Unnamed: 0
int64 0
389k
| code
stringlengths 26
79.6k
| docstring
stringlengths 1
46.9k
|
---|---|---|
12,600 | def fetch_blob(cls, username, password, multifactor_password=None, client_id=None):
session = fetcher.login(username, password, multifactor_password, client_id)
blob = fetcher.fetch(session)
fetcher.logout(session)
return blob | Just fetches the blob, could be used to store it locally |
12,601 | def create_gre_tunnel_no_encryption(cls, name, local_endpoint, remote_endpoint,
mtu=0, pmtu_discovery=True, ttl=0,
enabled=True, comment=None):
return cls.create_gre_tunnel_mode(
name, local_endpoint, remote_endpoint, policy_vpn=None,
mtu=mtu, pmtu_discovery=pmtu_discovery, ttl=ttl,
enabled=enabled, comment=comment) | Create a GRE Tunnel with no encryption. See `create_gre_tunnel_mode` for
constructor descriptions. |
12,602 | def _prune_penalty_box(self):
added = False
for client in self.penalty_box.get():
log.info("Client %r is back up.", client)
self.active_clients.append(client)
added = True
if added:
self._sort_clients() | Restores clients that have reconnected.
This function should be called first for every public method. |
12,603 | def get_signature_candidate(lines):
non_empty = [i for i, line in enumerate(lines) if line.strip()]
if len(non_empty) <= 1:
return []
candidate = candidate[-SIGNATURE_MAX_LINES:]
markers = _mark_candidate_indexes(lines, candidate)
candidate = _process_marked_candidate_indexes(candidate, markers)
if candidate:
candidate = lines[candidate[0]:]
return candidate
return [] | Return lines that could hold signature
The lines should:
* be among last SIGNATURE_MAX_LINES non-empty lines.
* not include first line
* be shorter than TOO_LONG_SIGNATURE_LINE
* not include more than one line that starts with dashes |
12,604 | def check_node_parent(
self, resource_id, new_parent_id, db_session=None, *args, **kwargs
):
return self.service.check_node_parent(
resource_id=resource_id,
new_parent_id=new_parent_id,
db_session=db_session,
*args,
**kwargs
) | Checks if parent destination is valid for node
:param resource_id:
:param new_parent_id:
:param db_session:
:return: |
12,605 | def get_subclass_tree(cls, ensure_unique=True):
subclasses = []
for subcls in type.__subclasses__(cls):
subclasses.append(subcls)
subclasses.extend(get_subclass_tree(subcls, ensure_unique))
return list(set(subclasses)) if ensure_unique else subclasses | Returns all subclasses (direct and recursive) of cls. |
12,606 | def get_json_response_object(self, datatable):
datatable.populate_records()
draw = getattr(self.request, self.request.method).get(, None)
if draw is not None:
draw = escape_uri_path(draw)
response_data = {
: draw,
: datatable.unpaged_record_count,
: datatable.total_initial_record_count,
: [dict(record, **{
: record.pop(),
: record.pop(),
}) for record in datatable.get_records()],
}
return response_data | Returns the JSON-compatible dictionary that will be serialized for an AJAX response.
The value names are in the form "s~" for strings, "i~" for integers, and "a~" for arrays,
if you're unfamiliar with the old C-style jargon used in dataTables.js. "aa~" means
"array of arrays". In some instances, the author uses "ao~" for "array of objects", an
object being a javascript dictionary. |
12,607 | def get_callback_function(setting_name, default=None):
func = getattr(settings, setting_name, None)
if not func:
return default
if callable(func):
return func
if isinstance(func, str):
func = import_string(func)
if not callable(func):
raise ImproperlyConfigured("{name} must be callable.".format(name=setting_name))
return func | Resolve a callback function based on a setting name.
If the setting value isn't set, default is returned. If the setting value
is already a callable function, that value is used - If the setting value
is a string, an attempt is made to import it. Anything else will result in
a failed import causing ImportError to be raised.
:param setting_name: The name of the setting to resolve a callback from.
:type setting_name: string (``str``/``unicode``)
:param default: The default to return if setting isn't populated.
:type default: ``bool``
:returns: The resolved callback function (if any).
:type: ``callable`` |
12,608 | def add_load(self, lv_load):
if lv_load not in self._loads and isinstance(lv_load,
LVLoadDing0):
self._loads.append(lv_load)
self.graph_add_node(lv_load) | Adds a LV load to _loads and grid graph if not already existing
Parameters
----------
lv_load :
Description #TODO |
12,609 | def compare(left: Union[str, pathlib.Path, _Entity],
right: Union[str, pathlib.Path, _Entity]) -> Comparison:
def normalise(param: Union[str, pathlib.Path, _Entity]) -> _Entity:
if isinstance(param, str):
param = pathlib.Path(param)
if isinstance(param, pathlib.Path):
param = _Entity.from_path(param)
return param
return Comparison.compare(normalise(left), normalise(right)) | Compare two paths.
:param left: The left side or "before" entity.
:param right: The right side or "after" entity.
:return: A comparison details what has changed from the left side to the
right side. |
12,610 | def _split_input_slice(batch_size, work_load_list):
total_work_load = sum(work_load_list)
batch_num_list = [round(work_load * batch_size / total_work_load)
for work_load in work_load_list]
batch_num_sum = sum(batch_num_list)
if batch_num_sum < batch_size:
batch_num_list[-1] += batch_size - batch_num_sum
slices = []
end = 0
for batch_num in batch_num_list:
begin = int(min((end, batch_size)))
end = int(min((begin + batch_num, batch_size)))
if begin >= end:
raise ValueError()
slices.append(slice(begin, end))
return slices | Get input slice from the input shape.
Parameters
----------
batch_size : int
The number of samples in a mini-batch.
work_load_list : list of float or int, optional
The list of work load for different devices,
in the same order as `ctx`.
Returns
-------
slices : list of slice
The split slices to get a specific slice.
Raises
------
ValueError
In case of too many splits, leading to some empty slices. |
12,611 | def get_column_at_index(self, index):
if index is None:
return None
url = self.build_url(self._endpoints.get())
response = self.session.post(url, data={: index})
if not response:
return None
return self.column_constructor(parent=self, **{self._cloud_data_key: response.json()}) | Returns a table column by it's index
:param int index: the zero-indexed position of the column in the table |
12,612 | def upload_file(request):
if request.method == :
form = MediaForm(request.POST, request.FILES)
if form.is_valid():
context_dict = {}
try:
context_dict[] = update_media_file(
request.FILES[])
except Exception as e:
context_dict[] = e.message
return render(request,
,
context_dict)
else:
form = MediaForm()
return render(request, , {: form}) | Upload a Zip File Containing a single file containing media. |
12,613 | def standard_block(self, bytes_):
self.out(self.LH(len(bytes_) + 1))
checksum = 0
for i in bytes_:
checksum ^= (int(i) & 0xFF)
self.out(i)
self.out(checksum) | Adds a standard block of bytes. For TAP files, it's just the
Low + Hi byte plus the content (here, the bytes plus the checksum) |
12,614 | def apply_plugin_settings(self, options):
color_scheme_n =
color_scheme_o = self.get_color_scheme()
font_n =
font_o = self.get_plugin_font()
wrap_n =
wrap_o = self.get_option(wrap_n)
self.wrap_action.setChecked(wrap_o)
linenb_n =
linenb_o = self.get_option(linenb_n)
for editor in self.editors:
if font_n in options:
scs = color_scheme_o if color_scheme_n in options else None
editor.set_font(font_o, scs)
elif color_scheme_n in options:
editor.set_color_scheme(color_scheme_o)
if wrap_n in options:
editor.toggle_wrap_mode(wrap_o)
if linenb_n in options:
editor.toggle_line_numbers(linenumbers=linenb_o, markers=False) | Apply configuration file's plugin settings |
12,615 | def _allowAnotherAt(cls, parent):
site = parent.get_site()
if site is None:
return False
return not cls.peers().descendant_of(site.root_page).exists() | You can only create one of these pages per site. |
12,616 | def wheel_dist_name(self):
components = (safer_name(self.distribution.get_name()),
safer_version(self.distribution.get_version()))
if self.build_number:
components += (self.build_number,)
return .join(components) | Return distribution full name with - replaced with _ |
12,617 | def cPrint(self, level, message, *args, **kw):
if level > self.consolePrinterVerbosity:
return
if len(kw) > 1:
raise KeyError("Invalid keywords for cPrint: %s" % str(kw.keys()))
newline = kw.get("newline", True)
if len(kw) == 1 and not in kw:
raise KeyError("Invalid keyword for cPrint: %s" % kw.keys()[0])
if len(args) == 0:
if newline:
print message
else:
print message,
else:
if newline:
print message % args
else:
print message % args, | Print a message to the console.
