File size: 3,104 Bytes
a6ae5cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
54b69e9
a6ae5cb
 
 
a906003
a6ae5cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4b3aa42
 
 
 
 
 
7a52168
a6ae5cb
 
 
 
 
 
 
 
 
7a52168
43b4ea6
a6ae5cb
 
d389e37
a6ae5cb
 
 
 
 
 
 
5dba0b2
a6ae5cb
 
 
 
 
5dba0b2
a6ae5cb
 
 
 
 
abea7a5
838155b
abea7a5
 
598c669
c6b8755
1bd1c39
24759ba
 
abea7a5
0802d82
838155b
abea7a5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""ImageNet-Sketch data set for evaluating model's ability in learning (out-of-domain) semantics at ImageNet scale"""

import os

import pandas as pd
import datasets
from datasets.tasks import ImageClassification

# from .classes import IMAGENET2012_CLASSES


_HOMEPAGE = "https://huggingface.co/datasets/AIPI540/test2/tree/main"

_CITATION = """\
@inproceedings{wang2019learning,
        title={Learning Robust Global Representations by Penalizing Local Predictive Power},
        author={Wang, Haohan and Ge, Songwei and Lipton, Zachary and Xing, Eric P},
        booktitle={Advances in Neural Information Processing Systems},
        pages={10506--10518},
        year={2019}
}
"""

_DESCRIPTION = """\
Artwork Images, to predict the year of the artwork created.
"""

_URL = "https://huggingface.co/datasets/AIPI540/Art2/resolve/main/final_art_data.parquet"


filename = 'data.json'

with open(filename, 'r') as file:
    my_dict = json.load(file)

classes=['0','1','2','3','4','5','6']

class Artwork(datasets.GeneratorBasedBuilder):
    """Artwork Images - a dataset of centuries of Images classes"""

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "label": datasets.features.ClassLabel(names=classes),
                    "image_data": datasets.Value("binary"),
                }
            ),
            supervised_keys=("label","image_data"),
            homepage=_HOMEPAGE,
            citation=_CITATION,
            task_templates=[ImageClassification(image_column="image_data", label_column="label")],
        )

    def _split_generators(self, dl_manager):
        data_files = dl_manager.download_and_extract(_URL)
        df = pd.read_parquet(data_files, engine='pyarrow')

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "files": df,
                },
            ),
        ]

    def _generate_examples(self, files):
        cnt=0
        for path in files.itertuples():
            print(cnt)
            cnt+=1
            print(path)
            print(path.label)
            print(type(path.label))
            print(path.image_data)
            print(type(path.image_data))
            yield {
              "label": classes[(path.label)],
              "image_data": path.image_data,
            }