113
+ disable_existing_loggers: false
114
+ env: {}
115
+ mode: RUN
116
+ searchpath: []
117
+ callbacks: {}
118
+ output_subdir: .hydra
119
+ overrides:
120
+ hydra:
121
+ - hydra.run.dir=./runs/text_classification/Emanuel/twitter-emotion-deberta-v3-base/2024-10-08-12-58-29
122
+ - hydra.mode=RUN
123
+ task:
124
+ - backend.model=Emanuel/twitter-emotion-deberta-v3-base
125
+ - backend.processor=Emanuel/twitter-emotion-deberta-v3-base
126
+ job:
127
+ name: cli
128
+ chdir: true
129
+ override_dirname: backend.model=Emanuel/twitter-emotion-deberta-v3-base,backend.processor=Emanuel/twitter-emotion-deberta-v3-base
130
+ id: ???
131
+ num: ???
132
+ config_name: text_classification
133
+ env_set:
134
+ OVERRIDE_BENCHMARKS: '1'
135
+ env_copy: []
136
+ config:
137
+ override_dirname:
138
+ kv_sep: '='
139
+ item_sep: ','
140
+ exclude_keys: []
141
+ runtime:
142
+ version: 1.3.2
143
+ version_base: '1.3'
144
+ cwd: /
145
+ config_sources:
146
+ - path: hydra.conf
147
+ schema: pkg
148
+ provider: hydra
149
+ - path: optimum_benchmark
150
+ schema: pkg
151
+ provider: main
152
+ - path: hydra_plugins.hydra_colorlog.conf
153
+ schema: pkg
154
+ provider: hydra-colorlog
155
+ - path: /optimum-benchmark/examples/energy_star
156
+ schema: file
157
+ provider: command-line
158
+ - path: ''
159
+ schema: structured
160
+ provider: schema
161
+ output_dir: /runs/text_classification/Emanuel/twitter-emotion-deberta-v3-base/2024-10-08-12-58-29
162
+ choices:
163
+ benchmark: energy_star
164
+ launcher: process
165
+ backend: pytorch
166
+ hydra/env: default
167
+ hydra/callbacks: null
168
+ hydra/job_logging: colorlog
169
+ hydra/hydra_logging: colorlog
170
+ hydra/hydra_help: default
171
+ hydra/help: default
172
+ hydra/sweeper: basic
173
+ hydra/launcher: basic
174
+ hydra/output: default
175
+ verbose: false
runs/text_classification/Emanuel/twitter-emotion-deberta-v3-base/2024-10-08-12-58-29/.hydra/overrides.yaml ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ - backend.model=Emanuel/twitter-emotion-deberta-v3-base
2
+ - backend.processor=Emanuel/twitter-emotion-deberta-v3-base
runs/text_classification/Emanuel/twitter-emotion-deberta-v3-base/2024-10-08-12-58-29/cli.log ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [2024-10-08 12:58:32,252][launcher][INFO] - ََAllocating process launcher
2
+ [2024-10-08 12:58:32,252][process][INFO] - + Setting multiprocessing start method to spawn.
3
+ [2024-10-08 12:58:32,261][device-isolation][INFO] - + Launched device(s) isolation process 180
4
+ [2024-10-08 12:58:32,261][device-isolation][INFO] - + Isolating device(s) [0]
5
+ [2024-10-08 12:58:32,266][process][INFO] - + Launched benchmark in isolated process 181.
6
+ [PROC-0][2024-10-08 12:58:34,826][datasets][INFO] - PyTorch version 2.4.0 available.