Prints only if level <= self.consolePrinterVerbosity
Printing with level 0 is equivalent to using a print statement,
and should normally be avoided.
:param level: (int) indicating the urgency of the message with
lower values meaning more urgent (messages at level 0 are the most
urgent and are always printed)
:param message: (string) possibly with format specifiers
:param args: specifies the values for any format specifiers in message
:param kw: newline is the only keyword argument. True (default) if a newline
should be printed |
12,618 | def get_filtered_register_graph(register_uri, g):
import requests
from pyldapi.exceptions import ViewsFormatsException
assert isinstance(g, Graph)
logging.debug( + register_uri.replace(, ))
try:
r = requests.get(register_uri)
print( + register_uri)
except ViewsFormatsException as e:
return False
if r.status_code == 200:
return _filter_register_graph(register_uri.replace(, ), r, g)
logging.debug(.format(register_uri))
return False | Gets a filtered version (label, comment, contained item classes & subregisters only) of the each register for the
Register of Registers
:param register_uri: the public URI of the register
:type register_uri: string
:param g: the rdf graph to append registers to
:type g: Graph
:return: True if ok, else False
:rtype: boolean |
12,619 | def _combine(self, applied, shortcut=False):
applied_example, applied = peek_at(applied)
coord, dim, positions = self._infer_concat_args(applied_example)
if shortcut:
combined = self._concat_shortcut(applied, dim, positions)
else:
combined = concat(applied, dim)
combined = _maybe_reorder(combined, dim, positions)
if isinstance(combined, type(self._obj)):
combined = self._restore_dim_order(combined)
if coord is not None:
if shortcut:
combined._coords[coord.name] = as_variable(coord)
else:
combined.coords[coord.name] = coord
combined = self._maybe_restore_empty_groups(combined)
combined = self._maybe_unstack(combined)
return combined | Recombine the applied objects like the original. |
12,620 | def state_province_region(self, value=None):
if value is not None:
try:
value = str(value)
except ValueError:
raise ValueError(
.format(value))
if in value:
raise ValueError(
)
self._state_province_region = value | Corresponds to IDD Field `state_province_region`
Args:
value (str): value for IDD Field `state_province_region`
if `value` is None it will not be checked against the
specification and is assumed to be a missing value
Raises:
ValueError: if `value` is not a valid value |
12,621 | def reboot_node(node_id, profile, **libcloud_kwargs):
s reboot_node method
:type libcloud_kwargs: ``dict``
CLI Example:
.. code-block:: bash
salt myminion libcloud_compute.reboot_node as-2346 profile1
'
conn = _get_driver(profile=profile)
node = _get_by_id(conn.list_nodes(**libcloud_kwargs), node_id)
return conn.reboot_node(node, **libcloud_kwargs) | Reboot a node in the cloud
:param node_id: Unique ID of the node to reboot
:type node_id: ``str``
:param profile: The profile key
:type profile: ``str``
:param libcloud_kwargs: Extra arguments for the driver's reboot_node method
:type libcloud_kwargs: ``dict``
CLI Example:
.. code-block:: bash
salt myminion libcloud_compute.reboot_node as-2346 profile1 |
12,622 | def _request(self, method, uri, headers={}, body=, stream=False):
response = None
headers.setdefault(,
)
if self._client._credentials:
self._security_auth_headers(self._client._credentials.username,
self._client._credentials.password,
headers)
try:
self._connection.request(method, uri, body, headers)
try:
response = self._connection.getresponse(buffering=True)
except TypeError:
response = self._connection.getresponse()
if stream:
response_body = response
else:
response_body = response.read()
finally:
if response and not stream:
response.close()
return response.status, response.msg, response_body | Given a Method, URL, Headers, and Body, perform and HTTP
request, and return a 3-tuple containing the response status,
response headers (as httplib.HTTPMessage), and response body. |
12,623 | def create_endpoint_folder(self, endpoint_id, folder):
try:
res = self.transfer_client.operation_mkdir(endpoint_id, folder)
bot.info("%s --> %s" %(res[], folder))
except TransferAPIError:
bot.info( %folder) | create an endpoint folder, catching the error if it exists.
Parameters
==========
endpoint_id: the endpoint id parameters
folder: the relative path of the folder to create |
12,624 | def p_union_patch(self, p):
p[0] = AstUnionPatch(
path=self.path,
lineno=p[2][1],
lexpos=p[2][2],
name=p[3],
fields=p[6],
examples=p[7],
closed=p[2][0] == ) | union_patch : PATCH uniont ID NL INDENT field_list examples DEDENT |
12,625 | def refresh(self, data):
modules = data.get("module")
update_i3status = False
for module_name in self.find_modules(modules):
module = self.py3_wrapper.output_modules[module_name]
if self.debug:
self.py3_wrapper.log("refresh %s" % module)
if module["type"] == "py3status":
module["module"].force_update()
else:
update_i3status = True
if update_i3status:
self.py3_wrapper.i3status_thread.refresh_i3status() | refresh the module(s) |
12,626 | def getCachedOrUpdatedValue(self, key):
try:
return self._VALUES[key]
except KeyError:
return self.getValue(key) | Gets the device's value with the given key.
If the key is not found in the cache, the value is queried from the host. |
12,627 | def add_attribute(self, tag, name, value):
self.add_tag(tag)
d = self._tags[tag]
d[name] = value | add an attribute (nam, value pair) to the named tag |
12,628 | def plot_world(*args, **kwargs):
interactive = kwargs.pop(, True)
if interactive:
plot_world_with_elegans(*args, **kwargs)
else:
plot_world_with_matplotlib(*args, **kwargs) | Generate a plot from received instance of World and show it.
See also plot_world_with_elegans and plot_world_with_matplotlib.
Parameters
----------
world : World or str
World or a HDF5 filename to render.
interactive : bool, default True
Choose a visualizer. If False, show the plot with matplotlib.
If True (only available on IPython Notebook), show it with elegans.
