Unnamed: 0
int64
0
389k
code
stringlengths
26
79.6k
docstring
stringlengths
1
46.9k
22,300
def attach(domain, filename): count = 0 errors = 0 with open(filename) as csvfile: reader = csv.DictReader(csvfile, delimiter=b, quotechar=b) for row in reader: try: dataset = Dataset.objects.get(id=ObjectId(row[])) except: log.warning(, row[]) errors += 1 continue Dataset.objects(**{ : domain, : row[] }).update(**{ : True, : True }) dataset.extras[] = domain dataset.extras[] = row[] dataset.last_modified = datetime.now() dataset.save() count += 1 return AttachResult(count, errors)
Attach existing dataset to their harvest remote id before harvesting. The expected csv file format is the following: - a column with header "local" and the local IDs or slugs - a column with header "remote" and the remote IDs The delimiter should be ";". columns order and extras columns does not matter
22,301
def Guo_Sun(dp, voidage, vs, rho, mu, Dt, L=1): r Rem = dp*rho*vs/mu/(1-voidage) fv = 180 + (9.5374*dp/Dt - 2.8054)*Rem**0.97 return fv*(mu*vs*L/dp**2)*(1-voidage)**2/voidage**3
r'''Calculates pressure drop across a packed bed of spheres using a correlation developed in [1]_. This is valid for highly-packed particles at particle/tube diameter ratios between 2 and 3, where a ring packing structure occurs. If a packing ratio is so low, it is important to use this model because in some cases its predictions are as low as half those of other models! .. math:: f_v = 180 + \left(9.5374\frac{d_p}{D_t} - 2.8054\right)Re_{Erg}^{0.97} .. math:: f_v = \frac{\Delta P d_p^2}{\mu v_s L}\frac{\epsilon^3}{(1-\epsilon)^2} .. math:: Re_{Erg} = \frac{\rho v_s d_p}{\mu(1-\epsilon)} Parameters ---------- dp : float Particle diameter of spheres [m] voidage : float Void fraction of bed packing [-] vs : float Superficial velocity of the fluid (volumetric flow rate/cross-sectional area)[m/s] rho : float Density of the fluid [kg/m^3] mu : float Viscosity of the fluid, [Pa*s] Dt : float Diameter of the tube, [m] L : float, optional Length the fluid flows in the packed bed [m] Returns ------- dP : float Pressure drop across the bed [Pa] Notes ----- Developed with data in the range of: .. math:: 100 < Re_{m} <33000\\ 2 < d_t/d_p < 3 1\\ 0.476 < \epsilon <0.492 Examples -------- >>> Guo_Sun(dp=14.2E-3, voidage=0.492, vs=0.6, rho=1E3, mu=1E-3, Dt=40.9E-3) 42019.529911473706 References ---------- .. [1] Guo, Zehua, Zhongning Sun, Nan Zhang, Ming Ding, and Jiaqing Liu. "Pressure Drop in Slender Packed Beds with Novel Packing Arrangement." Powder Technology 321 (November 2017): 286-92. doi:10.1016/j.powtec.2017.08.024.
22,302
def pop_context(self): processor = getattr(self, , None) if processor is not None: pop_context = getattr(processor, , None) if pop_context is None: pop_context = getattr(processor, , None) if pop_context is not None: return pop_context() if self._pop_next: self._pop_next = False
Pops the last set of keyword arguments provided to the processor.
22,303
def plot_dict(self, flags, label=, known=, **kwargs): out = [] for lab, flag in flags.items(): if label.lower() == : lab = flag.name elif label.lower() != : lab = label out.append(self.plot_flag(flag, label=to_string(lab), known=known, **kwargs)) return out
Plot a `~gwpy.segments.DataQualityDict` onto these axes Parameters ---------- flags : `~gwpy.segments.DataQualityDict` data-quality dict to display label : `str`, optional labelling system to use, or fixed label for all `DataQualityFlags`. Special values include - ``'key'``: use the key of the `DataQualityDict`, - ``'name'``: use the :attr:`~DataQualityFlag.name` of the `DataQualityFlag` If anything else, that fixed label will be used for all lines. known : `str`, `dict`, `None`, default: '/' display `known` segments with the given hatching, or give a dict of keyword arguments to pass to :meth:`~SegmentAxes.plot_segmentlist`, or `None` to hide. **kwargs any other keyword arguments acceptable for `~matplotlib.patches.Rectangle` Returns ------- collection : `~matplotlib.patches.PatchCollection` list of `~matplotlib.patches.Rectangle` patches
22,304
def Recurrent(step_model): ops = step_model.ops def recurrent_fwd(seqs, drop=0.0): lengths = [len(X) for X in seqs] X, size_at_t, unpad = ops.square_sequences(seqs) Y = ops.allocate((X.shape[0], X.shape[1], step_model.nO)) cell_drop = ops.get_dropout_mask((len(seqs), step_model.nO), 0.0) hidden_drop = ops.get_dropout_mask((len(seqs), step_model.nO), 0.0) out_drop = ops.get_dropout_mask((len(seqs), step_model.nO), 0.0) backprops = [None] * max(lengths) state = step_model.weights.get_initial_state(len(seqs)) for t in range(max(lengths)): state = list(state) size = size_at_t[t] Xt = X[t, :size] state[0] = state[0][:size] state[1] = state[1][:size] if cell_drop is not None: state[0] *= cell_drop if hidden_drop is not None: state[1] *= hidden_drop inputs = (state, Xt) (state, Y[t, :size]), backprops[t] = step_model.begin_update(inputs) if out_drop is not None: Y[t, :size] *= out_drop outputs = unpad(Y) def recurrent_bwd(d_outputs, sgd=None): dY, size_at_t, unpad = step_model.ops.square_sequences(d_outputs) d_state = [ step_model.ops.allocate((dY.shape[1], step_model.nO)), step_model.ops.allocate((dY.shape[1], step_model.nO)), ] updates = {} def gather_updates(weights, gradient, key=None): updates[key] = (weights, gradient) dX = step_model.ops.allocate( (dY.shape[0], dY.shape[1], step_model.weights.nI) ) for t in range(max(lengths) - 1, -1, -1): if out_drop is not None: dY[t] *= out_drop d_state_t, dXt = backprops[t]((d_state, dY[t]), sgd=gather_updates) d_state[0][: d_state_t[0].shape[0]] = d_state_t[0] d_state[1][: d_state_t[1].shape[0]] = d_state_t[1] dX[t, : dXt.shape[0]] = dXt if cell_drop is not None: d_state[0] *= cell_drop if hidden_drop is not None: d_state[1] *= hidden_drop d_cell, d_hidden = d_state step_model.weights.d_initial_cells += d_cell.sum(axis=0) step_model.weights.d_initial_hiddens += d_hidden.sum(axis=0) if sgd is not None: for key, (weights, gradient) in updates.items(): sgd(weights, gradient, key=key) return unpad(dX) return outputs, recurrent_bwd model = wrap(recurrent_fwd, step_model) model.nO = step_model.nO return model
Apply a stepwise model over a sequence, maintaining state. For RNNs
22,305
def from_client_config(cls, client_config, scopes, **kwargs): if in client_config: client_type = elif in client_config: client_type = else: raise ValueError( ) session, client_config = ( google_auth_oauthlib.helpers.session_from_client_config( client_config, scopes, **kwargs)) redirect_uri = kwargs.get(, None) return cls(session, client_type, client_config, redirect_uri)
Creates a :class:`requests_oauthlib.OAuth2Session` from client configuration loaded from a Google-format client secrets file. Args: client_config (Mapping[str, Any]): The client configuration in the Google `client secrets`_ format. scopes (Sequence[str]): The list of scopes to request during the flow. kwargs: Any additional parameters passed to :class:`requests_oauthlib.OAuth2Session` Returns: Flow: The constructed Flow instance. Raises: ValueError: If the client configuration is not in the correct format. .. _client secrets: https://developers.google.com/api-client-library/python/guide /aaa_client_secrets
22,306
def lesser(lhs, rhs): return _ufunc_helper( lhs, rhs, op.broadcast_lesser, lambda x, y: 1 if x < y else 0, _internal._lesser_scalar, _internal._greater_scalar)
