File size: 1,989 Bytes
07bfa31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
171e20a
 
 
 
 
 
 
 
 
 
 
 
 
07bfa31
171e20a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc7d412
 
 
 
 
 
 
 
 
 
 
171e20a
 
 
 
 
 
 
 
 
fc7d412
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
---
dataset_info:
  features:
  - name: link
    dtype: string
  - name: question
    dtype: string
  - name: answer
    dtype: string
  splits:
  - name: train
    num_bytes: 26081145
    num_examples: 129362
  download_size: 11920936
  dataset_size: 26081145
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
license: apache-2.0
task_categories:
- question-answering
- text-generation
- text2text-generation
language:
- en
tags:
- psychology
- philosophy
pretty_name: Bill Wurtz Q&A
size_categories:
- 100K<n<1M
---

<div align="center">
  <img alt="hi huggingface banner"
       src="https://cdn-uploads.huggingface.co/production/uploads/640739e3a5e2ff2832ead08b/uO4HuXeoXgd0aQQ2t6Zhw.png"
  />
</div>

<br />

# bill-wurtz

All questions Bill Wurtz answers on [billwurtz.com/questions](https://billwurtz.com/questions/questions.html). I think they're pretty humorous.

- 🐣 Fetched on: 2024-3-10 (Mar 10th)
- πŸ• For tasks: `text-generation`, `question-answering`, + more
- πŸ“œ Rows: `129,362` (129k)

```python
DatasetDict({
    train: Dataset({
        features: ['link', 'question', 'answer'],
        num_rows: 129362
    })
})
```

## Use This Dataset

Download with [πŸ€— Datasets](https://pypi.org/project/datasets):

```python
from datasets import load_dataset

dataset = load_dataset("AWeirdDev/bill-wurtz")
dataset["train"][0]
# => { "link": "...", "question": "your opinion on ceilings?", "answer": "incredible" }
```

<details>
  <summary><b>🧹 Cleaning the dataset</b></summary>
  <p>

Some questions/answers may be blank. Clean the dataset before you use it.

```python
from datasets import Dataset

raw_dataset = dataset["train"].to_list()

for i, d in enumerate(raw_dataset):
  if not d['question'].strip() or not d['answer'].strip():
    del raw_dataset[i]

raw_dataset = Dataset.from_list(raw_dataset)
raw_dataset
# Dataset({
#     features: ['link', 'question', 'answer'],
#     num_rows: 123922
# })
```

  </p>
</details>