Unnamed: 0
int64
0
389k
code
stringlengths
26
79.6k
docstring
stringlengths
1
46.9k
12,500
def get_app_data(app_id): try: conn = get_conn() c = conn.cursor() c.execute("SELECT id,name,app_data FROM app WHERE id= ".format(app_id)) result = c.fetchone() conn.close() if result: appname = result[1] app_data = utils.str2dict( base64.b64decode(result[2]) ) return (appname,app_data) else: return (None,None) except Exception,e: raise RuntimeError( % e)
get app data ( include name and app_data )
12,501
def find_parents(self): for i in range(len(self.vertices)): self.vertices[i].parents = [] for i in range(len(self.vertices)): for child in self.vertices[i].children: if i not in self.vertices[child].parents: self.vertices[child].parents.append(i)
Take a tree and set the parents according to the children Takes a tree structure which lists the children of each vertex and computes the parents for each vertex and places them in.
12,502
def _configuration(self, kwargs, config_item): if not in config_item: if not in kwargs: return nc = kwargs[] = {} for field in Resource.configuration[kwargs[]]: if field not in config_item: raise exc.TowerCLIError( % field) else: nc[field] = config_item[field] else: kwargs[] = \ config_item[]
Combine configuration-related keyworded arguments into notification_configuration.
12,503
def read_env(cls, env_file=None, **overrides): if env_file is None: frame = sys._getframe() env_file = os.path.join(os.path.dirname(frame.f_back.f_code.co_filename), ) if not os.path.exists(env_file): warnings.warn( "%s doesnre not configuring your " "environment separately, create one." % env_file) return try: with open(env_file) if isinstance(env_file, basestring) else env_file as f: content = f.read() except IOError: warnings.warn( "Error reading %s - if youRead environment variables from: {0}\A(?:export )?([A-Za-z_0-9]+)=(.*)\Z(.*)\A"(.*)"\Z\\(.)\1', m3.group(1)) cls.ENVIRON.setdefault(key, str(val)) for key, value in overrides.items(): cls.ENVIRON.setdefault(key, value)
Read a .env file into os.environ. If not given a path to a dotenv path, does filthy magic stack backtracking to find manage.py and then find the dotenv. http://www.wellfireinteractive.com/blog/easier-12-factor-django/ https://gist.github.com/bennylope/2999704
12,504
def run(self): loop = GLib.MainLoop() context = loop.get_context() while True: time.sleep(0.1) if context.pending(): context.iteration() self._manager[ATTR_POSITION] = self._position() try: method, args = self._task_queue.get(False) getattr(self, method)(**args) except queue.Empty: pass if self.state != STATE_IDLE: continue try: uri = self._media_queue.get(False) self.media(uri) except queue.Empty: pass
Run the process. Iterate the GLib main loop and process the task queue.
12,505
def init_app(self, app): self.app = app if not hasattr(app, ): app.extensions = {} app.extensions[] = self self.reload()
Initialize this Flask extension for given app.
12,506
def python(source): r obj = type(, (object,), {})() _exec(source, obj.__dict__, obj.__dict__) return obj
r""" >>> python('def add(a, b): return a + b').add(40, 2) 42
12,507
def grains_dict(self): d = {grain.duration: grain for grain in self.grains()} d.update({grain.label: grain for grain in self.grains()}) return d
Allowing to lookup grain by either label or duration For backward compatibility
12,508
def update_metric_tags(self, metric_type, metric_id, **tags): self._put(self._get_metrics_tags_url(self._get_metrics_single_url(metric_type, metric_id)), tags, parse_json=False)
Replace the metric_id's tags with given **tags :param metric_type: MetricType to be matched (required) :param metric_id: Exact string matching metric id :param tags: Updated key/value tag values of the metric
12,509
def _setup_output_file(self, output_filename, args, write_header=True): try: output_file = open(output_filename, ) except IOError as e: sys.exit(e) if write_header: output_file.write(.join(map(util.escape_string_shell, self._build_cmdline(args))) + + * 80 + ) output_file.flush() return output_file
Open and prepare output file.
12,510
def run_config_diagnostics(config_path=CONFIG_PATH): config = read_config(config_path) missing_sections = set() malformed_entries = defaultdict(set) for section, expected_section_keys in SECTION_KEYS.items(): section_content = config.get(section) if not section_content: missing_sections.add(section) else: for option in expected_section_keys: option_value = section_content.get(option) if not option_value: malformed_entries[section].add(option) return config_path, missing_sections, malformed_entries
Run diagnostics on the configuration file. Args: config_path (str): Path to the configuration file. Returns: str, Set[str], dict(str, Set[str]): The path to the configuration file, a set of missing sections and a dict that maps each section to the entries that have either missing or empty options.
12,511
def handle_document_error(self, item_session: ItemSession) -> Actions: self._waiter.increment() self._statistics.errors[ServerError] += 1 action = self.handle_response(item_session) if action == Actions.NORMAL: item_session.set_status(Status.error) return action
Callback for when the document only describes an server error. Returns: A value from :class:`.hook.Actions`.
12,512
def handle_result(self, idents, parent, raw_msg, success=True): engine = idents[0] client = idents[1] raw_msg[:2] = [client,engine] self.client_stream.send_multipart(raw_msg, copy=False) msg_id = parent[] self.pending[engine].pop(msg_id) if success: self.completed[engine].add(msg_id) self.all_completed.add(msg_id) else: self.failed[engine].add(msg_id) self.all_failed.add(msg_id) self.all_done.add(msg_id) self.destinations[msg_id] = engine self.update_graph(msg_id, success)
handle a real task result, either success or failure
12,513
def plot_histogram(self, filename=None): header, data = self.read_next_data_block() data = data.view() plt.figure("Histogram") plt.hist(data.flatten(), 65, facecolor=) if filename: plt.savefig(filename) plt.show()
Plot a histogram of data values
12,514
def _fill_syns(self, new_syns, rpacketlists_per_worker): logger.debug("rank:{}/{} {}._fill_syns".format(mpi.myrank, mpi.nprocs, self.__class__.__name__)) for packetlists in rpacketlists_per_worker: for packetlist in packetlists: for packet in packetlist: new_syns.set_value(**packet) return new_syns
rpacket_per_worker is a list of packetlists as returned by _run_chunk
12,515
def inline(text, data=None): if not data: data = text.encode() elif not isinstance(data, (bytes, bytearray, memoryview)): data = str(data).encode() if len(data) > 64: raise ValueError() return types.KeyboardButtonCallback(text, data)
Creates a new inline button. If `data` is omitted, the given `text` will be used as `data`. In any case `data` should be either ``bytes`` or ``str``. Note that the given `data` must be less or equal to 64 bytes. If more than 64 bytes are passed as data, ``ValueError`` is raised.
12,516
def error(self, fail=True, action=): e = if action: e = % (action, e) log.error(e) if fail: raise IOError(e)
SHOULD BE PRIVATE METHOD
12,517
def best_diff(img1, img2, opts): w1, h1 = img1.size w2, h2 = img2.size w, h = min(w1, w2), min(h1, h2) best = None best_value = 255 * w * h + 1 xr = abs(w1 - w2) + 1 yr = abs(h1 - h2) + 1 p = Progress(xr * yr, timeout=opts.timeout) for x in range(xr): if w1 > w2: x1, x2 = x, 0 else: x1, x2 = 0, x for y in range(yr): if h1 > h2: y1, y2 = y, 0 else: y1, y2 = 0, y p.next() this = diff(img1, img2, (x1, y1), (x2, y2)) this_value = diff_badness(this) if this_value < best_value: best = this best_value = this_value best_pos = (x1, y1), (x2, y2) return best, best_pos
Find the best alignment of two images that minimizes the differences. Returns (diff, alignments) where ``diff`` is a difference map, and ``alignments`` is a tuple ((x1, y2), (x2, y2)). See ``diff()`` for the description of the alignment numbers.