Examples
--------
>>> plot_world(w)
>>> plot_world(w, interactive=False) |
12,629 | def _get_tick_frac_labels(self):
minor_num = 4
if (self.axis.scale_type == ):
domain = self.axis.domain
if domain[1] < domain[0]:
flip = True
domain = domain[::-1]
else:
flip = False
offset = domain[0]
scale = domain[1] - domain[0]
transforms = self.axis.transforms
length = self.axis.pos[1] - self.axis.pos[0]
n_inches = np.sqrt(np.sum(length ** 2)) / transforms.dpi
major = _get_ticks_talbot(domain[0], domain[1], n_inches, 2)
labels = [ % x for x in major]
majstep = major[1] - major[0]
minor = []
minstep = majstep / (minor_num + 1)
minstart = 0 if self.axis._stop_at_major[0] else -1
minstop = -1 if self.axis._stop_at_major[1] else 0
for i in range(minstart, len(major) + minstop):
maj = major[0] + i * majstep
minor.extend(np.linspace(maj + minstep,
maj + majstep - minstep,
minor_num))
major_frac = (major - offset) / scale
minor_frac = (np.array(minor) - offset) / scale
major_frac = major_frac[::-1] if flip else major_frac
use_mask = (major_frac > -0.0001) & (major_frac < 1.0001)
major_frac = major_frac[use_mask]
labels = [l for li, l in enumerate(labels) if use_mask[li]]
minor_frac = minor_frac[(minor_frac > -0.0001) &
(minor_frac < 1.0001)]
elif self.axis.scale_type == :
return NotImplementedError
elif self.axis.scale_type == :
return NotImplementedError
return major_frac, minor_frac, labels | Get the major ticks, minor ticks, and major labels |
12,630 | def make_ns(self, ns):
if self.namespace:
val = {}
val.update(self.namespace)
val.update(ns)
return val
else:
return ns | Returns the `lazily` created template namespace. |
12,631 | def user(self):
try:
return self._user
except AttributeError:
self._user = MatrixUser(self.mxid, self.Api(identity=self.mxid))
return self._user | Creates a User object when requested. |
12,632 | def smoother_step(F, filt, next_pred, next_smth):
J = dotdot(filt.cov, F.T, inv(next_pred.cov))
smth_cov = filt.cov + dotdot(J, next_smth.cov - next_pred.cov, J.T)
smth_mean = filt.mean + np.matmul(next_smth.mean - next_pred.mean, J.T)
return MeanAndCov(mean=smth_mean, cov=smth_cov) | Smoothing step of Kalman filter/smoother.
Parameters
----------
F: (dx, dx) numpy array
Mean of X_t | X_{t-1} is F * X_{t-1}
filt: MeanAndCov object
filtering distribution at time t
next_pred: MeanAndCov object
predictive distribution at time t+1
next_smth: MeanAndCov object
smoothing distribution at time t+1
Returns
-------
smth: MeanAndCov object
smoothing distribution at time t |
12,633 | def execute(self):
stack = self._stack
callbacks = self._callbacks
promises = []
if stack:
def process():
pipe = ConnectionManager.get(self.connection_name)
call_stack = []
futures = []
for f, args, kwargs in call_stack:
f(*args, **kwargs)
for i, v in enumerate(pipe.execute()):
futures[i].set(v)
promises.append(process)
promises += [p.execute for p in self._pipelines.values()]
if len(promises) == 1:
promises[0]()
else:
TaskManager.wait(*[TaskManager.promise(p) for p in promises])
for cb in callbacks:
cb() | Invoke the redispy pipeline.execute() method and take all the values
returned in sequential order of commands and map them to the
Future objects we returned when each command was queued inside
the pipeline.
Also invoke all the callback functions queued up.
:param raise_on_error: boolean
:return: None |
12,634 | def api_request(
self,
method,
path,
query_params=None,
data=None,
content_type=None,
headers=None,
api_base_url=None,
api_version=None,
expect_json=True,
_target_object=None,
):
url = self.build_api_url(
path=path,
query_params=query_params,
api_base_url=api_base_url,
api_version=api_version,
)
if data and isinstance(data, dict):
data = json.dumps(data)
content_type = "application/json"
response = self._make_request(
method=method,
url=url,
data=data,
content_type=content_type,
headers=headers,
target_object=_target_object,
)
if not 200 <= response.status_code < 300:
raise exceptions.from_http_response(response)
if expect_json and response.content:
return response.json()
else:
return response.content | Make a request over the HTTP transport to the API.
You shouldn't need to use this method, but if you plan to
interact with the API using these primitives, this is the
correct one to use.
:type method: str
:param method: The HTTP method name (ie, ``GET``, ``POST``, etc).
Required.
:type path: str
:param path: The path to the resource (ie, ``'/b/bucket-name'``).
Required.
:type query_params: dict or list
:param query_params: A dictionary of keys and values (or list of
key-value pairs) to insert into the query
string of the URL.
:type data: str
:param data: The data to send as the body of the request. Default is
the empty string.
:type content_type: str
:param content_type: The proper MIME type of the data provided. Default
is None.
:type headers: dict
:param headers: extra HTTP headers to be sent with the request.
:type api_base_url: str
:param api_base_url: The base URL for the API endpoint.
Typically you won't have to provide this.
Default is the standard API base URL.
:type api_version: str
:param api_version: The version of the API to call. Typically
you shouldn't provide this and instead use
the default for the library. Default is the
latest API version supported by
google-cloud-python.
:type expect_json: bool
:param expect_json: If True, this method will try to parse the
response as JSON and raise an exception if
that cannot be done. Default is True.
:type _target_object: :class:`object`
:param _target_object:
(Optional) Protected argument to be used by library callers. This
can allow custom behavior, for example, to defer an HTTP request
and complete initialization of the object at a later time.
:raises ~google.cloud.exceptions.GoogleCloudError: if the response code
is not 200 OK.
:raises ValueError: if the response content type is not JSON.
:rtype: dict or str
:returns: The API response payload, either as a raw string or
a dictionary if the response is valid JSON. |
12,635 | def create_constants(self, rdbms):
| Factory for creating a Constants objects (i.e. objects for creating constants based on column widths, and auto
increment columns and labels).
:param str rdbms: The target RDBMS (i.e. mysql, mssql or pgsql).
:rtype: pystratum.Constants.Constants |
12,636 | def reload_cache_config(self, call_params):
path = + self.api_version +
method =
return self.request(path, method, call_params) | REST Reload Plivo Cache Config helper |
12,637 | def get_window_settings(self):
window_size = (self.window_size.width(), self.window_size.height())
is_fullscreen = self.isFullScreen()
if is_fullscreen:
is_maximized = self.maximized_flag
else:
is_maximized = self.isMaximized()
pos = (self.window_position.x(), self.window_position.y())
prefs_dialog_size = (self.prefs_dialog_size.width(),
self.prefs_dialog_size.height())
hexstate = qbytearray_to_str(self.saveState())
return (hexstate, window_size, prefs_dialog_size, pos, is_maximized,
is_fullscreen) | Return current window settings
Symetric to the 'set_window_settings' setter |
12,638 | def recv(sock, size):
data = sock.recv(size, socket.MSG_WAITALL)
if len(data) < size:
raise socket.error(ECONNRESET, )
return data | Receives exactly `size` bytes. This function blocks the thread. |
12,639 | def fork(self, server_address: str = None, *, namespace: str = None) -> "State":
r
if server_address is None:
server_address = self.server_address
if namespace is None:
namespace = self.namespace
return self.__class__(server_address, namespace=namespace) | r"""
"Forks" this State object.
Takes the same args as the :py:class:`State` constructor,
except that they automatically default to the values provided during the creation of this State object.
If no args are provided to this function,
then it shall create a new :py:class:`State` object
that follows the exact same semantics as this one.
This is preferred over ``copy()``\ -ing a :py:class:`State` object.