Returns the result of element-wise **lesser than** (<) comparison operation with broadcasting. For each element in input arrays, return 1(true) if lhs elements are less than rhs, otherwise return 0(false). Equivalent to ``lhs < rhs`` and ``mx.nd.broadcast_lesser(lhs, rhs)``. .. note:: If the corresponding dimensions of two arrays have the same size or one of them has size 1, then the arrays are broadcastable to a common shape. Parameters ---------- lhs : scalar or mxnet.ndarray.array First array to be compared. rhs : scalar or mxnet.ndarray.array Second array to be compared. If ``lhs.shape != rhs.shape``, they must be broadcastable to a common shape. Returns ------- NDArray Output array of boolean values. Examples -------- >>> x = mx.nd.ones((2,3)) >>> y = mx.nd.arange(2).reshape((2,1)) >>> z = mx.nd.arange(2).reshape((1,2)) >>> x.asnumpy() array([[ 1., 1., 1.], [ 1., 1., 1.]], dtype=float32) >>> y.asnumpy() array([[ 0.], [ 1.]], dtype=float32) >>> z.asnumpy() array([[ 0., 1.]], dtype=float32) >>> (x < 1).asnumpy() array([[ 0., 0., 0.], [ 0., 0., 0.]], dtype=float32) >>> (x < y).asnumpy() array([[ 0., 0., 0.], [ 0., 0., 0.]], dtype=float32) >>> mx.nd.lesser(x, y).asnumpy() array([[ 0., 0., 0.], [ 0., 0., 0.]], dtype=float32) >>> (z < y).asnumpy() array([[ 0., 0.], [ 1., 0.]], dtype=float32)
22,307
def find_poor_default_arg(node): poor_defaults = [ ast.Call, ast.Dict, ast.DictComp, ast.GeneratorExp, ast.List, ast.ListComp, ast.Set, ast.SetComp, ] return ( isinstance(node, ast.FunctionDef) and any((n for n in node.args.defaults if type(n) in poor_defaults)) )
Finds poor default args
22,308
def LSRS(self, params): try: Ra, Rb, Rc = self.get_three_parameters(self.THREE_PARAMETER_COMMA_SEPARATED, params) except iarm.exceptions.ParsingError: Rb, Rc = self.get_two_parameters(self.TWO_PARAMETER_COMMA_SEPARATED, params) Ra = Rb if self.is_register(Rc): self.check_arguments(low_registers=(Ra, Rc)) self.match_first_two_parameters(Ra, Rb) def LSRS_func(): if (self.register[Rc] > 0) and (self.register[Rb] & (1 << (self.register[Rc] - 1))): self.set_APSR_flag_to_value(, 1) else: self.set_APSR_flag_to_value(, 0) self.register[Ra] = self.register[Ra] >> self.register[Rc] self.set_NZ_flags(self.register[Ra]) else: self.check_arguments(low_registers=(Ra, Rb), imm5_counting=(Rc,)) shift_amount = self.check_immediate(Rc) def LSRS_func(): if self.register[Rb] & (1 << (shift_amount - 1)): self.set_APSR_flag_to_value(, 1) else: self.set_APSR_flag_to_value(, 0) self.register[Ra] = self.register[Rb] >> shift_amount self.set_NZ_flags(self.register[Ra]) return LSRS_func
LSRS [Ra,] Ra, Rc LSRS [Ra,] Rb, #imm5_counting Logical shift right Rb by Rc or imm5 and store the result in Ra imm5 counting is [1, 32] In the register shift, the first two operands must be the same register Ra, Rb, and Rc must be low registers If Ra is omitted, then it is assumed to be Rb
22,309
def get_external_logger(name=None, short_name=" ", log_to_file=True): global LOGGERS loggername = name logger = _check_existing_logger(loggername, short_name) if logger is not None: return logger logging_config = LOGGING_CONFIG.get(name, LOGGING_CONFIG.get("external")) filename = logging_config.get("file", {}).get("name", loggername) if not filename.endswith(".log"): filename = str(filename) + ".log" logger = _get_basic_logger(loggername, log_to_file, get_base_logfilename(filename)) cbh = logging.StreamHandler() cbh.formatter = BenchFormatterWithType(COLOR_ON) if VERBOSE_LEVEL == 1 and not SILENT_ON: cbh.setLevel(logging.INFO) elif VERBOSE_LEVEL >= 2 and not SILENT_ON: cbh.setLevel(logging.DEBUG) elif SILENT_ON: cbh.setLevel(logging.ERROR) else: cbh.setLevel(getattr(logging, logging_config.get("level"))) logger.addHandler(cbh) LOGGERS[loggername] = BenchLoggerAdapter(logger, {"source": short_name}) return LOGGERS[loggername]
Get a logger for external modules, whose logging should usually be on a less verbose level. :param name: Name for logger :param short_name: Shorthand name for logger :param log_to_file: Boolean, True if logger should log to a file as well. :return: Logger
22,310
def LOS_PRMin(Ds, dus, kPOut=None, Eps=1.e-12, Test=True): if Test: assert Ds.ndim in [1,2] and 3 in Ds.shape and Ds.shape==dus.shape assert kPOut is None or (Ds.ndim==1 and not hasattr(kPOut,)) or (Ds.ndim==2 and kPOut.shape==(Ds.size/3,)) v = Ds.ndim==1 if v: Ds = Ds.reshape((3,1)) dus = dus.reshape((3,1)) if kPOut is not None: kPOut = np.array([kPOut]) kRMin = np.nan*np.ones((Ds.shape[1],)) uparN = np.sqrt(dus[0,:]**2 + dus[1,:]**2) ind = uparN>Eps kRMin[~ind] = 0. kRMin[ind] = -(dus[0,ind]*Ds[0,ind]+dus[1,ind]*Ds[1,ind])/uparN[ind]**2 kRMin[kRMin<=0.] = 0. if kPOut is not None: kRMin[kRMin>kPOut] = kPOut[kRMin>kPOut] if v: kRMin = kRMin[0] return kRMin
Compute the point on the LOS where the major radius is minimum
22,311
def _update_srcmap(self, name, src, **kwargs): k = self._create_srcmap(name, src, **kwargs) scale = self._src_expscale.get(name, 1.0) k *= scale self.like.logLike.sourceMap(str(name)).model() self.like.logLike.setSourceMapImage(str(name), np.ravel(k)) self.like.logLike.sourceMap(str(name)).model() normPar = self.like.normPar(name) if not normPar.isFree(): self.like.logLike.buildFixedModelWts()
Update the source map for an existing source in memory.
22,312
def events(self): if not self.__events: self.__events = Events(self.__connection) return self.__events
Gets the Events API client. Returns: Events:
22,313
def is_transition(self): return self.is_snv and is_purine(self.ref) == is_purine(self.alt)
Is this variant and pyrimidine to pyrimidine change or purine to purine change
22,314
def malloc(self, sim_size): raise NotImplementedError("%s not implemented for %s" % (self.malloc.__func__.__name__, self.__class__.__name__))
A somewhat faithful implementation of libc `malloc`. :param sim_size: the amount of memory (in bytes) to be allocated :returns: the address of the allocation, or a NULL pointer if the allocation failed
22,315
def simple(self): if self._days: return % self.totaldays elif self.months: return % self._months elif self.years: return % self.years else: return
A string representation with only one period delimiter.
22,316
def webui_data_stores_saved_query_key(self, **kwargs): config = ET.Element("config") webui = ET.SubElement(config, "webui", xmlns="http://tail-f.com/ns/webui") data_stores = ET.SubElement(webui, "data-stores") saved_query = ET.SubElement(data_stores, "saved-query") key = ET.SubElement(saved_query, "key") key.text = kwargs.pop() callback = kwargs.pop(, self._callback) return callback(config)
Auto Generated Code
22,317
def indicator(self, indicator_type, summary, **kwargs): indicator_obj = Indicator(indicator_type, summary, **kwargs) return self._indicator(indicator_obj)
Add Indicator data to Batch object. Args: indicator_type (str): The ThreatConnect define Indicator type. summary (str): The value for this Indicator. confidence (str, kwargs): The threat confidence for this Indicator. date_added (str, kwargs): The date timestamp the Indicator was created. last_modified (str, kwargs): The date timestamp the Indicator was last modified. rating (str, kwargs): The threat rating for this Indicator. xid (str, kwargs): The external id for this Indicator. Returns: obj: An instance of Indicator.