12,518
def exciter(self, Xexc, Pexc, Vexc): exciters = self.exciters F = zeros(Xexc.shape) typ1 = [e.generator._i for e in exciters if e.model ==CONST_EXCITATION] typ2 = [e.generator._i for e in exciters if e.model == IEEE_DC1A] F[typ1, :] = 0.0 Efd = Xexc[typ2, 0] Uf = Xexc[typ2, 1] Ur = Xexc[typ2, 2] Ka = Pexc[typ2, 0] Ta = Pexc[typ2, 1] Ke = Pexc[typ2, 2] Te = Pexc[typ2, 3] Kf = Pexc[typ2, 4] Tf = Pexc[typ2, 5] Aex = Pexc[typ2, 6] Bex = Pexc[typ2, 7] Ur_min = Pexc[typ2, 8] Ur_max = Pexc[typ2, 9] Uref = Pexc[typ2, 10] Uref2 = Pexc[typ2, 11] U = Vexc[typ2, 1] Ux = Aex * exp(Bex * Efd) dUr = 1 / Ta * (Ka * (Uref - U + Uref2 - Uf) - Ur) dUf = 1 / Tf * (Kf / Te * (Ur - Ux - Ke * Efd) - Uf) if sum(flatnonzero(Ur > Ur_max)) >= 1: Ur2 = Ur_max elif sum(flatnonzero(Ur < Ur_max)) >= 1: Ur2 = Ur_min else: Ur2 = Ur dEfd = 1 / Te * (Ur2 - Ux - Ke * Efd) F[typ2, :] = c_[dEfd, dUf, dUr] return F
Exciter model. Based on Exciter.m from MatDyn by Stijn Cole, developed at Katholieke Universiteit Leuven. See U{http://www.esat.kuleuven.be/electa/teaching/ matdyn/} for more information.
12,519
def build_network(self, network=None, *args, **kwargs): self.network = network return network
Core method to construct PyPSA Network object.
12,520
def random_box(molecules, total=None, proportions=None, size=[1.,1.,1.], maxtries=100): if proportions is None: proportions = np.ones(len(molecules)) / len(molecules) else: proportions = np.array(proportions) size = np.array(size) tree = CoverTree(metric="periodic", metric_args={: size}) type_array = [] result = [] vdw_radii = [] max_vdw = max(vdw_radius(np.concatenate([m.type_array for m in molecules]))) first = True for l, n in enumerate((proportions * total).astype(int)): for i in range(n): for k in range(maxtries): template = molecules[l].copy() reference = np.random.uniform(0, 1, 3) * size r_array = template.r_array + reference pts_list, distances_list = tree.query_ball_many(r_array, vdw_radius(template.type_array) + max_vdw) ok = True for i, (dist, pts) in enumerate(zip(distances_list, pts_list)): if len(dist) == 0: break found_vdw = np.array([vdw_radii[p] for p in pts]) ok &= all(dist > found_vdw + vdw_radius(template.type_array[i])) if ok: tree.insert_many(r_array) template.r_array = r_array result.append(template) vdw_radii.extend(vdw_radius(template.type_array)) break if not ok: raise Exception("Trials exceeded") system = System(result) system.box_vectors[0, 0] = size[0] system.box_vectors[1, 1] = size[1] system.box_vectors[2, 2] = size[2] return system
Create a System made of a series of random molecules. Parameters: total: molecules: proportions:
12,521
def resolve_any_xref(self, env, fromdocname, builder, target, node, contnode): prefix = node.get() results = [] match = self.find_obj(env, prefix, target, None, 1) if match is not None: (name, obj) = match results.append(( + self.role_for_objtype(obj[1]), make_refnode(builder, fromdocname, obj[0], name, contnode, name))) return results
Look for any references, without object type This always searches in "refspecific" mode
12,522
def PwDecrypt(self, password): buf = password pw = six.b() last = self.authenticator while buf: hash = md5_constructor(self.secret + last).digest() if six.PY3: for i in range(16): pw += bytes((hash[i] ^ buf[i],)) else: for i in range(16): pw += chr(ord(hash[i]) ^ ord(buf[i])) (last, buf) = (buf[:16], buf[16:]) while pw.endswith(six.b()): pw = pw[:-1] return pw.decode()
Unobfuscate a RADIUS password. RADIUS hides passwords in packets by using an algorithm based on the MD5 hash of the packet authenticator and RADIUS secret. This function reverses the obfuscation process. :param password: obfuscated form of password :type password: binary string :return: plaintext password :rtype: unicode string
12,523
def create(cls, name, ne_ref=None, operator=, sub_expression=None, comment=None): sub_expression = [] if sub_expression is None else [sub_expression] json = {: name, : operator, : ne_ref, : sub_expression, : comment} return ElementCreator(cls, json)
Create the expression :param str name: name of expression :param list ne_ref: network element references for expression :param str operator: 'exclusion' (negation), 'union', 'intersection' (default: exclusion) :param dict sub_expression: sub expression used :param str comment: optional comment :raises CreateElementFailed: element creation failed with reason :return: instance with meta :rtype: Expression
12,524
def get_corpus(self): corpus = [] cd = 0 tag = None for i in range(0, self.init_corpus[0][0]): init_unit = self.unit_raw[self.init_corpus[0][0] - i] cdm = CDM(init_unit) alpha = cdm.get_alpha() if cd <= self.cd_min and cdm.NC is not 0: tag = True if cd > self.cd_max or cdm.NC == 0: tag = False if cd in range(self.cd_min + 1, self.cd_max) and cdm.NC is not 0: if alpha > 0: tag = True else: tag = False if cdm.NC == 0: cd += 1 else: cd = 0 if tag == True: corpus.append(init_unit) elif tag == False: if alpha < 0 or cd > self.cd_max: break else: continue corpus = list(reversed(corpus)) try: self.index = self.init_corpus[0][0] - i + 1 except UnboundLocalError: log(, ) self.index = self.init_corpus[0][0] cd = 0 tag = None for i in range(1, len(self.unit_raw) - self.init_corpus[0][0]): init_unit = self.unit_raw[self.init_corpus[0][0] + i] cdm = CDM(init_unit) alpha = cdm.get_alpha() if cd <= self.cd_min and cdm.NC is not 0: tag = True if cd > self.cd_max or cdm.NC == 0: tag = False if cd in range(self.cd_min + 1, self.cd_max) and cdm.NC is not 0: if alpha > 0: tag = True else: tag = False if cdm.NC == 0: cd += 1 else: cd = 0 if tag == True: corpus.append(init_unit) elif tag == False: if alpha < 0 or cd > self.cd_max: break else: continue log(, .format(corpus)) return .join(corpus)
获取语料库 Return: corpus -- 语料库,str类型
12,525
def get_working_login(self, database, username=None, password=None): login_user = None self.get_db(database, username=username, password=password, never_auth_with_admin=True) login_user = self.get_login_user(database) if login_user: username = login_user["username"] password = (login_user["password"] if "password" in login_user else None) return username, password
authenticate to the specified database starting with specified username/password (if present), try to return a successful login within 3 attempts
12,526
def reboot_autopilot(self, hold_in_bootloader=False): if self.mavlink10(): if hold_in_bootloader: param1 = 3 else: param1 = 1 self.mav.command_long_send(self.target_system, self.target_component, mavlink.MAV_CMD_PREFLIGHT_REBOOT_SHUTDOWN, 0, param1, 0, 0, 0, 0, 0, 0) self.mav.command_long_send(self.target_system, self.target_component, mavlink.MAV_CMD_PREFLIGHT_REBOOT_SHUTDOWN, 0, 1, 0, 0, 0, 0, 0, 0)
reboot the autopilot
12,527
def create_session(docker_image=None, docker_rm=None, echo=False, loglevel=, nocolor=False, session_type=, vagrant_session_name=None, vagrant_image=, vagrant_gui=False, vagrant_memory=, vagrant_num_machines=, vagrant_provider=, vagrant_root_folder=None, vagrant_swapsize=, vagrant_version=, vagrant_virt_method=, vagrant_cpu=, video=-1, walkthrough=False): assert session_type in (,,), shutit_util.print_debug() shutit_global_object = shutit_global.shutit_global_object if video != -1 and video > 0: walkthrough = True if session_type in (,): return shutit_global_object.create_session(session_type, docker_image=docker_image, rm=docker_rm, echo=echo, walkthrough=walkthrough, walkthrough_wait=video, nocolor=nocolor, loglevel=loglevel) elif session_type == : if vagrant_session_name is None: vagrant_session_name = + shutit_util.random_id() if isinstance(vagrant_num_machines, int): vagrant_num_machines = str(vagrant_num_machines) assert isinstance(vagrant_num_machines, str) assert isinstance(int(vagrant_num_machines), int) if vagrant_root_folder is None: vagrant_root_folder = shutit_global.shutit_global_object.owd return create_session_vagrant(vagrant_session_name, vagrant_num_machines, vagrant_image, vagrant_provider, vagrant_gui, vagrant_memory, vagrant_swapsize, echo, walkthrough, nocolor, video, vagrant_version, vagrant_virt_method, vagrant_root_folder, vagrant_cpu, loglevel)
Creates a distinct ShutIt session. Sessions can be of type: bash - a bash shell is spawned and vagrant - a Vagrantfile is created and 'vagrant up'ped
12,528
def _ip_int_from_string(self, ip_str): parts = ip_str.split() if len(parts) < 3: raise AddressValueError(ip_str) if in parts[-1]: ipv4_int = IPv4Address(parts.pop())._ip parts.append( % ((ipv4_int >> 16) & 0xFFFF)) parts.append( % (ipv4_int & 0xFFFF)) raise AddressValueError(ip_str) if skip_index is not None: parts_hi = skip_index parts_lo = len(parts) - skip_index - 1 if not parts[0]: parts_hi -= 1 if parts_hi: raise AddressValueError(ip_str) if not parts[-1]: parts_lo -= 1 if parts_lo: raise AddressValueError(ip_str) parts_skipped = self._HEXTET_COUNT - (parts_hi + parts_lo) if parts_skipped < 1: raise AddressValueError(ip_str) else: if len(parts) != self._HEXTET_COUNT: raise AddressValueError(ip_str) parts_hi = len(parts) parts_lo = 0 parts_skipped = 0 try: ip_int = 0L for i in xrange(parts_hi): ip_int <<= 16 ip_int |= self._parse_hextet(parts[i]) ip_int <<= 16 * parts_skipped for i in xrange(-parts_lo, 0): ip_int <<= 16 ip_int |= self._parse_hextet(parts[i]) return ip_int except ValueError: raise AddressValueError(ip_str)
Turn an IPv6 ip_str into an integer. Args: ip_str: A string, the IPv6 ip_str. Returns: A long, the IPv6 ip_str. Raises: AddressValueError: if ip_str isn't a valid IPv6 Address.