Useful when one needs to access 2 or more namespaces from the same code. |
12,640 | def timeout(seconds=None, use_signals=True, timeout_exception=TimeoutError, exception_message=None):
def decorate(function):
if not seconds:
return function
if use_signals:
def handler(signum, frame):
_raise_exception(timeout_exception, exception_message)
@wraps(function)
def new_function(*args, **kwargs):
new_seconds = kwargs.pop(, seconds)
if new_seconds:
old = signal.signal(signal.SIGALRM, handler)
signal.setitimer(signal.ITIMER_REAL, new_seconds)
try:
return function(*args, **kwargs)
finally:
if new_seconds:
signal.setitimer(signal.ITIMER_REAL, 0)
signal.signal(signal.SIGALRM, old)
return new_function
else:
@wraps(function)
def new_function(*args, **kwargs):
timeout_wrapper = _Timeout(function, timeout_exception, exception_message, seconds)
return timeout_wrapper(*args, **kwargs)
return new_function
return decorate | Add a timeout parameter to a function and return it.
:param seconds: optional time limit in seconds or fractions of a second. If None is passed, no timeout is applied.
This adds some flexibility to the usage: you can disable timing out depending on the settings.
:type seconds: float
:param use_signals: flag indicating whether signals should be used for timing function out or the multiprocessing
When using multiprocessing, timeout granularity is limited to 10ths of a second.
:type use_signals: bool
:raises: TimeoutError if time limit is reached
It is illegal to pass anything other than a function as the first
parameter. The function is wrapped and returned to the caller. |
12,641 | def process_rst_and_summaries(content_generators):
for generator in content_generators:
if isinstance(generator, generators.ArticlesGenerator):
for article in (
generator.articles +
generator.translations +
generator.drafts):
rst_add_mathjax(article)
if process_summary.mathjax_script is not None:
process_summary(article)
elif isinstance(generator, generators.PagesGenerator):
for page in generator.pages:
rst_add_mathjax(page)
for page in generator.hidden_pages:
rst_add_mathjax(page) | Ensure mathjax script is applied to RST and summaries are
corrected if specified in user settings.
Handles content attached to ArticleGenerator and PageGenerator objects,
since the plugin doesn't know how to handle other Generator types.
For reStructuredText content, examine both articles and pages.
If article or page is reStructuredText and there is math present,
append the mathjax script.
Also process summaries if present (only applies to articles)
and user wants summaries processed (via user settings) |
12,642 | def parse_epsv_response(s):
matches = tuple(re.finditer(r"\((.)\1\1\d+\1\)", s))
s = matches[-1].group()
port = int(s[4:-2])
return None, port | Parsing `EPSV` (`message (|||port|)`) response.
:param s: response line
:type s: :py:class:`str`
:return: (ip, port)
:rtype: (:py:class:`None`, :py:class:`int`) |
12,643 | def predict(self, X):
return [self.classes[prediction.argmax()] for prediction in self.predict_proba(X)] | Predict the class for X.
The predicted class for each sample in X is returned.
Parameters
----------
X : List of ndarrays, one for each training example.
Each training example's shape is (string1_len,
string2_len, n_features), where string1_len and
string2_len are the length of the two training strings and
n_features the number of features.
Returns
-------
y : iterable of shape = [n_samples]
The predicted classes. |
12,644 | def regions(self):
url = "%s/regions" % self.root
params = {"f": "json"}
return self._get(url=url,
param_dict=params,
proxy_url=self._proxy_url,
proxy_port=self._proxy_port) | gets the regions value |
12,645 | def output_to_json(sources):
results = OrderedDict()
for source in sources:
if source.get_is_available():
source.update()
source_name = source.get_source_name()
results[source_name] = source.get_sensors_summary()
print(json.dumps(results, indent=4))
sys.exit() | Print statistics to the terminal in Json format |
12,646 | def minimumBelow(requestContext, seriesList, n):
results = []
for series in seriesList:
val = safeMin(series)
if val is None or val <= n:
results.append(series)
return results | Takes one metric or a wildcard seriesList followed by a constant n.
Draws only the metrics with a minimum value below n.
Example::
&target=minimumBelow(system.interface.eth*.packetsSent,1000)
This would only display interfaces which sent at one point less than
1000 packets/min. |
12,647 | def fromlineno(self):
lineno = super(Arguments, self).fromlineno
return max(lineno, self.parent.fromlineno or 0) | The first line that this node appears on in the source code.
:type: int or None |
12,648 | def permission_required(perm, *lookup_variables, **kwargs):
login_url = kwargs.pop(, settings.LOGIN_URL)
redirect_field_name = kwargs.pop(, REDIRECT_FIELD_NAME)
redirect_to_login = kwargs.pop(, True)
def decorate(view_func):
def decorated(request, *args, **kwargs):
if request.user.is_authenticated():
params = []
for lookup_variable in lookup_variables:
if isinstance(lookup_variable, string_types):
value = kwargs.get(lookup_variable, None)
if value is None:
continue
params.append(value)
elif isinstance(lookup_variable, (tuple, list)):
model, lookup, varname = lookup_variable
value = kwargs.get(varname, None)
if value is None:
continue
if isinstance(model, string_types):
model_class = apps.get_model(*model.split("."))
else:
model_class = model
if model_class is None:
raise ValueError(
"The given argument is not a valid model." % model)
if (inspect.isclass(model_class) and
not issubclass(model_class, Model)):
raise ValueError(
% model)
obj = get_object_or_404(model_class, **{lookup: value})
params.append(obj)
check = get_check(request.user, perm)
granted = False
if check is not None:
granted = check(*params)
if granted or request.user.has_perm(perm):
return view_func(request, *args, **kwargs)
if redirect_to_login:
path = urlquote(request.get_full_path())
tup = login_url, redirect_field_name, path
return HttpResponseRedirect( % tup)
return permission_denied(request)
return wraps(view_func)(decorated)
return decorate | Decorator for views that checks whether a user has a particular permission
enabled, redirecting to the log-in page if necessary. |
12,649 | def update(self, item, dry_run=None):
logger.debug(.format(
item=item,
namespace=self.namespace
))
if not dry_run:
self.table.put_item(Item=item)
return item | Updates item info in file. |
12,650 | def create_session(self, session_id, register=True, session_factory=None):
if session_factory is not None:
sess_factory, sess_args, sess_kwargs = session_factory
s = sess_factory(*sess_args, **sess_kwargs)
else:
s = session.Session(self._connection, self, session_id,
self.settings.get())
if register:
self._sessions.add(s)
return s | Creates new session object and returns it.
@param session_id: Session id. If not provided, will generate a
new session id.
@param register: Should be the session registered in a storage.
Websockets don't need it.
@param session_factory: Use the given (class, args, kwargs) tuple to
create the session. Class should derive from
`BaseSession`. Normally not needed. |
12,651 | def is_data_diverging(data_container):
assert infer_data_type(data_container) in [
"ordinal",
"continuous",
], "Data type should be ordinal or continuous"
has_negative = False
has_positive = False
for i in data_container:
if i < 0:
has_negative = True
elif i > 0:
has_positive = True
if has_negative and has_positive:
return True
else:
return False | We want to use this to check whether the data are diverging or not.
This is a simple check, can be made much more sophisticated.
:param data_container: A generic container of data points.