22,318
def alert_stream(self, reset_event, kill_event): _LOGGING.debug(, self.name, self.cam_id) start_event = False parse_string = "" fail_count = 0 url = % self.root_url while True: try: stream = self.hik_request.get(url, stream=True, timeout=(CONNECT_TIMEOUT, READ_TIMEOUT)) if stream.status_code == requests.codes.not_found: url = % self.root_url stream = self.hik_request.get(url, stream=True) if stream.status_code != requests.codes.ok: raise ValueError() else: _LOGGING.debug(, self.name) fail_count = 0 self.watchdog.start() for line in stream.iter_lines(): if line: str_line = line.decode("utf-8", "ignore") if str_line.find() != -1: start_event = True parse_string += str_line elif str_line.find() != -1: parse_string += str_line start_event = False if parse_string: tree = ET.fromstring(parse_string) self.process_stream(tree) self.update_stale() parse_string = "" else: if start_event: parse_string += str_line if kill_event.is_set(): break elif reset_event.is_set(): raise ValueError() if kill_event.is_set(): _LOGGING.debug(, self.name) self.watchdog.stop() self.hik_request.close() return elif reset_event.is_set(): raise ValueError() except (ValueError, requests.exceptions.ConnectionError, requests.exceptions.ChunkedEncodingError) as err: fail_count += 1 reset_event.clear() _LOGGING.warning(, self.name, fail_count, (fail_count * 5) + 5, err) parse_string = "" self.watchdog.stop() self.hik_request.close() time.sleep(5) self.update_stale() time.sleep(fail_count * 5) continue
Open event stream.
22,319
def write_response(self, response): if self._response_timeout_handler: self._response_timeout_handler.cancel() self._response_timeout_handler = None try: keep_alive = self.keep_alive self.transport.write( response.output( self.request.version, keep_alive, self.keep_alive_timeout ) ) self.log_response(response) except AttributeError: logger.error( "Invalid response object for url %s, " "Expected Type: HTTPResponse, Actual Type: %s", self.url, type(response), ) self.write_error(ServerError("Invalid response type")) except RuntimeError: if self._debug: logger.error( "Connection lost before response written @ %s", self.request.ip, ) keep_alive = False except Exception as e: self.bail_out( "Writing response failed, connection closed {}".format(repr(e)) ) finally: if not keep_alive: self.transport.close() self.transport = None else: self._keep_alive_timeout_handler = self.loop.call_later( self.keep_alive_timeout, self.keep_alive_timeout_callback ) self._last_response_time = time() self.cleanup()
Writes response content synchronously to the transport.
22,320
def RemoveBackground(EPIC, campaign=None): if campaign is None: campaign = Campaign(EPIC) if hasattr(campaign, ): raise AttributeError( "Please choose a campaign/season for this target: %s." % campaign) if campaign < 3: return True else: return False
Returns :py:obj:`True` or :py:obj:`False`, indicating whether or not to remove the background flux for the target. If ``campaign < 3``, returns :py:obj:`True`, otherwise returns :py:obj:`False`.
22,321
def area(x,y): return 0.5 * np.abs(np.dot(x, np.roll(y, 1)) - np.dot(y, np.roll(x, 1)))
Calculate the area of a polygon given as x(...),y(...) Implementation of Shoelace formula
22,322
def _post_clean(self): super(NgModelFormMixin, self)._post_clean() if self._errors and self.prefix: self._errors = ErrorDict((self.add_prefix(name), value) for name, value in self._errors.items())
Rewrite the error dictionary, so that its keys correspond to the model fields.
22,323
def constant_time_compare(val1, val2): if _builtin_constant_time_compare is not None: return _builtin_constant_time_compare(val1, val2) len_eq = len(val1) == len(val2) if len_eq: result = 0 left = val1 else: result = 1 left = val2 for x, y in izip(bytearray(left), bytearray(val2)): result |= x ^ y return result == 0
Returns True if the two strings are equal, False otherwise. The time taken is independent of the number of characters that match. Do not use this function for anything else than comparision with known length targets. This is should be implemented in C in order to get it completely right.
22,324
def createCellsFixedNum (self): from .. import sim cells = [] self.rand.Random123(self.tags[], sim.net.lastGid, sim.cfg.seeds[]) self.rand.uniform(0, 1) vec = h.Vector(self.tags[]*3) vec.setrand(self.rand) randLocs = np.array(vec).reshape(self.tags[], 3) if sim.net.params.shape == : rho = randLocs[:,0] phi = 2 * pi * randLocs[:,2] x = (1 + sqrt(rho) * cos(phi))/2.0 z = (1 + sqrt(rho) * sin(phi))/2.0 randLocs[:,0] = x randLocs[:,2] = z elif sim.net.params.shape == : rho = np.power(randLocs[:,0], 1.0/3.0) phi = 2 * pi * randLocs[:,1] costheta = (2 * randLocs[:,2]) - 1 theta = arccos(costheta) x = (1 + rho * cos(phi) * sin(theta))/2.0 y = (1 + rho * sin(phi) * sin(theta))/2.0 z = (1 + rho * cos(theta))/2.0 randLocs[:,0] = x randLocs[:,1] = y randLocs[:,2] = z for icoord, coord in enumerate([, , ]): if coord+ in self.tags: self.tags[coord+] = [float(point) / getattr(sim.net.params, +coord.upper()) for point in self.tags[coord+]] if coord+ in self.tags: minv = self.tags[coord+][0] maxv = self.tags[coord+][1] randLocs[:,icoord] = randLocs[:,icoord] * (maxv-minv) + minv for i in self._distributeCells(int(sim.net.params.scale * self.tags[]))[sim.rank]: gid = sim.net.lastGid+i self.cellGids.append(gid) cellTags = {k: v for (k, v) in self.tags.items() if k in sim.net.params.popTagsCopiedToCells} cellTags[] = self.tags[] cellTags[] = randLocs[i,0] cellTags[] = randLocs[i,1] cellTags[] = randLocs[i,2] cellTags[] = sim.net.params.sizeX * randLocs[i,0] cellTags[] = sim.net.params.sizeY * randLocs[i,1] cellTags[] = sim.net.params.sizeZ * randLocs[i,2] if in self.tags: if isinstance(self.tags[][0], list): try: cellTags[][] = self.tags[][i] except: pass else: cellTags[][] = self.tags[] cells.append(self.cellModelClass(gid, cellTags)) if sim.cfg.verbose: print((%(i, sim.net.params.scale * self.tags[]-1, gid, self.tags[], sim.rank))) sim.net.lastGid = sim.net.lastGid + self.tags[] return cells
Create population cells based on fixed number of cells
22,325
def read_bit(self): if not self.bitcount: self.bits = ord(self.input.read(1)) self.bitcount = 8 result = (self.bits & 1) == 1 self.bits >>= 1 self.bitcount -= 1 return result
Read a single boolean value.
22,326
def pca_eig(x): s, w = np.linalg.eigh(x.dot(x.T)) return w, s
Calculate PCA using eigenvalue decomposition. Parameters ---------- x : ndarray, shape (channels, samples) Two-dimensional input data. Returns ------- w : ndarray, shape (channels, channels) Eigenvectors (principal components) (in columns). s : ndarray, shape (channels,) Eigenvalues.