12,529
def write_graph(self, filename): f = open(filename, ) f.write(self._get_graphviz_data()) f.close()
Write raw graph data which can be post-processed using graphviz.
12,530
def to_timedelta(value, strict=True): if isinstance(value, int): return timedelta(seconds=value) value, type(value).__name__ ) ) return timedelta(hours=hours, minutes=minutes, seconds=seconds)
converts duration string to timedelta strict=True (by default) raises StrictnessError if either hours, minutes or seconds in duration string exceed allowed values
12,531
def acceptNavigationRequest(self, url, navigation_type, isMainFrame): if navigation_type == QWebEnginePage.NavigationTypeLinkClicked: self.linkClicked.emit(url) return False return True
Overloaded method to handle links ourselves
12,532
def serialize(self, o): if isinstance(o, (list, tuple)): return [self.serialize(i) for i in o] if isinstance(o, dict): return {k: self.serialize(v) for k, v in o.items()} if isinstance(o, datetime): return o.isoformat() if isinstance(o, Result): return self.serialize(o.serialize()) return o
Returns a safe serializable object that can be serialized into JSON. @param o Python object to serialize
12,533
def timeout(timeout_time, default): def timeout_function(f): def f2(*args): def timeout_handler(signum, frame): raise MethodTimer.DecoratorTimeout() old_handler = signal.signal(signal.SIGALRM, timeout_handler) signal.alarm(timeout_time) try: retval = f(*args) except MethodTimer.DecoratorTimeout: return default finally: signal.signal(signal.SIGALRM, old_handler) signal.alarm(0) return retval return f2 return timeout_function
Decorate a method so it is required to execute in a given time period, or return a default value.
12,534
def load_secret(self, secret): if isinstance(secret, pyhsm.aead_cmd.YHSM_YubiKeySecret): secret = secret.pack() return pyhsm.buffer_cmd.YHSM_Cmd_Buffer_Load(self.stick, secret).execute()
Ask YubiHSM to load a pre-existing YubiKey secret. The data is stored internally in the YubiHSM in temporary memory - this operation would typically be followed by one or more L{generate_aead} commands to actually retreive the generated secret (in encrypted form). @param secret: YubiKey secret to load @type secret: L{pyhsm.aead_cmd.YHSM_YubiKeySecret} or string @returns: Number of bytes in YubiHSM internal buffer after load @rtype: integer @see: L{pyhsm.buffer_cmd.YHSM_Cmd_Buffer_Load}
12,535
def output_file_job(job, filename, file_id, output_dir, s3_key_path=None): job.fileStore.logToMaster(.format(filename, output_dir)) work_dir = job.fileStore.getLocalTempDir() filepath = job.fileStore.readGlobalFile(file_id, os.path.join(work_dir, filename)) if urlparse(output_dir).scheme == : s3am_upload(job=job, fpath=os.path.join(work_dir, filepath), s3_dir=output_dir, s3_key_path=s3_key_path) elif os.path.exists(os.path.join(output_dir, filename)): job.fileStore.logToMaster("File already exists: {}".format(filename)) else: mkdir_p(output_dir) copy_files([filepath], output_dir)
Uploads a file from the FileStore to an output directory on the local filesystem or S3. :param JobFunctionWrappingJob job: passed automatically by Toil :param str filename: basename for file :param str file_id: FileStoreID :param str output_dir: Amazon S3 URL or local path :param str s3_key_path: (OPTIONAL) Path to 32-byte key to be used for SSE-C encryption :return:
12,536
def get_fit_failed_candidate_model(model_type, formula): warnings = [ EEMeterWarning( qualified_name="eemeter.caltrack_daily.{}.model_results".format(model_type), description=( "Error encountered in statsmodels.formula.api.ols method. (Empty data?)" ), data={"traceback": traceback.format_exc()}, ) ] return CalTRACKUsagePerDayCandidateModel( model_type=model_type, formula=formula, status="ERROR", warnings=warnings )
Return a Candidate model that indicates the fitting routine failed. Parameters ---------- model_type : :any:`str` Model type (e.g., ``'cdd_hdd'``). formula : :any:`float` The candidate model formula. Returns ------- candidate_model : :any:`eemeter.CalTRACKUsagePerDayCandidateModel` Candidate model instance with status ``'ERROR'``, and warning with traceback.
12,537
def fetch_all_records(self): r api = self.doapi_manager return map(self._record, api.paginate(self.record_url, ))
r""" Returns a generator that yields all of the DNS records for the domain :rtype: generator of `DomainRecord`\ s :raises DOAPIError: if the API endpoint replies with an error
12,538
def _initialize(self, funs_to_tally, length): chain = self.nchains self._chains[chain] = self._h5file.create_group( , % chain, % chain) for name, fun in six.iteritems(funs_to_tally): arr = np.asarray(fun()) assert arr.dtype != np.dtype() array = self._h5file.createEArray( self._chains[chain], name, tables.Atom.from_dtype(arr.dtype), (0,) + arr.shape, filters=self.filter) self._arrays[chain, name] = array self._traces[name] = Trace(name, getfunc=fun, db=self) self._traces[name]._initialize(self.chains, length) self.trace_names.append(list(funs_to_tally.keys()))
Create a group named ``chain#`` to store all data for this chain.
12,539
def set_type(self, value): if value not in self.types_available: log = "Sources field should be in one of %s" % ( self.types_available ) raise MalFormattedSource(log) self._type = value
Setter for type attribute
12,540
def isdir(self, path): try: self.remote_context.check_output(["test", "-d", path]) except subprocess.CalledProcessError as e: if e.returncode == 1: return False else: raise return True
Return `True` if directory at `path` exist, False otherwise.
12,541
def get_best_local_timezone(): zone_name = tzlocal.get_localzone().zone if zone_name in pytz.all_timezones: return zone_name if time.daylight: local_offset = time.altzone localtz = time.tzname[1] else: local_offset = time.timezone localtz = time.tzname[0] local_offset = datetime.timedelta(seconds=-local_offset) for zone_name in pytz.all_timezones: timezone = pytz.timezone(zone_name) if not hasattr(timezone, ): continue for utcoffset, daylight, tzname in timezone._tzinfos: if utcoffset == local_offset and tzname == localtz: return zone_name
Compares local timezone offset to pytz's timezone db, to determine a matching timezone name to use when TIME_ZONE is not set.
