File size: 1,989 Bytes
07bfa31 171e20a 07bfa31 171e20a fc7d412 171e20a fc7d412 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 |
---
dataset_info:
features:
- name: link
dtype: string
- name: question
dtype: string
- name: answer
dtype: string
splits:
- name: train
num_bytes: 26081145
num_examples: 129362
download_size: 11920936
dataset_size: 26081145
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
license: apache-2.0
task_categories:
- question-answering
- text-generation
- text2text-generation
language:
- en
tags:
- psychology
- philosophy
pretty_name: Bill Wurtz Q&A
size_categories:
- 100K<n<1M
---
<div align="center">
<img alt="hi huggingface banner"
src="https://cdn-uploads.huggingface.co/production/uploads/640739e3a5e2ff2832ead08b/uO4HuXeoXgd0aQQ2t6Zhw.png"
/>
</div>
<br />
# bill-wurtz
All questions Bill Wurtz answers on [billwurtz.com/questions](https://billwurtz.com/questions/questions.html). I think they're pretty humorous.
- π£ Fetched on: 2024-3-10 (Mar 10th)
- π For tasks: `text-generation`, `question-answering`, + more
- π Rows: `129,362` (129k)
```python
DatasetDict({
train: Dataset({
features: ['link', 'question', 'answer'],
num_rows: 129362
})
})
```
## Use This Dataset
Download with [π€ Datasets](https://pypi.org/project/datasets):
```python
from datasets import load_dataset
dataset = load_dataset("AWeirdDev/bill-wurtz")
dataset["train"][0]
# => { "link": "...", "question": "your opinion on ceilings?", "answer": "incredible" }
```
<details>
<summary><b>π§Ή Cleaning the dataset</b></summary>
<p>
Some questions/answers may be blank. Clean the dataset before you use it.
```python
from datasets import Dataset
raw_dataset = dataset["train"].to_list()
for i, d in enumerate(raw_dataset):
if not d['question'].strip() or not d['answer'].strip():
del raw_dataset[i]
raw_dataset = Dataset.from_list(raw_dataset)
raw_dataset
# Dataset({
# features: ['link', 'question', 'answer'],
# num_rows: 123922
# })
```
</p>
</details>
|