22,327
def organization_fields(self, organization): return self._query_zendesk(self.endpoint.organization_fields, , id=organization)
Retrieve the organization fields for this organization. :param organization: Organization object or id
22,328
def iplot_state(quantum_state, method=, figsize=None): warnings.warn("iplot_state is deprecated, and will be removed in \ the 0.9 release. Use the iplot_state_ * functions \ instead.", DeprecationWarning) rho = _validate_input_state(quantum_state) if method == "city": iplot_state_city(rho, figsize=figsize) elif method == "paulivec": iplot_state_paulivec(rho, figsize=figsize) elif method == "qsphere": iplot_state_qsphere(rho, figsize=figsize) elif method == "bloch": iplot_bloch_multivector(rho, figsize=figsize) elif method == "hinton": iplot_state_hinton(rho, figsize=figsize) else: raise VisualizationError()
Plot the quantum state. Args: quantum_state (ndarray): statevector or density matrix representation of a quantum state. method (str): Plotting method to use. figsize (tuple): Figure size in pixels. Raises: VisualizationError: if the input is not a statevector or density matrix, or if the state is not an multi-qubit quantum state.
22,329
def anim(self, start=0, stop=None, fps=30): figure = self.state or self.initialize_plot() anim = animation.FuncAnimation(figure, self.update_frame, frames=self.keys, interval = 1000.0/fps) if self._close_figures: plt.close(figure) return anim
Method to return a matplotlib animation. The start and stop frames may be specified as well as the fps.
22,330
def _get_policies(self): username = self._get_username_for_key() policies = self.client.list_user_policies( UserName=username ) return policies
Returns all the policy names for a given user
22,331
def get_language_pairs(self, train_langs=None): if train_langs is None: result = self.api_call() else: result = self.api_call( .format(train_langs)) try: langs_json = json.loads(result.content) if in langs_json: return [] languages = [LangPair(Language( shortname=lang_json["lang_pair"]["source_language"][ "shortname"], name=lang_json["lang_pair"]["source_language"]["name"]), Language(shortname=lang_json["lang_pair"][ "target_language"]["shortname"], name=lang_json["lang_pair"][ "target_language"]["name"]) ) for lang_json in langs_json["objects"]] except Exception, e: log.exception("Error decoding get language pairs") raise e return languages
Returns the language pairs available on unbabel
22,332
def get_overlay(self): overlay = {} dcmlist = self.files_in_serie for i in range(len(dcmlist)): onefile = dcmlist[i] logger.info("reading " % onefile) data = self._read_file(onefile) if len(overlay) == 0: for i_overlay in range(0, 50): try: data2d = decode_overlay_slice(data, i_overlay) shp2 = data2d.shape overlay[i_overlay] = np.zeros([len(dcmlist), shp2[0], shp2[1]], dtype=np.int8) overlay[i_overlay][-i - 1, :, :] = data2d except Exception: pass else: for i_overlay in overlay.keys(): try: data2d = decode_overlay_slice(data, i_overlay) overlay[i_overlay][-i - 1, :, :] = data2d except Exception: logger.warning( + str(i_overlay)) return overlay
Function make 3D data from dicom file slices. There are usualy more overlays in the data.
22,333
def climate_stats(self, startclim, endclim, type, **kwargs): r self._check_geo_param(kwargs) kwargs[] = type kwargs[] = startclim kwargs[] = endclim kwargs[] = self.token return self._get_response(, kwargs)
r""" Returns a dictionary of aggregated yearly climate statistics (count, standard deviation, average, median, maximum, minimum, min time, and max time depending on user specified type) of a time series for a specified range of time at user specified location. Users must specify at least one geographic search parameter ('stid', 'state', 'country', 'county', 'radius', 'bbox', 'cwa', 'nwsfirezone', 'gacc', or 'subgacc') to obtain observation data. Other parameters may also be included. See below mandatory and optional parameters. Also see the metadata() function for station IDs. Arguments: ---------- type: string, mandatory Describes what statistical values will be returned. Can be one of the following values: "avg"/"average"/"mean", "max"/"maximum", "min"/"minimum", "stdev"/"standarddeviation"/"std", "median"/"med", "count", or "all". "All" will return all of the statistics. startclim: string, mandatory Start date in form of MMDDhhmm. MUST BE USED WITH THE ENDCLIM PARAMETER. Default time is UTC e.g. startclim=06011800 Do not specify a year. endclim: string, mandatory End date in form of MMDDhhmm. MUST BE USED WITH THE STARTCLIM PARAMETER. Default time is UTC e.g. endclim=06011800 Do not specify a year. obtimezone: string, optional Set to either UTC or local. Sets timezone of obs. Default is UTC. e.g. obtimezone='local'. showemptystations: string, optional Set to '1' to show stations even if no obs exist that match the time period. Stations without obs are omitted by default. stid: string, optional Single or comma separated list of MesoWest station IDs. e.g. stid='kden,kslc,wbb' county: string, optional County/parish/borough (US/Canada only), full name e.g. county='Larimer' state: string, optional US state, 2-letter ID e.g. state='CO' country: string, optional Single or comma separated list of abbreviated 2 or 3 character countries e.g. country='us,ca,mx' radius: string, optional Distance from a lat/lon pt or stid as [lat,lon,radius (mi)] or [stid, radius (mi)]. e.g. radius="-120,40,20" bbox: string, optional Stations within a [lon/lat] box in the order [lonmin,latmin,lonmax,latmax] e.g. bbox="-120,40,-119,41" cwa: string, optional NWS county warning area. See http://www.nws.noaa.gov/organization.php for CWA list. e.g. cwa='LOX' nwsfirezone: string, optional NWS fire zones. See http://www.nws.noaa.gov/geodata/catalog/wsom/html/firezone.htm for a shapefile containing the full list of zones. e.g. nwsfirezone='LOX241' gacc: string, optional Name of Geographic Area Coordination Center e.g. gacc='EBCC' See http://gacc.nifc.gov/ for a list of GACCs. subgacc: string, optional Name of Sub GACC e.g. subgacc='EB07' vars: string, optional Single or comma separated list of sensor variables. Will return all stations that match one of provided variables. Useful for filtering all stations that sense only certain vars. Do not request vars twice in the query. e.g. vars='wind_speed,pressure' Use the variables function to see a list of sensor vars. units: string, optional String or set of strings and pipes separated by commas. Default is metric units. Set units='ENGLISH' for FREEDOM UNITS ;) Valid other combinations are as follows: temp|C, temp|F, temp|K; speed|mps, speed|mph, speed|kph, speed|kts; pres|pa, pres|mb; height|m, height|ft; precip|mm, precip|cm, precip|in; alti|pa, alti|inhg. e.g. units='temp|F,speed|kph,metric' groupby: string, optional Results can be grouped by key words: state, county, country, cwa, nwszone, mwsfirezone, gacc, subgacc e.g. groupby='state' timeformat: string, optional A python format string for returning customized date-time groups for observation times. Can include characters. e.g. timeformat='%m/%d/%Y at %H:%M' Returns: -------- Dictionary of aggregated climatology statistics. Raises: ------- None.
22,334
def _validate_positional_arguments(args): nouns = [] for arg in args: if not arg.startswith() or not arg.startswith(): nouns.append(arg) else: break while nouns: search = .join(nouns) if not next((x for x in azext_alias.cached_reserved_commands if x.endswith(search)), False): del nouns[-1] else: return raise CLIError(INVALID_ALIAS_COMMAND_ERROR.format(.join(args)))
To validate the positional argument feature - https://github.com/Azure/azure-cli/pull/6055. Assuming that unknown commands are positional arguments immediately led by words that only appear at the end of the commands Slight modification of https://github.com/Azure/azure-cli/blob/dev/src/azure-cli-core/azure/cli/core/commands/__init__.py#L356-L373 Args: args: The arguments that the user inputs in the terminal. Returns: Rudimentary parsed arguments.
22,335
def _redefines_import(node): current = node while current and not isinstance(current.parent, astroid.ExceptHandler): current = current.parent if not current or not utils.error_of_type(current.parent, ImportError): return False try_block = current.parent.parent for import_node in try_block.nodes_of_class((astroid.ImportFrom, astroid.Import)): for name, alias in import_node.names: if alias: if alias == node.name: return True elif name == node.name: return True return False
Detect that the given node (AssignName) is inside an exception handler and redefines an import from the tryexcept body. Returns True if the node redefines an import, False otherwise.