12,542
def data_objet_class(data_mode=, time_mode=): classes_table = {(, ): GlobalValueObject, (, ): EventValueObject, (, ): SegmentValueObject, (, ): FrameValueObject, (, ): GlobalLabelObject, (, ): EventLabelObject, (, ): SegmentLabelObject, (, ): FrameLabelObject} try: return classes_table[(data_mode, time_mode)] except KeyError as e: raise ValueError()
Factory function for Analyzer result
12,543
def unitary(self, obj, qubits, label=None): if isinstance(qubits, QuantumRegister): qubits = qubits[:] return self.append(UnitaryGate(obj, label=label), qubits, [])
Apply u2 to q.
12,544
def _handle_dbproc_call(self, parts, parameters_metadata): for part in parts: if part.kind == part_kinds.ROWSAFFECTED: self.rowcount = part.values[0] elif part.kind == part_kinds.TRANSACTIONFLAGS: pass elif part.kind == part_kinds.STATEMENTCONTEXT: pass elif part.kind == part_kinds.OUTPUTPARAMETERS: self._buffer = part.unpack_rows(parameters_metadata, self.connection) self._received_last_resultset_part = True self._executed = True elif part.kind == part_kinds.RESULTSETMETADATA: self.description, self._column_types = self._handle_result_metadata(part) elif part.kind == part_kinds.RESULTSETID: self._resultset_id = part.value elif part.kind == part_kinds.RESULTSET: self._buffer = part.unpack_rows(self._column_types, self.connection) self._received_last_resultset_part = part.attribute & 1 self._executed = True else: raise InterfaceError("Stored procedure call, unexpected part kind %d." % part.kind) self._executed = True
Handle reply messages from STORED PROCEDURE statements
12,545
def get_scales(self, aesthetic): bool_lst = self.find(aesthetic) try: idx = bool_lst.index(True) return self[idx] except ValueError: return None
Return the scale for the aesthetic or None if there isn't one. These are the scales specified by the user e.g `ggplot() + scale_x_continuous()` or those added by default during the plot building process
12,546
def javadoc_role(name, rawtext, text, lineno, inliner, options={}, content=[]): has_explicit_title, title, target = split_explicit_title(text) title = utils.unescape(title) target = utils.unescape(target) if not has_explicit_title: target = target.lstrip() if title[0] == : title = title[1:].rpartition()[2] app = inliner.document.settings.env.app ref = get_javadoc_ref(app, rawtext, target) if not ref: raise ValueError("no Javadoc source found for %s in javadoc_url_map" % (target,)) ref.append(nodes.Text(title, title)) return [ref], []
Role for linking to external Javadoc
12,547
def loadRule(rule_json_object): name = rule_json_object[] rule_type = rule_json_object[] validation_regex = None required = False removehtml = False include_end_regex = False strip_end_regex = None sub_rules = [] begin_stripe_id = None end_stripe_id = None begin_shift = 0 end_shift = 0 if in rule_json_object: sub_rules = rule_json_object[] if in rule_json_object: validation_regex = rule_json_object[] if in rule_json_object: required = rule_json_object[] if in rule_json_object: removehtml = rule_json_object[] if in rule_json_object: include_end_regex = rule_json_object[] if in rule_json_object: strip_end_regex = rule_json_object[] if in rule_json_object: begin_stripe_id = rule_json_object[] if in rule_json_object: end_stripe_id = rule_json_object[] if in rule_json_object: begin_shift = rule_json_object[] if in rule_json_object: end_shift = rule_json_object[] rule = {} if rule_type == ITEM_RULE or rule_type == : begin_regex = rule_json_object[] end_regex = rule_json_object[] rule = ItemRule(name, begin_regex, end_regex, include_end_regex, strip_end_regex, validation_regex, required, removehtml, sub_rules, begin_stripe_id, end_stripe_id, begin_shift, end_shift) if rule_type == ITERATION_RULE or rule_type == : begin_regex = rule_json_object[] end_regex = rule_json_object[] iter_begin_regex = rule_json_object[] iter_end_regex = rule_json_object[] no_first_begin_iter_rule = False if in rule_json_object: no_first_begin_iter_rule = rule_json_object[] no_last_end_iter_rule = False if in rule_json_object: no_last_end_iter_rule = rule_json_object[] rule = IterationRule(name, begin_regex, end_regex, iter_begin_regex, iter_end_regex, include_end_regex, strip_end_regex, no_first_begin_iter_rule, no_last_end_iter_rule, validation_regex, required, removehtml, sub_rules, begin_shift=begin_shift, end_shift=end_shift) if in rule_json_object: rule.id = rule_json_object[] return rule
Method to load the rules - when adding a new rule it must be added to the if statement within this method.
12,548
def best_model(seq2hmm): for seq in seq2hmm: best = [] for model in seq2hmm[seq]: best.append([model, sorted([i[-1] for i in seq2hmm[seq][model]], reverse = True)[0]]) best_model = sorted(best, key = itemgetter(1), reverse = True)[0][0] seq2hmm[seq] = [best_model] + [seq2hmm[seq][best_model]] return seq2hmm
determine the best model: archaea, bacteria, eukarya (best score)
12,549
def get_used_entities(self,use_specs): if len(use_specs.strip()) == 0: return (self.pub_procs, self.pub_absints, self.pub_types, self.pub_vars) only = bool(self.ONLY_RE.match(use_specs)) use_specs = self.ONLY_RE.sub(,use_specs) ulist = self.SPLIT_RE.split(use_specs) ulist[-1] = ulist[-1].strip() uspecs = {} for item in ulist: match = self.RENAME_RE.search(item) if match: uspecs[match.group(1).lower()] = match.group(2) else: uspecs[item.lower()] = item ret_procs = {} ret_absints = {} ret_types = {} ret_vars = {} for name, obj in self.pub_procs.items(): name = name.lower() if only: if name in uspecs: ret_procs[name] = obj else: ret_procs[name] = obj for name, obj in self.pub_absints.items(): name = name.lower() if only: if name in uspecs: ret_absints[name] = obj else: ret_absints[name] = obj for name, obj in self.pub_types.items(): name = name.lower() if only: if name in uspecs: ret_types[name] = obj else: ret_types[name] = obj for name, obj in self.pub_vars.items(): name = name.lower() if only: if name in uspecs: ret_vars[name] = obj else: ret_vars[name] = obj return (ret_procs,ret_absints,ret_types,ret_vars)
Returns the entities which are imported by a use statement. These are contained in dicts.
12,550
def reset_object(self, driver_wrapper=None): from toolium.pageelements.page_elements import PageElements if driver_wrapper: self.driver_wrapper = driver_wrapper self._web_element = None for element in self._get_page_elements(): element.reset_object(driver_wrapper) if isinstance(element, (PageElement, PageElements)): element.parent = self
Reset each page element object :param driver_wrapper: driver wrapper instance
12,551
def plot_h(data, cols, wspace=.1, plot_kw=None, **kwargs): import matplotlib.pyplot as plt if plot_kw is None: plot_kw = [dict()] * len(cols) _, axes = plt.subplots(nrows=1, ncols=len(cols), **kwargs) plt.subplots_adjust(wspace=wspace) for n, col in enumerate(cols): data.loc[:, col].plot(ax=axes[n], **plot_kw[n]) return axes
Plot horizontally Args: data: DataFrame of data cols: columns to be plotted wspace: spacing between plots plot_kw: kwargs for each plot **kwargs: kwargs for the whole plot Returns: axes for plots Examples: >>> import pandas as pd >>> import numpy as np >>> >>> idx = range(5) >>> data = pd.DataFrame(dict(a=np.exp(idx), b=idx), index=idx) >>> # plot_h(data=data, cols=['a', 'b'], wspace=.2, plot_kw=[dict(style='.-'), dict()])
12,552
def _compute_nfp_uniform(l, u, cum_counts, sizes): if l > u: raise ValueError("l must be less or equal to u") if l == 0: n = cum_counts[u] else: n = cum_counts[u]-cum_counts[l-1] return n * float(sizes[u] - sizes[l]) / float(2*sizes[u])
Computes the expected number of false positives caused by using u to approximate set sizes in the interval [l, u], assuming uniform distribution of set sizes within the interval. Args: l: the lower bound on set sizes. u: the upper bound on set sizes. cum_counts: the complete cummulative distribution of set sizes. sizes: the complete domain of set sizes. Return (float): the expected number of false positives.
