File size: 2,784 Bytes
a6ae5cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""ImageNet-Sketch data set for evaluating model's ability in learning (out-of-domain) semantics at ImageNet scale"""

import os

import datasets
from datasets.tasks import ImageClassification

from .classes import IMAGENET2012_CLASSES


_HOMEPAGE = "https://huggingface.co/datasets/AIPI540/test2/tree/main"

_CITATION = """\
@inproceedings{wang2019learning,
        title={Learning Robust Global Representations by Penalizing Local Predictive Power},
        author={Wang, Haohan and Ge, Songwei and Lipton, Zachary and Xing, Eric P},
        booktitle={Advances in Neural Information Processing Systems},
        pages={10506--10518},
        year={2019}
}
"""

_DESCRIPTION = """\
Artwork Images, to predict the year of the artwork created.
"""

_URL = "https://huggingface.co/datasets/AIPI540/Art2/resolve/main/final_art_data.parquet"


class Artwork(datasets.GeneratorBasedBuilder):
    """Artwork Images - a dataset of centuries of Images classes"""

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "file_name": str,
                    "label": datasets.features.ClassLabel(names=[0,1,2,3,4,5,6]),
                    "image_data": bytes
                }
            ),
            supervised_keys=("filename", "label","image_data"),
            homepage=_HOMEPAGE,
            citation=_CITATION,
            task_templates=[ImageClassification(image_column="image_data", label_column="label")],
        )

    def _split_generators(self, dl_manager):
        data_files = dl_manager.download_and_extract(_URL)

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "files": dl_manager.iter_files([data_files]),
                },
            ),
        ]

    def _generate_examples(self, files):
        for i, path in enumerate(files):
          yield i, {
              "filename": path['file_name'],
              "label": path['label'],
              "image_data": path['image_data'],
          }