22,336
def get_computer_desc(): t exist or the variable doesn* hostname_cmd = salt.utils.path.which() if hostname_cmd: desc = __salt__[]( [hostname_cmd, , ], python_shell=False ) else: desc = None pattern = re.compile(r) try: with salt.utils.files.fopen(, ) as mach_info: for line in mach_info.readlines(): line = salt.utils.stringutils.to_unicode(line) match = pattern.match(line) if match: desc = _strip_quotes(match.group(1).strip()) except IOError: pass if desc is None: return False return desc.replace(r, r).replace(r, ).replace(r, )
Get PRETTY_HOSTNAME value stored in /etc/machine-info If this file doesn't exist or the variable doesn't exist return False. :return: Value of PRETTY_HOSTNAME if this does not exist False. :rtype: str CLI Example: .. code-block:: bash salt '*' system.get_computer_desc
22,337
def shift(self, top=None, right=None, bottom=None, left=None): top = top if top is not None else 0 right = right if right is not None else 0 bottom = bottom if bottom is not None else 0 left = left if left is not None else 0 return self.copy( x1=self.x1+left-right, x2=self.x2+left-right, y1=self.y1+top-bottom, y2=self.y2+top-bottom )
Shift the bounding box from one or more image sides, i.e. move it on the x/y-axis. Parameters ---------- top : None or int, optional Amount of pixels by which to shift the bounding box from the top. right : None or int, optional Amount of pixels by which to shift the bounding box from the right. bottom : None or int, optional Amount of pixels by which to shift the bounding box from the bottom. left : None or int, optional Amount of pixels by which to shift the bounding box from the left. Returns ------- result : imgaug.BoundingBox Shifted bounding box.
22,338
def add_remote(name, location): s name. location (str): The location of the repository. Returns: dict: The ``result`` and ``output``. CLI Example: .. code-block:: bash salt flatpak.add_remote flathub https://flathub.org/repo/flathub.flatpakrepo resultoutputcmd.run_all remote-add retcodestderrstderrstderrresultstdoutstdoutresult'] = True return ret
Adds a new location to install flatpak packages from. Args: name (str): The repository's name. location (str): The location of the repository. Returns: dict: The ``result`` and ``output``. CLI Example: .. code-block:: bash salt '*' flatpak.add_remote flathub https://flathub.org/repo/flathub.flatpakrepo
22,339
def apply_defaults(func): sig_cache = signature(func) non_optional_args = { name for (name, param) in sig_cache.parameters.items() if param.default == param.empty and param.name != and param.kind not in (param.VAR_POSITIONAL, param.VAR_KEYWORD)} @wraps(func) def wrapper(*args, **kwargs): if len(args) > 1: raise AirflowException( "Use keyword arguments when initializing operators") dag_args = {} dag_params = {} dag = kwargs.get(, None) or settings.CONTEXT_MANAGER_DAG if dag: dag_args = copy(dag.default_args) or {} dag_params = copy(dag.params) or {} params = {} if in kwargs: params = kwargs[] dag_params.update(params) default_args = {} if in kwargs: default_args = kwargs[] if in default_args: dag_params.update(default_args[]) del default_args[] dag_args.update(default_args) default_args = dag_args for arg in sig_cache.parameters: if arg not in kwargs and arg in default_args: kwargs[arg] = default_args[arg] missing_args = list(non_optional_args - set(kwargs)) if missing_args: msg = "Argument {0} is required".format(missing_args) raise AirflowException(msg) kwargs[] = dag_params result = func(*args, **kwargs) return result return wrapper
Function decorator that Looks for an argument named "default_args", and fills the unspecified arguments from it. Since python2.* isn't clear about which arguments are missing when calling a function, and that this can be quite confusing with multi-level inheritance and argument defaults, this decorator also alerts with specific information about the missing arguments.
22,340
def _set_typeattr(typeattr, existing_ta = None): if existing_ta is None: ta = TypeAttr(attr_id=typeattr.attr_id) else: ta = existing_ta ta.unit_id = typeattr.unit_id ta.type_id = typeattr.type_id ta.data_type = typeattr.data_type if hasattr(typeattr, ) and typeattr.default_dataset_id is not None: ta.default_dataset_id = typeattr.default_dataset_id ta.description = typeattr.description ta.properties = typeattr.get_properties() ta.attr_is_var = typeattr.is_var if typeattr.is_var is not None else ta.data_restriction = _parse_data_restriction(typeattr.data_restriction) if typeattr.dimension_id is None: pass else: if typeattr.attr_id is not None and typeattr.attr_id > 0: attr = ta.attr if attr is not None and attr.dimension_id is not None and attr.dimension_id != typeattr.dimension_id or \ attr is not None and attr.dimension_id is not None: raise HydraError("Cannot set a dimension on type attribute which " "does not match its attribute. Create a new attribute if " "you want to use attribute %s with dimension_id %s"% (attr.name, typeattr.dimension_id)) elif typeattr.attr_id is None and typeattr.name is not None: attr = _get_attr_by_name_and_dimension(typeattr.name, typeattr.dimension_id) ta.attr_id = attr.id ta.attr = attr _check_dimension(ta) if existing_ta is None: log.debug("Adding ta to DB") db.DBSession.add(ta) return ta
Add or updsate a type attribute. If an existing type attribute is provided, then update. Checks are performed to ensure that the dimension provided on the type attr (not updateable) is the same as that on the referring attribute. The unit provided (stored on tattr) must conform to the dimension stored on the referring attribute (stored on tattr). This is done so that multiple tempaltes can all use the same attribute, but specify different units. If no attr_id is provided, but an attr_name and dimension are provided, then a new attribute can be created (or retrived) and used. I.e., no attribute ID must be specified if attr_name and dimension are specified. ***WARNING*** Setting attribute ID to null means a new type attribute (and even a new attr) may be added, None are removed or replaced. To remove other type attrs, do it manually using delete_typeattr
22,341
def load_data(handle, reader=None): if not reader: reader = os.path.splitext(handle)[1][1:].lower() if reader not in _READERS: raise NeuroMError( % reader) filename = _get_file(handle) try: return _READERS[reader](filename) except Exception as e: L.exception(, filename, reader) raise RawDataError( % (filename, str(e)))
Unpack data into a raw data wrapper
22,342
def genome_info(genome, info): try: scg = info[] dups = info[] length = info[] return [scg - dups, length, genome] except: return [False, False, info[], genome]
return genome info for choosing representative if ggKbase table provided - choose rep based on SCGs and genome length - priority for most SCGs - extra SCGs, then largest genome otherwise, based on largest genome
22,343
def get(self, sid): return ModelBuildContext(self._version, assistant_sid=self._solution[], sid=sid, )
Constructs a ModelBuildContext :param sid: The unique string that identifies the resource :returns: twilio.rest.autopilot.v1.assistant.model_build.ModelBuildContext :rtype: twilio.rest.autopilot.v1.assistant.model_build.ModelBuildContext
22,344
def cull_to_timestep(self, timestep=1): valid_s = self.header.analysis_period.VALIDTIMESTEPS.keys() assert timestep in valid_s, \ .format(timestep, valid_s) new_ap, new_values, new_datetimes = self._timestep_cull(timestep) new_header = self.header.duplicate() new_header._analysis_period = new_ap new_coll = HourlyDiscontinuousCollection( new_header, new_values, new_datetimes) new_coll._validated_a_period = True return new_coll
Get a collection with only datetimes that fit a timestep.
22,345
def max_dimension(cellmap, sheet = None): cells = list(cellmap.values()) rows = 0 cols = 0 for cell in cells: if sheet is None or cell.sheet == sheet: rows = max(rows, int(cell.row)) cols = max(cols, int(col2num(cell.col))) return (rows, cols)
This function calculates the maximum dimension of the workbook or optionally the worksheet. It returns a tupple of two integers, the first being the rows and the second being the columns. :param cellmap: all the cells that should be used to calculate the maximum. :param sheet: (optionally) a string with the sheet name. :return: a tupple of two integers, the first being the rows and the second being the columns.
22,346
def bootstrap_standby_leader(self): clone_source = self.get_remote_master() msg = .format(clone_source.conn_url) result = self.clone(clone_source, msg) self._post_bootstrap_task.complete(result) if result: self.state_handler.set_role() return result
If we found 'standby' key in the configuration, we need to bootstrap not a real master, but a 'standby leader', that will take base backup from a remote master and start follow it.