12,553
def disallow(nodes): def disallowed(cls): cls.unsupported_nodes = () for node in nodes: new_method = _node_not_implemented(node, cls) name = .format(node=node) cls.unsupported_nodes += (name,) setattr(cls, name, new_method) return cls return disallowed
Decorator to disallow certain nodes from parsing. Raises a NotImplementedError instead. Returns ------- disallowed : callable
12,554
def is_email_simple(value): if not in value or value.startswith() or value.endswith(): return False try: p1, p2 = value.split() except ValueError: return False if not in p2 or p2.startswith(): return False return True
Return True if value looks like an email address.
12,555
def right_join_where(self, table, one, operator, two): return self.join_where(table, one, operator, two, "right")
Add a "right join where" clause to the query :param table: The table to join with, can also be a JoinClause instance :type table: str or JoinClause :param one: The first column of the join condition :type one: str :param operator: The operator of the join condition :type operator: str :param two: The second column of the join condition :type two: str :return: The current QueryBuilder instance :rtype: QueryBuilder
12,556
def get_rt_data(self, code): if code is None or is_str(code) is False: error_str = ERROR_STR_PREFIX + "the type of param in code is wrong" return RET_ERROR, error_str query_processor = self._get_sync_query_processor( RtDataQuery.pack_req, RtDataQuery.unpack_rsp) kargs = { "code": code, "conn_id": self.get_sync_conn_id() } ret_code, msg, rt_data_list = query_processor(**kargs) if ret_code == RET_ERROR: return ret_code, msg for x in rt_data_list: x[] = code col_list = [ , , , , , , , , ] rt_data_table = pd.DataFrame(rt_data_list, columns=col_list) return RET_OK, rt_data_table
获取指定股票的分时数据 :param code: 股票代码,例如,HK.00700,US.APPL :return: (ret, data) ret == RET_OK 返回pd dataframe数据,data.DataFrame数据, 数据列格式如下 ret != RET_OK 返回错误字符串 ===================== =========== ========================================================================== 参数 类型 说明 ===================== =========== ========================================================================== code str 股票代码 time str 时间(yyyy-MM-dd HH:mm:ss)(美股默认是美东时间,港股A股默认是北京时间) is_blank bool 数据状态;正常数据为False,伪造数据为True opened_mins int 零点到当前多少分钟 cur_price float 当前价格 last_close float 昨天收盘的价格 avg_price float 平均价格 volume float 成交量 turnover float 成交金额 ===================== =========== ==========================================================================
12,557
def scale_cb(self, setting, value): zoomlevel = self.zoom.calc_level(value) self.t_.set(zoomlevel=zoomlevel) self.redraw(whence=0)
Handle callback related to image scaling.
12,558
def lnprior(x): per, t0, b = x if b < -1 or b > 1: return -np.inf elif per < 7 or per > 10: return -np.inf elif t0 < 1978 or t0 > 1979: return -np.inf else: return 0.
Return the log prior given parameter vector `x`.
12,559
def getNodeRefs(self): retn = [] for name, valu in self.props.items(): pobj = self.form.props.get(name) if isinstance(pobj.type, s_types.Ndef): retn.append((name, valu)) continue if self.snap.model.forms.get(pobj.type.name) is None: continue ndef = (pobj.type.name, valu) if ndef == self.ndef: continue retn.append((name, ndef)) return retn
Return a list of (prop, (form, valu)) refs out for the node.
12,560
def addSubsumableToGroups(self, proteinIds, groupIds): for groupId in AUX.toList(groupIds): self.groups[groupId].addSubsumableProteins(proteinIds) self._addProteinIdsToGroupMapping(proteinIds, groupId)
Add one or multiple subsumable proteins to one or multiple protein groups. :param proteinIds: a proteinId or a list of proteinIds, a proteinId must be a string. :param groupIds: a groupId or a list of groupIds, a groupId must be a string.
12,561
def _pop_api_call(self, method, _url, kwargs): call_queue = self._call_queue.setdefault(self._get_thread_id(), []) if not call_queue: self._pre_process_call(name= % (_url, method), endpoint_params=kwargs) return call_queue.pop()
This will initialize an api_call or pop one that has already been initialized with the endpoint parameters :param method: str of the html method ['GET','POST','PUT','DELETE'] :param _url: str of the sub url of the api call (ex. g/device/list) :param kwargs: dict of additional arguments :return: ApiCall
12,562
def parent_ids(self): action = os.path.join(self.record_url, "parent_ids") res = requests.get(url=action, headers=HEADERS, verify=False) res.raise_for_status() return res.json()["biosamples"]
Returns an array of parent Biosample IDs. If the current Biosample has a part_of relationship, the Biosampled referenced there will be returned. Otherwise, if the current Biosample was generated from a pool of Biosamples (pooled_from_biosample_ids), then those will be returned. Otherwise, the result will be an empty array.
12,563
def to_bytes(s, encoding="utf-8"): if isinstance(s, six.binary_type): return s else: return six.text_type(s).encode(encoding)
Converts the string to a bytes type, if not already. :s: the string to convert to bytes :returns: `str` on Python2 and `bytes` on Python3.
12,564
def make_stats(data, perfile, fsamplehits, fbarhits, fmisses, fdbars): outhandle = os.path.join(data.dirs.fastqs, ) outfile = open(outhandle, ) outfile.write(.\ format("raw_file", "total_reads", "cut_found", "bar_matched")) r1names = sorted(perfile) for fname in r1names: dat = perfile[fname] outfile.write(.\ format(fname, dat[0], dat[1], dat[2])) if in data.paramsdict["datatype"]: fname = fname.replace("_R1_", "_R2_") outfile.write(.\ format(fname, dat[0], dat[1], dat[2])) outfile.write(.format("sample_name", "total_reads")) snames = set() for sname in data.barcodes: if "-technical-replicate-" in sname: sname = sname.rsplit("-technical-replicate", 1)[0] snames.add(sname) for sname in sorted(list(snames)): outfile.write("{:<35} {:>13}\n".format(sname, fsamplehits[sname])) outfile.write(.\ format("sample_name", "true_bar", "obs_bar", "N_records")) for sname in sorted(data.barcodes): if "-technical-replicate-" in sname: fname = sname.rsplit("-technical-replicate", 1)[0] else: fname = sname hit = data.barcodes[sname] offhitstring = "" if fname in fdbars: offkeys = list(fdbars.get(fname)) for offhit in offkeys[::-1]: if offhit not in data.barcodes.values(): offhitstring += .\ format(sname, hit, offhit, fbarhits[offhit]/2) outfile.write(.\ format(sname, hit, hit, fbarhits[hit]/2)) outfile.write(offhitstring) misskeys = list(fmisses.keys()) misskeys.sort(key=fmisses.get) for key in misskeys[::-1]: outfile.write(.\ format("no_match", "_", key, fmisses[key])) outfile.close() for sname in snames: sample = Sample() sample.name = sname barcodes = [] for n in xrange(500): fname = sname+"-technical-replicate-{}".format(n) fbar = data.barcodes.get(fname) if fbar: barcodes.append(fbar) if barcodes: sample.barcode = barcodes else: sample.barcode = data.barcodes[sname] if in data.paramsdict["datatype"]: sample.files.fastqs = [(os.path.join(data.dirs.fastqs, sname+"_R1_.fastq.gz"), os.path.join(data.dirs.fastqs, sname+"_R2_.fastq.gz"))] else: sample.files.fastqs = [(os.path.join(data.dirs.fastqs, sname+"_R1_.fastq.gz"), "")] sample.stats["reads_raw"] = int(fsamplehits[sname]) sample.stats_dfs.s1["reads_raw"] = int(fsamplehits[sname]) if sample.stats["reads_raw"]: sample.stats.state = 1 data.samples[sample.name] = sample else: print("Excluded sample: no data found for", sname) data.stats_dfs.s1 = data._build_stat("s1") data.stats_files.s1 = outhandle
Write stats and stores to Assembly object.
12,565
def delay(self, dl=0): if dl is None: time.sleep(self.dl) elif dl < 0: sys.stderr.write( "delay cannot less than zero, this takes no effects.\n") else: time.sleep(dl)
Delay for ``dl`` seconds.