7
+ [PROC-0][2024-10-08 12:58:35,763][backend][INFO] - َAllocating pytorch backend
8
+ [PROC-0][2024-10-08 12:58:35,763][backend][INFO] - + Setting random seed to 42
9
+ [PROC-0][2024-10-08 12:58:36,680][pytorch][INFO] - + Using AutoModel class AutoModelForSequenceClassification
10
+ [PROC-0][2024-10-08 12:58:36,680][pytorch][INFO] - + Creating backend temporary directory
11
+ [PROC-0][2024-10-08 12:58:36,680][pytorch][INFO] - + Loading model with random weights
12
+ [PROC-0][2024-10-08 12:58:36,680][pytorch][INFO] - + Creating no weights model
13
+ [PROC-0][2024-10-08 12:58:36,680][pytorch][INFO] - + Creating no weights model directory
14
+ [PROC-0][2024-10-08 12:58:36,680][pytorch][INFO] - + Creating no weights model state dict
15
+ [PROC-0][2024-10-08 12:58:36,682][pytorch][INFO] - + Saving no weights model safetensors
16
+ [PROC-0][2024-10-08 12:58:36,683][pytorch][INFO] - + Saving no weights model pretrained config
17
+ [PROC-0][2024-10-08 12:58:36,784][pytorch][INFO] - + Loading no weights AutoModel
18
+ [PROC-0][2024-10-08 12:58:36,785][pytorch][INFO] - + Loading model directly on device: cuda
19
+ [PROC-0][2024-10-08 12:58:37,039][pytorch][INFO] - + Turning on model's eval mode
20
+ [PROC-0][2024-10-08 12:58:37,045][benchmark][INFO] - Allocating energy_star benchmark
21
+ [PROC-0][2024-10-08 12:58:37,045][energy_star][INFO] - + Loading raw dataset
22
+ [PROC-0][2024-10-08 12:58:38,133][energy_star][INFO] - + Initializing Inference report
23
+ [PROC-0][2024-10-08 12:58:38,133][energy][INFO] - + Tracking GPU energy on devices [0]
24
+ [PROC-0][2024-10-08 12:58:42,310][energy_star][INFO] - + Preprocessing dataset
25
+ [2024-10-08 12:58:42,913][experiment][ERROR] - Error during experiment
runs/text_classification/Emanuel/twitter-emotion-deberta-v3-base/2024-10-08-12-58-29/error.log ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+
3
+
4
+
5
+
6
+
7
+
8
+ [codecarbon INFO @ 12:58:38] [setup] RAM Tracking...
9
+ [codecarbon INFO @ 12:58:38] [setup] GPU Tracking...
10
+ [codecarbon INFO @ 12:58:38] Tracking Nvidia GPU via pynvml
11
+ [codecarbon DEBUG @ 12:58:38] GPU available. Starting setup
12
+ [codecarbon INFO @ 12:58:38] [setup] CPU Tracking...
13
+ [codecarbon DEBUG @ 12:58:38] Not using PowerGadget, an exception occurred while instantiating IntelPowerGadget : Platform not supported by Intel Power Gadget
14
+ [codecarbon DEBUG @ 12:58:38] Not using the RAPL interface, an exception occurred while instantiating IntelRAPL : Intel RAPL files not found at /sys/class/powercap/intel-rapl on linux
15
+ [codecarbon DEBUG @ 12:58:38] Not using PowerMetrics, an exception occurred while instantiating Powermetrics : Platform not supported by Powermetrics
16
+ [codecarbon WARNING @ 12:58:38] No CPU tracking mode found. Falling back on CPU constant mode.
17
+ [codecarbon WARNING @ 12:58:39] We saw that you have a AMD EPYC 7R32 but we don't know it. Please contact us.