:type data_container: `iterable` |
12,652 | def _fix_up_properties(cls):
kind = cls._get_kind()
if not isinstance(kind, basestring):
raise KindError(
% (cls.__name__, kind))
if not isinstance(kind, str):
try:
kind = kind.encode()
except UnicodeEncodeError:
raise KindError(
%
(cls.__name__, kind))
cls._properties = {}
if cls.__module__ == __name__:
return
for name in set(dir(cls)):
attr = getattr(cls, name, None)
if isinstance(attr, ModelAttribute) and not isinstance(attr, ModelKey):
if name.startswith():
raise TypeError(
% name)
attr._fix_up(cls, name)
if isinstance(attr, Property):
if (attr._repeated or
(isinstance(attr, StructuredProperty) and
attr._modelclass._has_repeated)):
cls._has_repeated = True
cls._properties[attr._name] = attr
cls._update_kind_map() | Fix up the properties by calling their _fix_up() method.
Note: This is called by MetaModel, but may also be called manually
after dynamically updating a model class. |
12,653 | def analyze(data, normalize=None, reduce=None, ndims=None, align=None, internal=False):
return aligner(reducer(normalizer(data, normalize=normalize, internal=internal),
reduce=reduce, ndims=ndims, internal=internal), align=align) | Wrapper function for normalize -> reduce -> align transformations.
Parameters
----------
data : numpy array, pandas df, or list of arrays/dfs
The data to analyze
normalize : str or False or None
If set to 'across', the columns of the input data will be z-scored
across lists (default). That is, the z-scores will be computed with
with respect to column n across all arrays passed in the list. If set
to 'within', the columns will be z-scored within each list that is
passed. If set to 'row', each row of the input data will be z-scored.
If set to False, the input data will be returned with no z-scoring.
reduce : str or dict
Decomposition/manifold learning model to use. Models supported: PCA,
IncrementalPCA, SparsePCA, MiniBatchSparsePCA, KernelPCA, FastICA,
FactorAnalysis, TruncatedSVD, DictionaryLearning, MiniBatchDictionaryLearning,
TSNE, Isomap, SpectralEmbedding, LocallyLinearEmbedding, and MDS. Can be
passed as a string, but for finer control of the model parameters, pass
as a dictionary, e.g. reduce={'model' : 'PCA', 'params' : {'whiten' : True}}.
See scikit-learn specific model docs for details on parameters supported
for each model.
ndims : int
Number of dimensions to reduce
align : str or dict
If str, either 'hyper' or 'SRM'. If 'hyper', alignment algorithm will be
hyperalignment. If 'SRM', alignment algorithm will be shared response
model. You can also pass a dictionary for finer control, where the 'model'
key is a string that specifies the model and the params key is a dictionary
of parameter values (default : 'hyper').
Returns
----------
analyzed_data : list of numpy arrays
The processed data |
12,654 | def lset(self, key, index, value):
redis_list = self._get_list(key, )
if redis_list is None:
raise ResponseError("no such key")
try:
redis_list[index] = self._encode(value)
except IndexError:
raise ResponseError("index out of range") | Emulate lset. |
12,655 | def create(self, **kwargs):
resource = self.resource_class(self.client)
resource.update_from_dict(kwargs)
resource.save(force_create=True)
return resource | Create a resource on the server
:params kwargs: Attributes (field names and values) of the new resource |
12,656 | def get_stored_content_length(headers):
length = headers.get()
if length is None:
length = headers.get()
return length | Return the content length (in bytes) of the object as stored in GCS.
x-goog-stored-content-length should always be present except when called via
the local dev_appserver. Therefore if it is not present we default to the
standard content-length header.
Args:
headers: a dict of headers from the http response.
Returns:
the stored content length. |
12,657 | def make_key(table_name, objid):
key = datastore.Key()
path = key.path_element.add()
path.kind = table_name
path.name = str(objid)
return key | Create an object key for storage. |
12,658 | def main():
ctx = {}
def pretty_json(data):
return json.dumps(data, indent=2, sort_keys=True)
client = server.create_app().test_client()
host =
res = client.get(, environ_overrides={: host})
res_data = json.loads(res.data.decode())
ctx[] = pretty_json(res_data)
res = client.get(, environ_overrides={: host})
ctx[] = pretty_json(json.loads(res.data.decode()))
privkey =
pubkey =
asset = {: }
tx = Transaction.create([pubkey], [([pubkey], 1)], asset=asset, metadata={: 0})
tx = tx.sign([privkey])
ctx[] = pretty_json(tx.to_dict())
ctx[] = tx.outputs[0].public_keys[0]
ctx[] = tx.id
privkey_transfer =
pubkey_transfer =
cid = 0
input_ = Input(fulfillment=tx.outputs[cid].fulfillment,
fulfills=TransactionLink(txid=tx.id, output=cid),
owners_before=tx.outputs[cid].public_keys)
tx_transfer = Transaction.transfer([input_], [([pubkey_transfer], 1)], asset_id=tx.id, metadata={: 1})
tx_transfer = tx_transfer.sign([privkey])
ctx[] = pretty_json(tx_transfer.to_dict())
ctx[] = tx_transfer.outputs[0].public_keys[0]
ctx[] = tx_transfer.id
pubkey_transfer_last =
cid = 0
input_ = Input(fulfillment=tx_transfer.outputs[cid].fulfillment,
fulfills=TransactionLink(txid=tx_transfer.id, output=cid),
owners_before=tx_transfer.outputs[cid].public_keys)
tx_transfer_last = Transaction.transfer([input_], [([pubkey_transfer_last], 1)],
asset_id=tx.id, metadata={: 2})
tx_transfer_last = tx_transfer_last.sign([privkey_transfer])
ctx[] = pretty_json(tx_transfer_last.to_dict())
ctx[] = tx_transfer_last.id
ctx[] = tx_transfer_last.outputs[0].public_keys[0]
node_private = "5G2kE1zJAgTajkVSbPAQWo4c2izvtwqaNHYsaNpbbvxX"
node_public = "DngBurxfeNVKZWCEcDnLj1eMPAS7focUZTE5FndFGuHT"
signature = "53wxrEQDYk1dXzmvNSytbCfmNVnPqPkDQaTnAe8Jf43s6ssejPxezkCvUnGTnduNUmaLjhaan1iRLi3peu6s5DzA"
app_hash =
block = lib.Block(height=1, transactions=[tx.to_dict()], app_hash=app_hash)
block_dict = block._asdict()
block_dict.pop()
ctx[] = pretty_json(block_dict)
ctx[] = block.height
block_list = [
block.height
]
ctx[] = pretty_json(block_list)
base_path = os.path.join(os.path.dirname(__file__),
)
if not os.path.exists(base_path):
os.makedirs(base_path)
for name, tpl in TPLS.items():
path = os.path.join(base_path, name + )
code = tpl % ctx
with open(path, ) as handle:
handle.write(code) | Main function |
12,659 | def sort(self, values):
for level in self:
for wire1, wire2 in level:
if values[wire1] > values[wire2]:
values[wire1], values[wire2] = values[wire2], values[wire1] | Sort the values in-place based on the connectors in the network. |
12,660 | def plistfilename(self):
t exist.