12,566
def set(self, *components): self.reset() if len(components) == 1: self.append(components[0]) else: for comp in components: self.append(comp)
Set the possible components of the block :param components: components to append Optionables or Composables
12,567
def _read_metrics(repo, metrics, branch): res = {} for out, typ, xpath in metrics: assert out.scheme == "local" if not typ: typ = os.path.splitext(out.path.lower())[1].replace(".", "") if out.use_cache: open_fun = open path = repo.cache.local.get(out.checksum) else: open_fun = repo.tree.open path = out.path try: with open_fun(path) as fd: metric = _read_metric( fd, typ=typ, xpath=xpath, rel_path=out.rel_path, branch=branch, ) except IOError as e: if e.errno == errno.ENOENT: logger.warning( NO_METRICS_FILE_AT_REFERENCE_WARNING.format( out.rel_path, branch ) ) metric = None else: raise if not metric: continue res[out.rel_path] = metric return res
Read the content of each metric file and format it. Args: metrics (list): List of metric touples branch (str): Branch to look up for metrics. Returns: A dict mapping keys with metrics path name and content. For example: {'metric.csv': ("value_mse deviation_mse data_set\n" "0.421601 0.173461 train\n" "0.67528 0.289545 testing\n" "0.671502 0.297848 validation\n")}
12,568
def tags_getrelated(tag): method = data = _doget(method, auth=False, tag=tag) if isinstance(data.rsp.tags.tag, list): return [tag.text for tag in data.rsp.tags.tag] else: return [data.rsp.tags.tag.text]
Gets the related tags for given tag.
12,569
def AddArguments(cls, argument_group): argument_group.add_argument( , metavar=, dest=, type=str, default=, action=, help=( )) argument_group.add_argument( , , dest=, type=int, default=5, action=, help=( )) argument_group.add_argument( , dest=, action=, default=False, help=( )) argument_group.add_argument( , nargs=, action=, metavar=, default=None, type=str, help=( ).format( cls._DOCUMENTATION_URL))
Adds command line arguments to an argument group. This function takes an argument parser or an argument group object and adds to it all the command line arguments this helper supports. Args: argument_group (argparse._ArgumentGroup|argparse.ArgumentParser): argparse group.
12,570
def transform(self, X, y=None, **params): data = numpy.dstack((numpy.array(X).T[0], range(len(X))))[0] phase, order = data[data[:,0].argsort()].T design_matrix = self.design_matrix(phase, self.degree) return design_matrix[order.argsort()]
Transforms *X* from phase-space to Fourier-space, returning the design matrix produced by :func:`Fourier.design_matrix` for input to a regressor. **Parameters** X : array-like, shape = [n_samples, 1] Column vector of phases. y : None, optional Unused argument for conformity (default None). **Returns** design_matrix : array-like, shape = [n_samples, 2*degree+1] Fourier design matrix produced by :func:`Fourier.design_matrix`.
12,571
def precision_score(df, col_true=None, col_pred=, pos_label=1, average=None): r if not col_pred: col_pred = get_field_name_by_role(df, FieldRole.PREDICTED_CLASS) mat, label_list = _run_cm_node(df, col_true, col_pred) class_dict = dict((label, idx) for idx, label in enumerate(label_list)) tps = np.diag(mat) pred_count = np.sum(mat, axis=0) if average is None: return tps * 1.0 / pred_count elif average == : class_idx = class_dict[pos_label] return tps[class_idx] * 1.0 / pred_count[class_idx] elif average == : return np.sum(tps) / np.sum(pred_count) elif average == : return np.mean(tps * 1.0 / pred_count) elif average == : support = np.sum(mat, axis=1) return np.sum(tps * 1.0 / pred_count * support) / np.sum(support)
r""" Compute precision of a predicted DataFrame. Precision is defined as :math:`\frac{TP}{TP + TN}` :Parameters: - **df** - predicted data frame - **col_true** - column name of true label - **col_pred** - column name of predicted label, 'prediction_result' by default. - **pos_label** - denote the desired class label when ``average`` == `binary` - **average** - denote the method to compute average. :Returns: Precision score :Return type: float or numpy.array[float] The parameter ``average`` controls the behavior of the function. - When ``average`` == None (by default), precision of every class is given as a list. - When ``average`` == 'binary', precision of class specified in ``pos_label`` is given. - When ``average`` == 'micro', STP / (STP + STN) is given, where STP and STN are summations of TP and TN for every class. - When ``average`` == 'macro', average precision of all the class is given. - When ``average`` == `weighted`, average precision of all the class weighted by support of every true classes is given. :Example: Assume we have a table named 'predicted' as follows: ======== =================== label prediction_result ======== =================== 0 0 1 2 2 1 0 0 1 0 2 1 ======== =================== Different options of ``average`` parameter outputs different values: .. code-block:: python >>> precision_score(predicted, 'label', average=None) array([ 0.66..., 0. , 0. ]) >>> precision_score(predicted, 'label', average='macro') 0.22 >>> precision_score(predicted, 'label', average='micro') 0.33 >>> precision_score(predicted, 'label', average='weighted') 0.22
12,572
async def trigger(self, event, kwargs): await self._queue.put((event, kwargs)) self._resume_processing.set()
Enqueue an event for processing
12,573
def active_joined_organisations(doc): if doc.get() == and doc.get() != : for org_id, state in doc.get(, {}).items(): if state[] == : continue org = {: org_id} yield [doc[], None], org try: yield [doc[], state[]], org except KeyError: pass
View for getting organisations associated with a user
12,574
def get_proteome_counts_impute_missing(prots_filtered_feathers, outpath, length_filter_pid=None, copynum_scale=False, copynum_df=None, force_rerun=False): if ssbio.utils.force_rerun(flag=force_rerun, outfile=outpath): big_strain_counts_df = pd.DataFrame() first = True for feather in prots_filtered_feathers: loaded = load_feather(protein_feather=feather, length_filter_pid=length_filter_pid, copynum_scale=copynum_scale, copynum_df=copynum_df) if first: big_strain_counts_df = pd.DataFrame(index=_all_counts, columns=loaded.columns) first = False new_columns = list(set(loaded.columns.tolist()).difference(big_strain_counts_df.columns)) if new_columns: for col in new_columns: big_strain_counts_df[col] = big_strain_counts_df.mean(axis=1) not_in_loaded = list(set(big_strain_counts_df.columns).difference(loaded.columns.tolist())) if not_in_loaded: for col in not_in_loaded: big_strain_counts_df[col] = big_strain_counts_df[col] + loaded.mean(axis=1) big_strain_counts_df = big_strain_counts_df.add(loaded, fill_value=0) if len(big_strain_counts_df) > 0: big_strain_counts_df.astype(float).reset_index().to_feather(outpath) return big_strain_counts_df else: return pd.read_feather(outpath).set_index()
Get counts, uses the mean feature vector to fill in missing proteins for a strain
12,575
def get_time_remaining_estimate(self): power_status = SYSTEM_POWER_STATUS() if not GetSystemPowerStatus(pointer(power_status)): raise WinError() if POWER_TYPE_MAP[power_status.ACLineStatus] == common.POWER_TYPE_AC: return common.TIME_REMAINING_UNLIMITED elif power_status.BatteryLifeTime == -1: return common.TIME_REMAINING_UNKNOWN else: return float(power_status.BatteryLifeTime) / 60.0
Returns time remaining estimate according to GetSystemPowerStatus().BatteryLifeTime
12,576
def _init_glyph(self, plot, mapping, properties): box = Span(level=properties.get(, ), **mapping) plot.renderers.append(box) return None, box
Returns a Bokeh glyph object.
12,577
def convert(self, *args, **kwargs): self.strings() self.metadata() self.result.save(self.output())
Yes it is, thanks captain.
12,578
def _prepare_value(val, maxlen=50, notype=False): if val is None or val is True or val is False: return str(val) sval = repr(val) sval = sval.replace("\n", " ").replace("\t", " ").replace("`", "'") if len(sval) > maxlen: sval = sval[:maxlen - 4] + "..." + sval[-1] if notype: return sval else: tval = checker_for_type(type(val)).name() return "%s of type %s" % (sval, tval)
Stringify value `val`, ensuring that it is not too long.
12,579
def _create_group_assignment(self, mesh_axes): partitioning = {} for logical_pnum in xrange(self.size): group = mtf.pnum_to_group(self.shape, mesh_axes, logical_pnum) if group not in partitioning: partitioning[group] = [] partitioning[group].append(self.l2p(logical_pnum)) group_assignment = [] for group, physical_pnums in partitioning.items(): group_assignment.append(physical_pnums) return group_assignment
Create group assignment for XLA cross replica ops (physical pnums).