18
+ [codecarbon INFO @ 12:58:39] CPU Model on constant consumption mode: AMD EPYC 7R32
19
+ [codecarbon INFO @ 12:58:39] >>> Tracker's metadata:
20
+ [codecarbon INFO @ 12:58:39] Platform system: Linux-5.10.192-183.736.amzn2.x86_64-x86_64-with-glibc2.35
21
+ [codecarbon INFO @ 12:58:39] Python version: 3.9.20
22
+ [codecarbon INFO @ 12:58:39] CodeCarbon version: 2.5.1
23
+ [codecarbon INFO @ 12:58:39] Available RAM : 186.705 GB
24
+ [codecarbon INFO @ 12:58:39] CPU count: 48
25
+ [codecarbon INFO @ 12:58:39] CPU model: AMD EPYC 7R32
26
+ [codecarbon INFO @ 12:58:39] GPU count: 1
27
+ [codecarbon INFO @ 12:58:39] GPU model: 1 x NVIDIA A10G
28
+ [codecarbon DEBUG @ 12:58:40] Not running on AWS
29
+ [codecarbon DEBUG @ 12:58:41] Not running on Azure
30
+ [codecarbon DEBUG @ 12:58:42] Not running on GCP
31
+ [codecarbon INFO @ 12:58:42] Saving emissions data to file /runs/text_classification/Emanuel/twitter-emotion-deberta-v3-base/2024-10-08-12-58-29/codecarbon.csv
32
+ [codecarbon DEBUG @ 12:58:42] EmissionsData(timestamp='2024-10-08T12:58:42', project_name='codecarbon', run_id='572ec4e9-8ce3-489c-9abe-fc829b7d0905', duration=0.002154106000034517, emissions=0.0, emissions_rate=0.0, cpu_power=0.0, gpu_power=0.0, ram_power=0.0, cpu_energy=0, gpu_energy=0, ram_energy=0, energy_consumed=0, country_name='United States', country_iso_code='USA', region='virginia', cloud_provider='', cloud_region='', os='Linux-5.10.192-183.736.amzn2.x86_64-x86_64-with-glibc2.35', python_version='3.9.20', codecarbon_version='2.5.1', cpu_count=48, cpu_model='AMD EPYC 7R32', gpu_count=1, gpu_model='1 x NVIDIA A10G', longitude=-77.4903, latitude=39.0469, ram_total_size=186.7047882080078, tracking_mode='process', on_cloud='N', pue=1.0)
33
+
34
+ Error executing job with overrides: ['backend.model=Emanuel/twitter-emotion-deberta-v3-base', 'backend.processor=Emanuel/twitter-emotion-deberta-v3-base']
35
+ Traceback (most recent call last):
36
+ File "/optimum-benchmark/optimum_benchmark/cli.py", line 65, in benchmark_cli
37
+ benchmark_report: BenchmarkReport = launch(experiment_config=experiment_config)
38
+ File "/optimum-benchmark/optimum_benchmark/experiment.py", line 102, in launch
39
+ raise error
40
+ File "/optimum-benchmark/optimum_benchmark/experiment.py", line 90, in launch
41
+ report = launcher.launch(run, experiment_config.benchmark, experiment_config.backend)
42
+ File "/optimum-benchmark/optimum_benchmark/launchers/process/launcher.py", line 47, in launch
43
+ while not process_context.join():
44
+ File "/opt/conda/lib/python3.9/site-packages/torch/multiprocessing/spawn.py", line 189, in join
45
+ raise ProcessRaisedException(msg, error_index, failed_process.pid)
46
+ torch.multiprocessing.spawn.ProcessRaisedException:
47
+
48
+ -- Process 0 terminated with the following error:
49
+ Traceback (most recent call last):
50
+ File "/opt/conda/lib/python3.9/site-packages/torch/multiprocessing/spawn.py", line 76, in _wrap
51
+ fn(i, *args)
52
+ File "/optimum-benchmark/optimum_benchmark/launchers/process/launcher.py", line 63, in entrypoint
53
+ worker_output = worker(*worker_args)
54
+ File "/optimum-benchmark/optimum_benchmark/experiment.py", line 62, in run
55
+ benchmark.run(backend)
56
+ File "/optimum-benchmark/optimum_benchmark/benchmarks/energy_star/benchmark.py", line 122, in run
57
+ self.dataset = preprocess(
58
+ File "/optimum-benchmark/optimum_benchmark/benchmarks/energy_star/preprocessing_utils.py", line 28, in preprocess
59
+ return task_to_preprocessing[task](dataset, config, preprocessor, pretrained_config)
60
+ File "/optimum-benchmark/optimum_benchmark/benchmarks/energy_star/preprocessing_utils.py", line 112, in text_classification_preprocessing
61
+ tokenizer.pad_token = tokenizer.eos_token
62
+ AttributeError: 'NoneType' object has no attribute 'eos_token'
63
+
64
+
65
+ Set the environment variable HYDRA_FULL_ERROR=1 for a complete stack trace.