22,347
def bst(height=3, is_perfect=False): _validate_tree_height(height) if is_perfect: return _generate_perfect_bst(height) values = _generate_random_node_values(height) leaf_count = _generate_random_leaf_count(height) root = Node(values.pop(0)) leaves = set() for value in values: node = root depth = 0 inserted = False while depth < height and not inserted: attr = if node.value > value else if getattr(node, attr) is None: setattr(node, attr, Node(value)) inserted = True node = getattr(node, attr) depth += 1 if inserted and depth == height: leaves.add(node) if len(leaves) == leaf_count: break return root
Generate a random BST (binary search tree) and return its root node. :param height: Height of the BST (default: 3, range: 0 - 9 inclusive). :type height: int :param is_perfect: If set to True (default: False), a perfect BST with all levels filled is returned. If set to False, a perfect BST may still be generated by chance. :type is_perfect: bool :return: Root node of the BST. :rtype: binarytree.Node :raise binarytree.exceptions.TreeHeightError: If height is invalid. **Example**: .. doctest:: >>> from binarytree import bst >>> >>> root = bst() >>> >>> root.height 3 >>> root.is_bst True .. doctest:: >>> from binarytree import bst >>> >>> root = bst(10) # doctest: +IGNORE_EXCEPTION_DETAIL Traceback (most recent call last): ... TreeHeightError: height must be an int between 0 - 9
22,348
def head(self): if self._head is None: self._head = self.sentence.tokens[self._head_id-1] return self._head
The token serving as the "head" of the mention :getter: the token corresponding to the head :type: corenlp_xml.document.Token
22,349
def _get(self, uri): uri = "%s?showRecords=false&showSubdomains=false" % uri resp, body = self._retry_get(uri) body["records"] = [] return self.resource_class(self, body, loaded=True)
Handles the communication with the API when getting a specific resource managed by this class. Because DNS returns a different format for the body, the BaseManager method must be overridden here.
22,350
def evaluate_inline(self, groups): if self.lines: if ( self.group_comments and self.line_num == self.prev_line + 1 and groups[] == self.leading ): self.line_comments[-1][0] += + groups[][2:].replace(, ) else: self.line_comments.append( [groups[][2:].replace(, ), self.line_num, self.current_encoding] ) self.leading = groups[] self.prev_line = self.line_num
Evaluate inline comments on their own lines.
22,351
def pass_q_v1(self): der = self.parameters.derived.fastaccess flu = self.sequences.fluxes.fastaccess out = self.sequences.outlets.fastaccess out.q[0] += der.qfactor*flu.q
Update the outlet link sequence. Required derived parameter: |QFactor| Required flux sequences: |lland_fluxes.Q| Calculated flux sequence: |lland_outlets.Q| Basic equation: :math:`Q_{outlets} = QFactor \\cdot Q_{fluxes}`
22,352
def target_to_list(target): new_list = target_to_ipv4(target) if not new_list: new_list = target_to_ipv6(target) if not new_list: new_list = target_to_ipv4_cidr(target) if not new_list: new_list = target_to_ipv6_cidr(target) if not new_list: new_list = target_to_ipv4_short(target) if not new_list: new_list = target_to_ipv4_long(target) if not new_list: new_list = target_to_ipv6_short(target) if not new_list: new_list = target_to_ipv6_long(target) if not new_list: new_list = target_to_hostname(target) return new_list
Attempt to return a list of single hosts from a target string.
22,353
def migrate_flow_collection(apps, schema_editor): Process = apps.get_model(, ) DescriptorSchema = apps.get_model(, ) for process in Process.objects.all(): process.entity_type = process.flow_collection process.entity_descriptor_schema = process.flow_collection if (process.entity_descriptor_schema is not None and not DescriptorSchema.objects.filter(slug=process.entity_descriptor_schema).exists()): raise LookupError( "Descriptow schema referenced in not " "found.".format(process.entity_descriptor_schema) ) process.save()
Migrate 'flow_collection' field to 'entity_type'.
22,354
def _init_polling(self): with self.lock: if not self.running: return r = random.Random() delay = r.random() * self.refresh_interval self.channel.io_loop.call_later( delay=delay, callback=self._delayed_polling) self.logger.info( , delay)
Bootstrap polling for throttler. To avoid spiky traffic from throttler clients, we use a random delay before the first poll.
22,355
def sendFinalResponse(self): self.requestProtocol.requestResponse["code"] = ( self.responseCode ) self.requestProtocol.requestResponse["content"] = ( self.responseContent ) self.requestProtocol.requestResponse["errors"] = ( self.responseErrors ) self.requestProtocol.sendFinalRequestResponse()
Send the final response and close the connection. :return: <void>
22,356
def dumps(xs, model=None, properties=False, indent=True, **kwargs): xs = list(xs) if not xs: return given_class = xs[0].__class__ if model is None: model = xs[0].__class__ if not hasattr(model, ): raise TypeError( .format(model.__name__) ) if given_class.__name__ in (, ): xs = [model.from_xmrs(x, **kwargs) for x in xs] elif given_class.__name__ == and model.__name__ != : raise ValueError() codec = XMRSCodec() graphs = [ codec.triples_to_graph(model.to_triples(x, properties=properties)) for x in xs ] if in kwargs: indent = kwargs[] return penman.dumps(graphs, cls=XMRSCodec, indent=indent)
Serialize Xmrs (or subclass) objects to PENMAN notation Args: xs: iterator of :class:`~delphin.mrs.xmrs.Xmrs` objects to serialize model: Xmrs subclass used to get triples properties: if `True`, encode variable properties indent: if `True`, adaptively indent; if `False` or `None`, don't indent; if a non-negative integer N, indent N spaces per level Returns: the PENMAN serialization of *xs*
22,357
def bump(self, bump_reqs=None, **kwargs): bumps = {} for existing_req in sorted(self.requirements(), key=lambda r: r.project_name): if bump_reqs and existing_req.project_name not in bump_reqs: continue bump_reqs.check(existing_req) try: bump = self._bump(existing_req, bump_reqs.get(existing_req.project_name)) if bump: bumps[bump.name] = bump bump_reqs.check(bump) except Exception as e: if bump_reqs and bump_reqs.get(existing_req.project_name) and all( r.required_by is None for r in bump_reqs.get(existing_req.project_name)): raise else: log.warn(e) for reqs in bump_reqs.required_requirements().values(): name = reqs[0].project_name if name not in bumps and self.should_add(name): try: bump = self._bump(None, reqs) if bump: bumps[bump.name] = bump bump_reqs.check(bump) except Exception as e: if all(r.required_by is None for r in reqs): raise else: log.warn(e) self.bumps.update(bumps.values()) return bumps.values()
Bump dependencies using given requirements. :param RequirementsManager bump_reqs: Bump requirements manager :param dict kwargs: Additional args from argparse. Some bumpers accept user options, and some not. :return: List of :class:`Bump` changes made.
22,358
def check_bounds(args, lowerLimit, upperLimit): penalty = 0 bound_hit = False for i in range(0, len(args)): if args[i] < lowerLimit[i] or args[i] > upperLimit[i]: penalty = 10**15 bound_hit = True return penalty, bound_hit
checks whether the parameter vector has left its bound, if so, adds a big number
22,359
def getGDEFGlyphClasses(feaLib): for st in feaLib.statements: if isinstance(st, ast.TableBlock) and st.name == "GDEF": for st in st.statements: if isinstance(st, ast.GlyphClassDefStatement): return _GDEFGlyphClasses( frozenset(st.baseGlyphs.glyphSet()) if st.baseGlyphs is not None else frozenset(), frozenset(st.ligatureGlyphs.glyphSet()) if st.ligatureGlyphs is not None else frozenset(), frozenset(st.markGlyphs.glyphSet()) if st.markGlyphs is not None else frozenset(), frozenset(st.componentGlyphs.glyphSet()) if st.componentGlyphs is not None else frozenset(), ) return _GDEFGlyphClasses(None, None, None, None)
Return GDEF GlyphClassDef base/mark/ligature/component glyphs, or None if no GDEF table is defined in the feature file.