12,580
def show(self, baseAppInstance): self.from_dict_to_fields(self.configDict) super(ProjectConfigurationDialog, self).show(baseAppInstance)
Allows to show the widget as root window
12,581
def share_column_widths(self, tables, shared_limit=None): for table in tables: record = (table, shared_limit) if not record in self.shared_tables and table is not self: self.shared_tables.append(record)
To have this table use sync with the columns in tables Note, this will need to be called on the other tables to be fully synced. :param tables: list of SeabornTables to share column widths :param shared_limit: int if diff is greater than this than ignore it. :return: None
12,582
def get_location_observation(lat, lng, token): req = requests.get( API_ENDPOINT_GEO % (lat, lng), params={ : token }) if req.status_code == 200 and req.json()["status"] == "ok": return parse_observation_response(req.json()["data"]) return {}
Lookup observations by geo coordinates.
12,583
def get_absolute_url_with_date(self): pub_date = self.published_on if pub_date and settings.USE_TZ: pub_date = make_naive(pub_date, pytz.utc) pub_date = pytz.timezone(settings.TIME_ZONE).localize(pub_date) if pub_date: args = [ pub_date.strftime("%Y"), pub_date.strftime("%m"), pub_date.strftime("%d"), self.slug ] else: args = [self.slug] return reverse(, args=args)
URL based on the entry's date & slug.
12,584
def queryResponse(self, queryEngine, query=None, vendorSpecific=None, **kwargs): return self.GET( [, queryEngine, query], headers=vendorSpecific, query=kwargs )
CNRead.query(session, queryEngine, query) → OctetStream https://releases.dataone.org/online/api- documentation-v2.0.1/apis/CN_APIs.html#CNRead.query. Args: queryEngine: query: vendorSpecific: **kwargs: Returns:
12,585
def draw_cloud_tree(self, axes=None, html=False, fixed_order=True, **kwargs): if not self.treelist: print("Treelist is empty") return None, None if not self.all_tips_shared: print("All trees in treelist do not share the same tips") return None, None try: changed_autoformat = False if not html: toyplot.config.autoformat = "png" changed_autoformat = True mstyle = STYLES[] mstyle.update( {i: j for (i, j) in kwargs.items() if (j is not None) & (i != "tip_labels")} ) for tree in treelist: tree.style.update(mstyle) draw = CloudTree(treelist, **kwargs) if kwargs.get("debug"): return draw canvas, axes = draw.update(axes) return canvas, axes finally: if changed_autoformat: toyplot.config.autoformat = "html"
Draw a series of trees overlapping each other in coordinate space. The order of tip_labels is fixed in cloud trees so that trees with discordant relationships can be seen in conflict. To change the tip order use the 'fixed_order' argument in toytree.mtree() when creating the MultiTree object. Parameters: axes (toyplot.Cartesian): toyplot Cartesian axes object. html (bool): whether to return the drawing as html (default=PNG). edge_styles: (list): option to enter a list of edge dictionaries. **kwargs (dict): styling options should be input as a dictionary.
12,586
def warn_startup_with_shell_off(platform, gdb_args): darwin_match = re.match("darwin-(\d+)\..*", platform) on_darwin = darwin_match is not None and int(darwin_match.groups()[0]) >= 16 if on_darwin: shell_is_off = "startup-with-shell off" in gdb_args return not shell_is_off return False
return True if user may need to turn shell off if mac OS version is 16 (sierra) or higher, may need to set shell off due to os's security requirements http://stackoverflow.com/questions/39702871/gdb-kind-of-doesnt-work-on-macos-sierra
12,587
def lines_table(html_doc, tofloat=True): soup = BeautifulSoup(html_doc, "html.parser") linestables = [] elements = soup.p.next_elements for element in elements: tabletup = [] if not _has_name(element): continue if element.name == : beforetable = [] prev_elements = element.previous_elements for prev_element in prev_elements: if not _has_name(prev_element): continue if prev_element.name not in (, None): if prev_element.name in (, , , ): break if prev_element.parent.name == "p": pass else: if prev_element.get_text(): beforetable.append(prev_element.get_text()) beforetable.reverse() tabletup.append(beforetable) function_selector = {True:table2val_matrix, False:table2matrix} function = function_selector[tofloat] tabletup.append(function(element)) if tabletup: linestables.append(tabletup) return linestables
return a list of [(lines, table), .....] lines = all the significant lines before the table. These are lines between this table and the previous table or 'hr' tag table = rows -> [[cell1, cell2, ..], [cell1, cell2, ..], ..] The lines act as a description for what is in the table
12,588
def getInstance(self, aLocation, axisOnly=False, getFactors=False): self._collectAxisPoints() factors = self.getFactors(aLocation, axisOnly) total = None for f, item, name in factors: if total is None: total = f * item continue total += f * item if total is None: total = 0 * self._neutral if getFactors: return total, factors return total
Calculate the delta at aLocation. * aLocation: a Location object, expected to be in bent space * axisOnly: * True: calculate an instance only with the on-axis masters. * False: calculate an instance with on-axis and off-axis masters. * getFactors: * True: return a list of the calculated factors.
12,589
def stop_threadsafe(self): if self.stopped: return try: self._loop.run_coroutine(self.stop()) except asyncio.TimeoutError: raise TimeoutExpiredError("Timeout stopping task {} with {} subtasks".format(self.name, len(self.subtasks)))
Stop this task from another thread and wait for it to finish. This method must not be called from within the BackgroundEventLoop but will inject self.stop() into the event loop and block until it returns. Raises: TimeoutExpiredError: If the task does not stop in the given timeout specified in __init__()
12,590
def render_customizations(self): disable_plugins = self.pt.customize_conf.get(, []) if not disable_plugins: logger.debug() else: for plugin in disable_plugins: try: self.pt.remove_plugin(plugin[], plugin[], ) except KeyError: logger.info() enable_plugins = self.pt.customize_conf.get(, []) if not enable_plugins: logger.debug() else: for plugin in enable_plugins: try: msg = self.pt.add_plugin(plugin[], plugin[], plugin[], msg) except KeyError: logger.info()
Customize template for site user specified customizations
12,591
def skewvT(self,R,romberg=False,nsigma=None,phi=0.): surfmass= self.surfacemass(R,romberg=romberg,nsigma=nsigma, use_physical=False) vt= self._vmomentsurfacemass(R,0,1,romberg=romberg,nsigma=nsigma)\ /surfmass vt2= self._vmomentsurfacemass(R,0,2,romberg=romberg,nsigma=nsigma)\ /surfmass vt3= self._vmomentsurfacemass(R,0,3,romberg=romberg,nsigma=nsigma)\ /surfmass s2= vt2-vt**2. return (vt3-3.*vt*vt2+2.*vt**3.)*s2**(-1.5)
NAME: skewvT PURPOSE: calculate skew in vT at R by marginalizing over velocity INPUT: R - radius at which to calculate <vR> (can be Quantity) OPTIONAL INPUT: nsigma - number of sigma to integrate the velocities over KEYWORDS: romberg - if True, use a romberg integrator (default: False) OUTPUT: skewvT HISTORY: 2011-12-07 - Written - Bovy (NYU)
12,592
def format_list(self, at_char, user, list_name): return \ % (user, list_name, at_char, user, list_name)
Return formatted HTML for a list.
12,593
def add_logging(parser, log_format=LOG_FORMAT, log_level=LOG_LEVEL, color=True): parser.set_defaults(log_level=log_level) parser.add_argument(, dest=, action=_LogLevelAddAction, const=1, help=) parser.add_argument(, dest=, action=_LogLevelAddAction, const=-1, help=) root_logger = logging.getLogger() root_logger.setLevel(log_level) handler = logging.StreamHandler() if hasattr(sys.stderr, ) and sys.stderr.isatty(): class ColorAction(argparse.Action): def __call__(self, parser, namespace, values, option_string=None): setattr(namespace, self.dest, True) handler.setFormatter(_ColorLogFormatter(log_format)) class NoColorAction(argparse.Action): def __call__(self, parser, namespace, values, option_string=None): setattr(namespace, self.dest, False) handler.setFormatter(_NoColorLogFormatter(log_format)) parser.add_argument(, dest=, action=ColorAction, nargs=0, help=) parser.add_argument(, dest=, action=NoColorAction, nargs=0, help=) if color: formatter_class = _ColorLogFormatter else: formatter_class = _NoColorLogFormatter else: formatter_class = _NoColorLogFormatter handler.setFormatter(formatter_class(log_format)) root_logger.addHandler(handler)
Configures the `argparse.ArgumentParser` with arguments to configure logging. This adds arguments: * ``-v`` to increase the log level * ``-q`` to decrease the log level * ``--color`` to enable color logging when available * ``--no-color`` to disable color logging The root logger is configured with the given format and log level. ANSI color codes are supported in the logging format string. If color is enabled and stderr is a tty, the codes will be passed through. Otherwise the logging formatter will strip them out. The logging format supports these additional format variables for coloration: %(levelcolor)s If stderr is a terminal, an ANSI color code appropriate for the level of the logged record. %(resetcolor)s If stderr is a terminal, an ANSI color reset code.