'
if self._plist_fname is None:
self._plist_fname = discover_filename(self.label)
return self._plist_fname | This is a lazily detected absolute filename of the corresponding
property list file (*.plist). None if it doesn't exist. |
12,661 | def _error_if_word_invalid(word,
valid_words_dictionary,
technical_words_dictionary,
line_offset,
col_offset):
word_lower = word.lower()
valid_words_result = valid_words_dictionary.corrections(word_lower)
if technical_words_dictionary:
technical_words_result = technical_words_dictionary.corrections(word)
else:
technical_words_result = Dictionary.Result(False, list())
if not valid_words_result.valid and not technical_words_result.valid:
return SpellcheckError(word,
line_offset,
col_offset,
valid_words_result.suggestions,
SpellcheckError.InvalidWord) | Return SpellcheckError if this non-technical word is invalid. |
12,662 | def _assert_command_dict(self, struct, name, path=None, extra_info=None):
self._assert_dict(struct, name, path, extra_info)
if len(struct) != 1:
err = [self._format_error_path(path + [name])]
err.append(
.format(len(struct), struct))
if extra_info:
err.append(extra_info)
raise exceptions.YamlSyntaxError(.join(err)) | Checks whether struct is a command dict (e.g. it's a dict and has 1 key-value pair. |
12,663 | def create_api(name, description, cloneFrom=None,
region=None, key=None, keyid=None, profile=None):
try:
conn = _get_conn(region=region, key=key, keyid=keyid, profile=profile)
if cloneFrom:
api = conn.create_rest_api(name=name, description=description, cloneFrom=cloneFrom)
else:
api = conn.create_rest_api(name=name, description=description)
api = _convert_datetime_str(api)
return {: True, : api} if api else {: False}
except ClientError as e:
return {: False, : __utils__[](e)} | Create a new REST API Service with the given name
Returns {created: True} if the rest api was created and returns
{created: False} if the rest api was not created.
CLI Example:
.. code-block:: bash
salt myminion boto_apigateway.create_api myapi_name api_description |
12,664 | def cur_time(typ=, tz=DEFAULT_TZ) -> (datetime.date, str):
dt = pd.Timestamp(, tz=tz)
if typ == : return dt.strftime()
if typ == : return dt.strftime()
if typ == : return dt.strftime()
if typ == : return dt
return dt.date() | Current time
Args:
typ: one of ['date', 'time', 'time_path', 'raw', '']
tz: timezone
Returns:
relevant current time or date
Examples:
>>> cur_dt = pd.Timestamp('now')
>>> cur_time(typ='date') == cur_dt.strftime('%Y-%m-%d')
True
>>> cur_time(typ='time') == cur_dt.strftime('%Y-%m-%d %H:%M:%S')
True
>>> cur_time(typ='time_path') == cur_dt.strftime('%Y-%m-%d/%H-%M-%S')
True
>>> isinstance(cur_time(typ='raw', tz='Europe/London'), pd.Timestamp)
True
>>> cur_time(typ='') == cur_dt.date()
True |
12,665 | def do_refresh(self,args):
response = AwsConnectionFactory.getLogClient().describe_log_groups(logGroupNamePrefix=self.stackResource.physical_resource_id)
if not in response:
raise Exception("Expected log group description to have logGroups entry. Got {}".format(response))
descriptions = [x for x in response[] if x[] == self.stackResource.physical_resource_id]
if not descriptions:
raise Exception("Could not find log group {} in list {}".format(self.stackResource.physical_resource_id,response[]))
self.description = descriptions[0]
self.logStreams = self.loadLogStreams()
print "== logStream"
maxIndex = "{}".format(len(self.logStreams)+1)
print "maxIndex:{}".format(maxIndex)
frm = " {{0:{}d}}: {{1}}".format(len(maxIndex))
print frm
index = 0
for logStream in self.logStreams:
print frm.format(index,logStream[])
index += 1 | Refresh the view of the log group |
12,666 | def patch_sys(self, inherit_path):
def patch_dict(old_value, new_value):
old_value.clear()
old_value.update(new_value)
def patch_all(path, path_importer_cache, modules):
sys.path[:] = path
patch_dict(sys.path_importer_cache, path_importer_cache)
patch_dict(sys.modules, modules)
new_sys_path, new_sys_path_importer_cache, new_sys_modules = self.minimum_sys(inherit_path)
new_sys_path.extend(merge_split(self._pex_info.pex_path, self._vars.PEX_PATH))
patch_all(new_sys_path, new_sys_path_importer_cache, new_sys_modules) | Patch sys with all site scrubbed. |
12,667 | def _attach_record_as_json(mfg_event, record):
attachment = mfg_event.attachment.add()
attachment.name = TEST_RECORD_ATTACHMENT_NAME
test_record_dict = htf_data.convert_to_base_types(record)
attachment.value_binary = _convert_object_to_json(test_record_dict)
attachment.type = test_runs_pb2.TEXT_UTF8 | Attach a copy of the record as JSON so we have an un-mangled copy. |
12,668 | def filesfile_string(self):
lines = []
app = lines.append
app(self.input_file.path)
app(os.path.join(self.workdir, "unused"))
app(os.path.join(self.workdir, self.prefix.odata))
return "\n".join(lines) | String with the list of files and prefixes needed to execute ABINIT. |
12,669 | def update_stats(stats, start_time, data):
end_time = time.time()
cmd = data[]
try:
jid = data[]
except KeyError:
try:
jid = data[][]
except KeyError:
log.info()
return stats
create_time = int(time.mktime(time.strptime(jid, )))
latency = start_time - create_time
duration = end_time - start_time
stats[cmd][] += 1
stats[cmd][] = (stats[cmd][] * (stats[cmd][] - 1) + latency) / stats[cmd][]
stats[cmd][] = (stats[cmd][] * (stats[cmd][] - 1) + duration) / stats[cmd][]
return stats | Calculate the master stats and return the updated stat info |
12,670 | def slaveraise(self, type, error, traceback):
message = * 1 + pickle.dumps((type,
.join(tb.format_exception(type, error, traceback))))
if self.pipe is not None:
self.pipe.put(message) | slave only |
12,671 | def perform_iteration(self):
stats = self.get_all_stats()
self.redis_client.publish(
self.redis_key,
jsonify_asdict(stats),
) | Get any changes to the log files and push updates to Redis. |
12,672 | def laplacian(script, iterations=1, boundary=True, cotangent_weight=True,
selected=False):
filter_xml = .join([
,
,
.format(iterations),
,
,
,
,
.format(str(boundary).lower()),
,
,
,
,
.format(str(cotangent_weight).lower()),
,
,
,
,
.format(str(selected).lower()),
,
,
,
])
util.write_filter(script, filter_xml)
return None | Laplacian smooth of the mesh: for each vertex it calculates the average
position with nearest vertex
Args:
script: the FilterScript object or script filename to write
the filter to.
iterations (int): The number of times that the whole algorithm (normal
smoothing + vertex fitting) is iterated.
boundary (bool): If true the boundary edges are smoothed only by
themselves (e.g. the polyline forming the boundary of the mesh is
independently smoothed). Can reduce the shrinking on the border but
can have strange effects on very small boundaries.
cotangent_weight (bool): If True the cotangent weighting scheme is
computed for the averaging of the position. Otherwise (False) the
simpler umbrella scheme (1 if the edge is present) is used.
selected (bool): If selected the filter is performed only on the
selected faces
Layer stack:
No impacts
MeshLab versions:
2016.12
1.3.4BETA |
12,673 | def one_line(self):
ret = self.get()
if ret is None:
return False
else:
return ret.lower().startswith() | Return True|False if the AMP shoukd be displayed in oneline (one_lineline=true|false). |
12,674 | def speed(self):
if self._stalled:
return 0
time_sum = 0
data_len_sum = 0
for time_diff, data_len in self._samples:
time_sum += time_diff
data_len_sum += data_len
if time_sum:
return data_len_sum / time_sum
else:
return 0 | Return the current transfer speed.