runs/text_classification/Emanuel/twitter-emotion-deberta-v3-base/2024-10-08-12-58-29/experiment_config.json ADDED
@@ -0,0 +1,107 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "experiment_name": "text_classification",
3
+ "backend": {
4
+ "name": "pytorch",
5
+ "version": "2.4.0",
6
+ "_target_": "optimum_benchmark.backends.pytorch.backend.PyTorchBackend",
7
+ "task": "text-classification",
8
+ "model": "Emanuel/twitter-emotion-deberta-v3-base",
9
+ "processor": "Emanuel/twitter-emotion-deberta-v3-base",
10
+ "library": "transformers",
11
+ "device": "cuda",
12
+ "device_ids": "0",
13
+ "seed": 42,
14
+ "inter_op_num_threads": null,
15
+ "intra_op_num_threads": null,
16
+ "hub_kwargs": {
17
+ "revision": "main",
18
+ "force_download": false,
19
+ "local_files_only": false,
20
+ "trust_remote_code": true
21
+ },
22
+ "no_weights": true,
23
+ "device_map": null,
24
+ "torch_dtype": null,
25
+ "amp_autocast": false,
26
+ "amp_dtype": null,
27
+ "eval_mode": true,
28
+ "to_bettertransformer": false,
29
+ "low_cpu_mem_usage": null,
30
+ "attn_implementation": null,
31
+ "cache_implementation": null,
32
+ "torch_compile": false,
33
+ "torch_compile_config": {},
34
+ "quantization_scheme": null,
35
+ "quantization_config": {},
36
+ "deepspeed_inference": false,
37
+ "deepspeed_inference_config": {},
38
+ "peft_type": null,
39
+ "peft_config": {}
40
+ },
41
+ "launcher": {
42
+ "name": "process",
43
+ "_target_": "optimum_benchmark.launchers.process.launcher.ProcessLauncher",
44
+ "device_isolation": true,
45
+ "device_isolation_action": "warn",
46
+ "start_method": "spawn"
47
+ },
48
+ "benchmark": {
49
+ "name": "energy_star",
50
+ "_target_": "optimum_benchmark.benchmarks.energy_star.benchmark.EnergyStarBenchmark",
51
+ "dataset_name": "EnergyStarAI/text_classification",
52
+ "dataset_config": "",
53
+ "dataset_split": "train",
54
+ "num_samples": 1000,
55
+ "input_shapes": {
56
+ "batch_size": 1
57
+ },
58
+ "text_column_name": "text",
59
+ "truncation": true,
60
+ "max_length": -1,
61
+ "dataset_prefix1": "",
62
+ "dataset_prefix2": "",
63
+ "t5_task": "",
64
+ "image_column_name": "image",
65
+ "resize": false,
66
+ "question_column_name": "question",
67
+ "context_column_name": "context",
68
+ "sentence1_column_name": "sentence1",
69
+ "sentence2_column_name": "sentence2",
70
+ "audio_column_name": "audio",
71
+ "iterations": 10,
72
+ "warmup_runs": 10,
73
+ "energy": true,
74
+ "forward_kwargs": {},
75
+ "generate_kwargs": {},
76
+ "call_kwargs": {}
77
+ },
78
+ "environment": {
79
+ "cpu": " AMD EPYC 7R32",
80
+ "cpu_count": 48,
81
+ "cpu_ram_mb": 200472.73984,
82
+ "system": "Linux",
83
+ "machine": "x86_64",
84
+ "platform": "Linux-5.10.192-183.736.amzn2.x86_64-x86_64-with-glibc2.35",
85
+ "processor": "x86_64",
86
+ "python_version": "3.9.20",
87
+ "gpu": [
88
+ "NVIDIA A10G"
89
+ ],
90
+ "gpu_count": 1,
91
+ "gpu_vram_mb": 24146608128,
92
+ "optimum_benchmark_version": "0.2.0",
93
+ "optimum_benchmark_commit": null,
94
+ "transformers_version": "4.44.0",
95
+ "transformers_commit": null,
96
+ "accelerate_version": "0.33.0",
97
+ "accelerate_commit": null,
98
+ "diffusers_version": "0.30.0",
99
+ "diffusers_commit": null,
100
+ "optimum_version": null,
101
+ "optimum_commit": null,
102
+ "timm_version": null,
103
+ "timm_commit": null,
104
+ "peft_version": null,
105
+ "peft_commit": null
106
+ }
107
+ }