12,594
def validate_dict(in_dict, **kwargs): if not isinstance(in_dict, dict): raise ValueError() for key, value in kwargs.iteritems(): if key == : for required_key in value: if required_key not in in_dict: return False elif key not in in_dict: continue elif value == bool: in_dict[key] = (True if str(in_dict[key]).lower() == else False) else: if (isinstance(in_dict[key], list) and len(in_dict[key]) == 1 and value != list): in_dict[key] = in_dict[key][0] try: if key in in_dict: in_dict[key] = value(in_dict[key]) except ValueError: return False return True
Returns Boolean of whether given dict conforms to type specifications given in kwargs.
12,595
def grid_at_redshift_from_image_plane_grid_and_redshift(self, image_plane_grid, redshift): image_plane_grid_stack = grids.GridStack(regular=image_plane_grid, sub=np.array([[0.0, 0.0]]), blurring=np.array([[0.0, 0.0]])) tracer = TracerMultiPlanes(galaxies=self.galaxies, image_plane_grid_stack=image_plane_grid_stack, border=None, cosmology=self.cosmology) for plane_index in range(0, len(self.plane_redshifts)): new_grid_stack = image_plane_grid_stack if redshift <= tracer.plane_redshifts[plane_index]: if plane_index > 0: for previous_plane_index in range(plane_index): scaling_factor = cosmology_util.scaling_factor_between_redshifts_from_redshifts_and_cosmology( redshift_0=tracer.plane_redshifts[previous_plane_index], redshift_1=redshift, redshift_final=tracer.plane_redshifts[-1], cosmology=tracer.cosmology) scaled_deflection_stack = lens_util.scaled_deflection_stack_from_plane_and_scaling_factor( plane=tracer.planes[previous_plane_index], scaling_factor=scaling_factor) new_grid_stack = \ lens_util.grid_stack_from_deflection_stack(grid_stack=new_grid_stack, deflection_stack=scaled_deflection_stack) elif plane_index == 0: return new_grid_stack.regular return new_grid_stack.regular
For an input grid of (y,x) arc-second image-plane coordinates, ray-trace the coordinates to any redshift in \ the strong lens configuration. This is performed using multi-plane ray-tracing and the existing redshifts and planes of the tracer. However, \ any redshift can be input even if a plane does not exist there, including redshifts before the first plane \ of the lensing system. Parameters ---------- image_plane_grid : ndsrray or grids.RegularGrid The image-plane grid which is traced to the redshift. redshift : float The redshift the image-plane grid is traced to.
12,596
def get_group(self, group_id): response = self._do_request( , .format(group_id=group_id)) return self._parse_response(response, MarathonGroup)
Get a single group. :param str group_id: group ID :returns: group :rtype: :class:`marathon.models.group.MarathonGroup`
12,597
def _execute_command(self, command, sql): if not self._sock: raise err.InterfaceError("(0, )") if self._result is not None: if self._result.unbuffered_active: warnings.warn("Previous unbuffered result was left incomplete") self._result._finish_unbuffered_query() while self._result.has_next: self.next_result() self._result = None if isinstance(sql, text_type): sql = sql.encode(self.encoding) packet_size = min(MAX_PACKET_LEN, len(sql) + 1) prelude = struct.pack(, packet_size, command) packet = prelude + sql[:packet_size-1] self._write_bytes(packet) if DEBUG: dump_packet(packet) self._next_seq_id = 1 if packet_size < MAX_PACKET_LEN: return sql = sql[packet_size-1:] while True: packet_size = min(MAX_PACKET_LEN, len(sql)) self.write_packet(sql[:packet_size]) sql = sql[packet_size:] if not sql and packet_size < MAX_PACKET_LEN: break
:raise InterfaceError: If the connection is closed. :raise ValueError: If no username was specified.
12,598
def operator(self): return { : operator.eq, : operator.ne, : operator.gt, : operator.ge, : operator.lt, : operator.le, : self._starts_with, : self._in, : self._ni, }
Supported Filter Operators + EQ - Equal To + NE - Not Equal To + GT - Greater Than + GE - Greater Than or Equal To + LT - Less Than + LE - Less Than or Equal To + SW - Starts With + IN - In String or Array + NI - Not in String or Array
12,599
def median_slitlets_rectified( input_image, mode=0, minimum_slitlet_width_mm=EMIR_MINIMUM_SLITLET_WIDTH_MM, maximum_slitlet_width_mm=EMIR_MAXIMUM_SLITLET_WIDTH_MM, debugplot=0 ): image_header = input_image[0].header image2d = input_image[0].data naxis2_expected = EMIR_NBARS * EMIR_NPIXPERSLIT_RECTIFIED naxis2, naxis1 = image2d.shape if naxis2 != naxis2_expected: raise ValueError("NAXIS2={0} should be {1}".format( naxis2, naxis2_expected )) instrument = image_header[] if instrument != : raise ValueError("INSTRUME keyword is not !") if mode == 0: image2d_median = np.zeros((naxis2, naxis1)) else: image2d_median = np.zeros((EMIR_NBARS, naxis1)) for i in range(EMIR_NBARS): ns1 = i * EMIR_NPIXPERSLIT_RECTIFIED + 1 ns2 = ns1 + EMIR_NPIXPERSLIT_RECTIFIED - 1 sp_median = np.median(image2d[(ns1-1):ns2, :], axis=0) if mode == 0: image2d_median[(ns1-1):ns2, :] = np.tile( sp_median, (EMIR_NPIXPERSLIT_RECTIFIED, 1) ) else: image2d_median[i] = np.copy(sp_median) if mode == 2: csu_config = CsuConfiguration.define_from_header(image_header) crpix1 = image_header[] crval1 = image_header[] cdelt1 = image_header[] list_useful_slitlets = csu_config.widths_in_range_mm( minwidth=minimum_slitlet_width_mm, maxwidth=maximum_slitlet_width_mm ) list_not_useful_slitlets = [i for i in list(range(1, EMIR_NBARS + 1)) if i not in list_useful_slitlets] if abs(debugplot) != 0: print(, list_useful_slitlets) print(, list_not_useful_slitlets) mask2d, borders = define_mask_borders(image2d_median, sought_value=0) if abs(debugplot) % 10 != 0: ximshow(mask2d.astype(int), z1z2=(-.2, 1.2), crpix1=crpix1, crval1=crval1, cdelt1=cdelt1, debugplot=debugplot) for islitlet in list_not_useful_slitlets: mask2d[islitlet - 1, :] = np.array([True] * naxis1) if abs(debugplot) % 10 != 0: ximshow(mask2d.astype(int), z1z2=(-.2, 1.2), crpix1=crpix1, crval1=crval1, cdelt1=cdelt1, debugplot=debugplot) image2d_masked = image2d_median * (1 - mask2d.astype(int)) if abs(debugplot) % 10 != 0: ximshow(image2d_masked, crpix1=crpix1, crval1=crval1, cdelt1=cdelt1, debugplot=debugplot) image2d_masked = np.ma.masked_array(image2d_median, mask=mask2d) image1d_median = np.ma.median(image2d_masked, axis=0).data image_median = fits.PrimaryHDU(data=image1d_median, header=image_header) else: image_median = fits.PrimaryHDU(data=image2d_median, header=image_header) return fits.HDUList([image_median])
Compute median spectrum for each slitlet. Parameters ---------- input_image : HDUList object Input 2D image. mode : int Indicate desired result: 0 : image with the same size as the input image, with the median spectrum of each slitlet spanning all the spectra of the corresponding slitlet 1 : image with 55 spectra, containing the median spectra of each slitlet 2 : single collapsed median spectrum, using exclusively the useful slitlets from the input image minimum_slitlet_width_mm : float Minimum slitlet width (mm) for a valid slitlet. maximum_slitlet_width_mm : float Maximum slitlet width (mm) for a valid slitlet. debugplot : int Determines whether intermediate computations and/or plots are displayed. The valid codes are defined in numina.array.display.pause_debugplot. Returns ------- image_median : HDUList object Output image.