Returns:
int: The speed in bytes per second. |
12,675 | def add_to_manifest(self, manifest):
manifest.add_service(self.service.name)
varname = predix.config.set_env_value(self.use_class, ,
self._get_uri())
manifest.add_env_var(varname, self._get_uri())
manifest.write_manifest() | Add useful details to the manifest about this service
so that it can be used in an application.
:param manifest: An predix.admin.app.Manifest object
instance that manages reading/writing manifest config
for a cloud foundry app. |
12,676 | def chunks(iterable, size=1):
iterator = iter(iterable)
for element in iterator:
yield chain([element], islice(iterator, size - 1)) | Splits iterator in chunks. |
12,677 | def nvmlDeviceGetPcieReplayCounter(handle):
r
c_replay = c_uint()
fn = _nvmlGetFunctionPointer("nvmlDeviceGetPcieReplayCounter")
ret = fn(handle, byref(c_replay))
_nvmlCheckReturn(ret)
return bytes_to_str(c_replay.value) | r"""
/**
* Retrieve the PCIe replay counter.
*
* For Kepler &tm; or newer fully supported devices.
*
* @param device The identifier of the target device
* @param value Reference in which to return the counter's value
*
* @return
* - \ref NVML_SUCCESS if \a value has been set
* - \ref NVML_ERROR_UNINITIALIZED if the library has not been successfully initialized
* - \ref NVML_ERROR_INVALID_ARGUMENT if \a device is invalid, or \a value is NULL
* - \ref NVML_ERROR_NOT_SUPPORTED if the device does not support this feature
* - \ref NVML_ERROR_GPU_IS_LOST if the target GPU has fallen off the bus or is otherwise inaccessible
* - \ref NVML_ERROR_UNKNOWN on any unexpected error
*/
nvmlReturn_t DECLDIR nvmlDeviceGetPcieReplayCounter |
12,678 | def parse_san(self, san: str) -> Move:
try:
if san in ["O-O", "O-O+", "O-O
return next(move for move in self.generate_castling_moves() if self.is_kingside_castling(move))
elif san in ["O-O-O", "O-O-O+", "O-O-O
return next(move for move in self.generate_castling_moves() if self.is_queenside_castling(move))
except StopIteration:
raise ValueError("illegal san: {!r} in {}".format(san, self.fen()))
match = SAN_REGEX.match(san)
if not match:
if san in ["--", "Z0"]:
return Move.null()
raise ValueError("invalid san: {!r}".format(san))
to_square = SQUARE_NAMES.index(match.group(4))
to_mask = BB_SQUARES[to_square] & ~self.occupied_co[self.turn]
p = match.group(5)
promotion = p and PIECE_SYMBOLS.index(p[-1].lower())
if match.group(1):
piece_type = PIECE_SYMBOLS.index(match.group(1).lower())
from_mask = self.pieces_mask(piece_type, self.turn)
else:
from_mask = self.pawns
if match.group(2):
from_mask &= BB_FILES[FILE_NAMES.index(match.group(2))]
if match.group(3):
from_mask &= BB_RANKS[int(match.group(3)) - 1]
matched_move = None
for move in self.generate_legal_moves(from_mask, to_mask):
if move.promotion != promotion:
continue
if matched_move:
raise ValueError("ambiguous san: {!r} in {}".format(san, self.fen()))
matched_move = move
if not matched_move:
raise ValueError("illegal san: {!r} in {}".format(san, self.fen()))
return matched_move | Uses the current position as the context to parse a move in standard
algebraic notation and returns the corresponding move object.
The returned move is guaranteed to be either legal or a null move.
:raises: :exc:`ValueError` if the SAN is invalid or ambiguous. |
12,679 | def get_separator_words(toks1):
tab_toks1 = nltk.FreqDist(word.lower() for word in toks1)
if(os.path.isfile(ESSAY_COR_TOKENS_PATH)):
toks2 = pickle.load(open(ESSAY_COR_TOKENS_PATH, ))
else:
essay_corpus = open(ESSAY_CORPUS_PATH).read()
essay_corpus = sub_chars(essay_corpus)
toks2 = nltk.FreqDist(word.lower() for word in nltk.word_tokenize(essay_corpus))
pickle.dump(toks2, open(ESSAY_COR_TOKENS_PATH, ))
sep_words = []
for word in tab_toks1.keys():
tok1_present = tab_toks1[word]
if(tok1_present > 2):
tok1_total = tab_toks1._N
tok2_present = toks2[word]
tok2_total = toks2._N
fish_val = pvalue(tok1_present, tok2_present, tok1_total, tok2_total).two_tail
if(fish_val < .001 and tok1_present / float(tok1_total) > (tok2_present / float(tok2_total)) * 2):
sep_words.append(word)
sep_words = [w for w in sep_words if not w in nltk.corpus.stopwords.words("english") and len(w) > 5]
return sep_words | Finds the words that separate a list of tokens from a background corpus
Basically this generates a list of informative/interesting words in a set
toks1 is a list of words
Returns a list of separator words |
12,680 | def _soap_client_call(method_name, *args):
soap_client = _build_soap_client()
soap_args = _convert_soap_method_args(*args)
if PYSIMPLESOAP_1_16_2:
return getattr(soap_client, method_name)(*soap_args)
else:
return getattr(soap_client, method_name)(soap_client, *soap_args) | Wrapper to call SoapClient method |
12,681 | def _configure_registry(self, include_process_stats: bool = False):
if include_process_stats:
self.registry.register_additional_collector(
ProcessCollector(registry=None)) | Configure the MetricRegistry. |
12,682 | def configure(config={}, datastore=None, nested=False):
if nested:
config = nested_config(config)
| Useful for when you need to control Switchboard's setup |
12,683 | def loads(s, encoding=None, cls=None, object_hook=None, **kw):
if cls is None:
cls = JSONDecoder
if object_hook is not None:
kw[] = object_hook
return cls(encoding=encoding, **kw).decode(s) | Deserialize ``s`` (a ``str`` or ``unicode`` instance containing a JSON
document) to a Python object.
If ``s`` is a ``str`` instance and is encoded with an ASCII based encoding
other than utf-8 (e.g. latin-1) then an appropriate ``encoding`` name
must be specified. Encodings that are not ASCII based (such as UCS-2)
are not allowed and should be decoded to ``unicode`` first.
``object_hook`` is an optional function that will be called with the
result of any object literal decode (a ``dict``). The return value of
``object_hook`` will be used instead of the ``dict``. This feature
can be used to implement custom decoders (e.g. JSON-RPC class hinting).
To use a custom ``JSONDecoder`` subclass, specify it with the ``cls``
kwarg. |
12,684 | def emit(
self, tup, stream=None, anchors=None, direct_task=None, need_task_ids=False
):
if anchors is None:
anchors = self._current_tups if self.auto_anchor else []
anchors = [a.id if isinstance(a, Tuple) else a for a in anchors]
return super(Bolt, self).emit(
tup,
stream=stream,
anchors=anchors,
direct_task=direct_task,
need_task_ids=need_task_ids,
) | Emit a new Tuple to a stream.
:param tup: the Tuple payload to send to Storm, should contain only
JSON-serializable data.
:type tup: :class:`list` or :class:`pystorm.component.Tuple`
:param stream: the ID of the stream to emit this Tuple to. Specify
``None`` to emit to default stream.
:type stream: str
:param anchors: IDs the Tuples (or :class:`pystorm.component.Tuple`
instances) which the emitted Tuples should be anchored
to. If ``auto_anchor`` is set to ``True`` and
you have not specified ``anchors``, ``anchors`` will be
set to the incoming/most recent Tuple ID(s).