22,360
def error_lineno(self): if isinstance(self.docstring, Docstring): return self.docstring.start return self.start
Get the line number with which to report violations.
22,361
def _init_client(): if client is not None: return global _mysql_kwargs, _table_name _mysql_kwargs = { : __opts__.get(, ), : __opts__.get(, None), : __opts__.get(, None), : __opts__.get(, _DEFAULT_DATABASE_NAME), : __opts__.get(, 3306), : __opts__.get(, None), : __opts__.get(, None), : True, } _table_name = __opts__.get(, _table_name) for k, v in _mysql_kwargs.items(): if v is None: _mysql_kwargs.pop(k) kwargs_copy = _mysql_kwargs.copy() kwargs_copy[] = "<hidden>" log.info("mysql_cache: Setting up client with params: %r", kwargs_copy) _create_table()
Initialize connection and create table if needed
22,362
def ic45(msg): d = hex2bin(data(msg)) if d[9] == : return None ic = bin2int(d[10:12]) return ic
Icing. Args: msg (String): 28 bytes hexadecimal message string Returns: int: Icing level. 0=NIL, 1=Light, 2=Moderate, 3=Severe
22,363
def convert_1x_args(bucket, **kwargs): host = kwargs.pop(, ) port = kwargs.pop(, None) if not in kwargs and not in kwargs: kwargs[] = _build_connstr(host, port, bucket) return kwargs
Converts arguments for 1.x constructors to their 2.x forms
22,364
def run(self): while True: if not self.task_socket.poll(-1): continue msg = self.task_socket.recv_multipart() msg_type = msg[1] if self.debug: self.stats.append((time.time(), msg_type, len(self.unassigned_tasks), len(self.available_workers))) if time.time() - self.lastDebugTs > TIME_BETWEEN_PARTIALDEBUG: self.writeDebug("debug/partial-{0}".format( round(time.time(), -1) )) self.lastDebugTs = time.time() if msg_type == TASK: task_id = msg[2] task = msg[3] self.logger.debug("Received task {0}".format(task_id)) try: address = self.available_workers.popleft() except IndexError: self.unassigned_tasks.append((task_id, task)) else: self.logger.debug("Sent {0}".format(task_id)) self.task_socket.send_multipart([address, TASK, task]) self.assigned_tasks[address].add(task_id) elif msg_type == REQUEST: address = msg[0] try: task_id, task = self.unassigned_tasks.popleft() except IndexError: self.available_workers.append(address) else: self.logger.debug("Sent {0}".format(task_id)) self.task_socket.send_multipart([address, TASK, task]) self.assigned_tasks[address].add(task_id) elif msg_type == STATUS_REQ: self.pruneAssignedTasks() address = msg[0] task_id = msg[2] if any(task_id in x for x in self.assigned_tasks.values()): status = STATUS_GIVEN elif task_id in (x[0] for x in self.unassigned_tasks): status = STATUS_HERE else: status = STATUS_NONE self.task_socket.send_multipart([ address, STATUS_ANS, task_id, status ]) elif msg_type == STATUS_DONE: address = msg[0] task_id = msg[2] try: self.assigned_tasks[address].discard(task_id) except KeyError: pass elif msg_type == STATUS_UPDATE: address = msg[0] try: tasks_ids = pickle.loads(msg[2]) except: self.logger.error("Could not unpickle status update message.") else: self.assigned_tasks[address] = tasks_ids self.status_times[address] = time.time() elif msg_type == REPLY: self.logger.debug("Relaying") destination = msg[-1] origin = msg[0] self.task_socket.send_multipart([destination] + msg[1:] + [origin]) elif msg_type == VARIABLE: address = msg[4] value = msg[3] key = msg[2] self.shared_variables[address].update( {key: value}, ) self.info_socket.send_multipart([VARIABLE, key, value, address]) elif msg_type == INIT: address = msg[0] try: self.processConfig(pickle.loads(msg[2])) except pickle.PickleError: continue self.task_socket.send_multipart([ address, pickle.dumps(self.config, pickle.HIGHEST_PROTOCOL), pickle.dumps(self.shared_variables, pickle.HIGHEST_PROTOCOL), ]) self.task_socket.send_multipart([ address, pickle.dumps(self.cluster_available, pickle.HIGHEST_PROTOCOL), ]) elif msg_type == CONNECT: try: connect_brokers = pickle.loads(msg[2]) except pickle.PickleError: self.logger.error("Could not understand CONNECT message.") continue self.logger.info("Connecting to other brokers...") self.addBrokerList(connect_brokers) elif msg_type == SHUTDOWN: self.logger.debug("SHUTDOWN command received.") self.shutdown() break
Redirects messages until a shutdown message is received.
22,365
def _controller_name(self, objtype): if objtype.endswith(): return objtype[:-1] + if objtype[-1] in or objtype[-2:] in [, ]: return objtype + if objtype.endswith(): return objtype[:-2] + return objtype +
Determines the controller name for the object's type Args: objtype (str): The object type Returns: A string with the controller name
22,366
def get_context(self, filename): if self.type == : context = .format(RE_SLIDE.search(filename).group(1)) elif self.type == : context = .format(RE_DOCS.match(filename).group(1)) else: context = return context
Get context.
22,367
def get_auth_token(self): data = [str(self.id), hash_data(self.password)] return _security.remember_token_serializer.dumps(data)
Returns the user's authentication token.
22,368
def __get_precipfc_data(latitude, longitude): url = url = url.format( round(latitude, 2), round(longitude, 2) ) result = __get_url(url) return result
Get buienradar forecasted precipitation.
22,369
async def send_pending_messages(self): if not self.running: await self.open() try: pending = self._handler._pending_messages[:] await self._handler.wait_async() results = [] for m in pending: if m.state == constants.MessageState.SendFailed: results.append((False, MessageSendFailed(m._response))) else: results.append((True, None)) return results except Exception as e: raise MessageSendFailed(e)
Wait until all pending messages have been sent. :returns: A list of the send results of all the pending messages. Each send result is a tuple with two values. The first is a boolean, indicating `True` if the message sent, or `False` if it failed. The second is an error if the message failed, otherwise it will be `None`. :rtype: list[tuple[bool, ~azure.servicebus.common.errors.MessageSendFailed]] Example: .. literalinclude:: ../examples/async_examples/test_examples_async.py :start-after: [START queue_sender_messages] :end-before: [END queue_sender_messages] :language: python :dedent: 4 :caption: Schedule messages.
22,370
def size(self, size): clone = self._clone() clone._size = size return clone
Set the query size of this QuerySet should execute its query against.
22,371
def get_function(self, name: str) -> AbiFunction or None: for func in self.functions: if func[] == name: return AbiFunction(func[], func[], func.get(, )) return None
This interface is used to get an AbiFunction object from AbiInfo object by given function name. :param name: the function name in abi file :return: if succeed, an AbiFunction will constructed based on given function name
22,372
def view(self, dtype=None): return self._constructor(self._values.view(dtype), index=self.index).__finalize__(self)
Create a new view of the Series. This function will return a new Series with a view of the same underlying values in memory, optionally reinterpreted with a new data type. The new data type must preserve the same size in bytes as to not cause index misalignment. Parameters ---------- dtype : data type Data type object or one of their string representations. Returns ------- Series A new Series object as a view of the same data in memory. See Also -------- numpy.ndarray.view : Equivalent numpy function to create a new view of the same data in memory. Notes ----- Series are instantiated with ``dtype=float64`` by default. While ``numpy.ndarray.view()`` will return a view with the same data type as the original array, ``Series.view()`` (without specified dtype) will try using ``float64`` and may fail if the original data type size in bytes is not the same. Examples -------- >>> s = pd.Series([-2, -1, 0, 1, 2], dtype='int8') >>> s 0 -2 1 -1 2 0 3 1 4 2 dtype: int8 The 8 bit signed integer representation of `-1` is `0b11111111`, but the same bytes represent 255 if read as an 8 bit unsigned integer: >>> us = s.view('uint8') >>> us 0 254 1 255 2 0 3 1 4 2 dtype: uint8 The views share the same underlying values: >>> us[0] = 128 >>> s 0 -128 1 -1 2 0 3 1 4 2 dtype: int8
22,373
def get_connection(hostname, username, logger, threads=5, use_sudo=None, detect_sudo=True): if username: hostname = "%s@%s" % (username, hostname) try: conn = remoto.Connection( hostname, logger=logger, threads=threads, detect_sudo=detect_sudo, ) conn.global_timeout = 300 logger.debug("connected to host: %s " % hostname) return conn except Exception as error: msg = "connecting to host: %s " % hostname errors = "resulted in errors: %s %s" % (error.__class__.__name__, error) raise RuntimeError(msg + errors)
A very simple helper, meant to return a connection that will know about the need to use sudo.