:type anchors: list
:param direct_task: the task to send the Tuple to.
:type direct_task: int
:param need_task_ids: indicate whether or not you'd like the task IDs
the Tuple was emitted (default: ``False``).
:type need_task_ids: bool
:returns: ``None``, unless ``need_task_ids=True``, in which case it will
be a ``list`` of task IDs that the Tuple was sent to if. Note
that when specifying direct_task, this will be equal to
``[direct_task]``. |
12,685 | def _restore_file_lmt(self):
if not self._restore_file_properties.lmt or self._ase.lmt is None:
return
ts = time.mktime(self._ase.lmt.timetuple())
os.utime(str(self.final_path), (ts, ts)) | Restore file lmt for file
:param Descriptor self: this |
12,686 | def compare_mim_panels(self, existing_panel, new_panel):
existing_genes = set([gene[] for gene in existing_panel[]])
new_genes = set([gene[] for gene in new_panel[]])
return new_genes.difference(existing_genes) | Check if the latest version of OMIM differs from the most recent in database
Return all genes that where not in the previous version.
Args:
existing_panel(dict)
new_panel(dict)
Returns:
new_genes(set(str)) |
12,687 | def cd(path):
t exist'
old_dir = os.getcwd()
try:
os.makedirs(path)
except OSError:
pass
os.chdir(path)
try:
yield
finally:
os.chdir(old_dir) | Creates the path if it doesn't exist |
12,688 | def service_define(self, service, ty):
assert service not in self._data
assert service not in self._algebs + self._states
self._service.append(service)
self._service_ty.append(ty) | Add a service variable of type ``ty`` to this model
:param str service: variable name
:param type ty: variable type
:return: None |
12,689 | def get_my_ip():
ip = subprocess.check_output(GET_IP_CMD, shell=True).decode()[:-1]
return ip.strip() | Returns this computers IP address as a string. |
12,690 | def cast_item(cls, item):
if not isinstance(item, cls.subtype):
incompatible = isinstance(item, Base) and not any(
issubclass(cls.subtype, tag_type) and isinstance(item, tag_type)
for tag_type in cls.all_tags.values()
)
if incompatible:
raise IncompatibleItemType(item, cls.subtype)
try:
return cls.subtype(item)
except EndInstantiation:
raise ValueError(
) from None
except (IncompatibleItemType, CastError):
raise
except Exception as exc:
raise CastError(item, cls.subtype) from exc
return item | Cast list item to the appropriate tag type. |
12,691 | def capture_working_directory(self):
workdir = os.path.join(self._path, "tmp", "captures")
if not self._deleted:
try:
os.makedirs(workdir, exist_ok=True)
except OSError as e:
raise aiohttp.web.HTTPInternalServerError(text="Could not create the capture working directory: {}".format(e))
return workdir | Returns a working directory where to temporary store packet capture files.
:returns: path to the directory |
12,692 | def _histogram_fixed_binsize(a, start, width, n):
return flib.fixed_binsize(a, start, width, n) | histogram_even(a, start, width, n) -> histogram
Return an histogram where the first bin counts the number of lower
outliers and the last bin the number of upper outliers. Works only with
fixed width bins.
:Stochastics:
a : array
Array of samples.
start : float
Left-most bin edge.
width : float
Width of the bins. All bins are considered to have the same width.
n : int
Number of bins.
:Return:
H : array
Array containing the number of elements in each bin. H[0] is the number
of samples smaller than start and H[-1] the number of samples
greater than start + n*width. |
12,693 | def stack(self, k=5, stratify=False, shuffle=True, seed=100, full_test=True, add_diff=False):
result_train = []
result_test = []
y = None
for model in self.models:
result = model.stack(k=k, stratify=stratify, shuffle=shuffle, seed=seed, full_test=full_test)
train_df = pd.DataFrame(result.X_train, columns=generate_columns(result.X_train, model.name))
test_df = pd.DataFrame(result.X_test, columns=generate_columns(result.X_test, model.name))
result_train.append(train_df)
result_test.append(test_df)
if y is None:
y = result.y_train
result_train = pd.concat(result_train, axis=1)
result_test = pd.concat(result_test, axis=1)
if add_diff:
result_train = feature_combiner(result_train)
result_test = feature_combiner(result_test)
ds = Dataset(X_train=result_train, y_train=y, X_test=result_test)
return ds | Stacks sequence of models.
Parameters
----------
k : int, default 5
Number of folds.
stratify : bool, default False
shuffle : bool, default True
seed : int, default 100
full_test : bool, default True
If True then evaluate test dataset on the full data otherwise take the mean of every fold.
add_diff : bool, default False
Returns
-------
`DataFrame`
Examples
--------
>>> pipeline = ModelsPipeline(model_rf,model_lr)
>>> stack_ds = pipeline.stack(k=10, seed=111) |
12,694 | def filter_data(data, filter_dict):
for key, match_string in filter_dict.items():
if key not in data:
logger.warning("{0} doesn't match a top level key".format(key))
continue
values = data[key]
matcher = re.compile(match_string)
if isinstance(values, list):
values = [v for v in values if matcher.search(v)]
elif isinstance(values, dict):
values = dict((k, v) for k, v in values.items() if matcher.search(k))
else:
raise MiuraException("cannot filter a {0}".format(type(values)))
data[key] = values | filter a data dictionary for values only matching the filter |
12,695 | def threadpooled(
func: typing.Callable[..., typing.Union["typing.Awaitable[typing.Any]", typing.Any]],
*,
loop_getter: typing.Union[typing.Callable[..., asyncio.AbstractEventLoop], asyncio.AbstractEventLoop],
loop_getter_need_context: bool = False,
) -> typing.Callable[..., "asyncio.Task[typing.Any]"]:
| Overload: function callable, loop getter available. |
12,696 | def get_events(self, service_location_id, appliance_id, start, end,
max_number=None):
start = self._to_milliseconds(start)
end = self._to_milliseconds(end)
url = urljoin(URLS[], service_location_id, "events")
headers = {"Authorization": "Bearer {}".format(self.access_token)}
params = {
"from": start,
"to": end,
"applianceId": appliance_id,
"maxNumber": max_number
}
r = requests.get(url, headers=headers, params=params)
r.raise_for_status()
return r.json() | Request events for a given appliance
Parameters
----------
service_location_id : int
appliance_id : int
start : int | dt.datetime | pd.Timestamp
end : int | dt.datetime | pd.Timestamp
start and end support epoch (in milliseconds),
datetime and Pandas Timestamp
timezone-naive datetimes are assumed to be in UTC
max_number : int, optional
The maximum number of events that should be returned by this query
Default returns all events in the selected period
Returns
-------
dict |
12,697 | def fmt(self):
tmpl = string.Template(self.template)
kw = {}
for key, val in self.kw.items():
if key == :
kw[key] = val
else:
kw[key] = val.fmt()
return tmpl.substitute(kw) | Make printable representation out of this instance. |
12,698 | def find_by_id(self, section, params={}, **options):
path = "/sections/%s" % (section)
return self.client.get(path, params, **options) | Returns the complete record for a single section.
Parameters
----------
section : {Id} The section to get.
[params] : {Object} Parameters for the request |
12,699 | def get_header(self, hdrclass, returnval=None):
t
found.
'
if isinstance(hdrclass, str):
return self.get_header_by_name(hdrclass)
for hdr in self._headers:
if isinstance(hdr, hdrclass):
return hdr
return returnval | Return the first header object that is of
class hdrclass, or None if the header class isn't
found. |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.