22,374
def js_query(self, query: str) -> Awaitable: if self.connected: self.js_exec(query, self.__reqid) fut = Future() self.__tasks[self.__reqid] = fut self.__reqid += 1 return fut f = Future() f.set_result(None) return f
Send query to related DOM on browser. :param str query: single string which indicates query type.
22,375
def handle_error(result): if result: return _, error_string = get_error() if not isinstance(error_string, str_cls): error_string = _try_decode(error_string) raise OSError(error_string)
Extracts the last Windows error message into a python unicode string :param result: A function result, 0 or None indicates failure :return: A unicode string error message
22,376
def iter_result(self, timeout=30, pagesize=100, no_hscan=False): @gmail.com if not self._filters and not self._order_by: if self._model._columns[self._model._pkey]._index: return self._iter_all_pkey() conn = _connect(self._model) version = list(map(int, conn.info()[].split()[:2])) if version >= [2,8] and not no_hscan: return self._iter_all_hscan() return self._iter_all() return self._iter_results(timeout, pagesize)
Iterate over the results of your query instead of getting them all with `.all()`. Will only perform a single query. If you expect that your processing will take more than 30 seconds to process 100 items, you should pass `timeout` and `pagesize` to reflect an appropriate timeout and page size to fetch at once. Usage:: for user in User.query.endswith(email='@gmail.com').iter_result(): # do something with user ...
22,377
def create_dataset(group, name, data, units=, datatype=DataTypes.UNDEFINED, chunks=True, maxshape=None, compression=None, **attributes): from numpy import asarray srate = attributes.get(, None) if not hasattr(data, ): data = asarray(data) if data.dtype.kind in (, , ): raise ValueError( "data must be in array with numeric or compound type") if data.dtype.kind == : if not in data.dtype.names: raise ValueError("complex event data requires field") if not isinstance(units, (list, tuple)): raise ValueError("complex event data requires sequence of units") if not len(units) == len(data.dtype.names): raise ValueError("number of units doesnsamplessamplest really catch case where sampled data has units but doesn't dset = group.create_dataset( name, data=data, maxshape=maxshape, chunks=chunks, compression=compression) set_attributes(dset, units=units, datatype=datatype, **attributes) return dset
Create an ARF dataset under group, setting required attributes Required arguments: name -- the name of dataset in which to store the data data -- the data to store Data can be of the following types: * sampled data: an N-D numerical array of measurements * "simple" event data: a 1-D array of times * "complex" event data: a 1-D array of records, with field 'start' required Optional arguments: datatype -- a code defining the nature of the data in the channel units -- channel units (optional for sampled data, otherwise required) sampling_rate -- required for sampled data and event data with units=='samples' Arguments passed to h5py: maxshape -- make the node resizable up to this shape. Use None for axes that need to be unlimited. chunks -- specify the chunk size. The optimal chunk size depends on the intended use of the data. For single-channel sampled data the auto-chunking (True) is probably best. compression -- compression strategy. Can be 'gzip', 'szip', 'lzf' or an integer in range(10) specifying gzip(N). Only gzip is really portable. Additional arguments are set as attributes on the created dataset Returns the created dataset
22,378
def line(self, x0, y0, x1, y1, char): if x0 > x1: x1, x0 = x0, x1 y1, y0 = y0, y1 dx = x1 - x0 dy = y1 - y0 if dx == 0 and dy == 0: self.point(x0, y0, char) elif abs(dx) >= abs(dy): for x in range(x0, x1 + 1): if dx == 0: y = y0 else: y = y0 + int(round((x - x0) * dy / float((dx)))) self.point(x, y, char) elif y0 < y1: for y in range(y0, y1 + 1): if dy == 0: x = x0 else: x = x0 + int(round((y - y0) * dx / float((dy)))) self.point(x, y, char) else: for y in range(y1, y0 + 1): if dy == 0: x = x0 else: x = x1 + int(round((y - y1) * dx / float((dy)))) self.point(x, y, char)
Create a line on ASCII canvas. Args: x0 (int): x coordinate where the line should start. y0 (int): y coordinate where the line should start. x1 (int): x coordinate where the line should end. y1 (int): y coordinate where the line should end. char (str): character to draw the line with.
22,379
def draw(self, painter, option, rect): painter.save() rect = self.rect() left, top, right, bottom = self.contentsMargins() x = rect.x() + left y = rect.y() + top w = rect.width() - (left + right) h = rect.height() - (top + bottom) r = self.roundingRadius() l_pinch, t_pinch, r_pinch, b_pinch = self.pinch() painter.setRenderHint(painter.Antialiasing) painter.setRenderHint(painter.TextAntialiasing) painter.save() if self.isEnabled(): pen = QPen(self.borderColor()) else: pen = QPen(self.disabledBorderColor()) pen.setWidthF(0.8) painter.setRenderHint(painter.Antialiasing) painter.setPen(pen) self.drawStyle(painter, x, y, w, h, r) painter.restore() if self.style() == XNode.NodeStyle.Pixmap: painter.restore() return icon = self.icon() if icon and not icon.isNull(): pixmap = icon.pixmap(self.iconSize()) offset = (h - self.iconSize().height()) / 2 painter.drawPixmap(x + 4, offset, pixmap) x += self.iconSize().width() + 4 w -= self.iconSize().width() + 4 x += 6 w -= 12 metrics = QFontMetrics(self.titleFont()) if not self.wordWrap(): e_text = metrics.elidedText(nativestring(self.displayName()), Qt.ElideRight, w) else: e_text = self.displayName() painter.setFont(self.titleFont()) painter.drawText(x, y, w, h, Qt.AlignCenter | Qt.TextWordWrap, e_text) painter.restore()
Draws the node for the graphics scene. this method can and should \ be overloaded to create custom nodes. :param painter <QPainter> :param option <QGraphicsItemSytleOption> :param rect <QRectF>
22,380
def is_met(self, ti, session, dep_context=None): return all(status.passed for status in self.get_dep_statuses(ti, session, dep_context))
Returns whether or not this dependency is met for a given task instance. A dependency is considered met if all of the dependency statuses it reports are passing. :param ti: the task instance to see if this dependency is met for :type ti: airflow.models.TaskInstance :param session: database session :type session: sqlalchemy.orm.session.Session :param dep_context: The context this dependency is being checked under that stores state that can be used by this dependency. :type dep_context: BaseDepContext
22,381
def add_object_file(self, obj_file): if isinstance(obj_file, str): obj_file = object_file.ObjectFileRef.from_path(obj_file) ffi.lib.LLVMPY_MCJITAddObjectFile(self, obj_file)
Add object file to the jit. object_file can be instance of :class:ObjectFile or a string representing file system path
22,382
def tempdir(cls, suffix=, prefix=None, dir=None): if prefix is None: prefix = tempfile.template if dir is not None: dir = str(Path(dir)) dirname = tempfile.mkdtemp(suffix, prefix, dir) return cls(dirname).absolute()
Returns a new temporary directory. Arguments are as for :meth:`~rpaths.Path.tempfile`, except that the `text` argument is not accepted. The directory is readable, writable, and searchable only by the creating user. The caller is responsible for deleting the directory when done with it.
22,383
def nn(self, x, k = 1, radius = np.inf, eps = 0.0, p = 2): assert len(x) == self.dim, .format(len(x), self.dim) k_x = min(k, self.size) return self._nn(np.array(x), k_x, radius = radius, eps = eps, p = p)
Find the k nearest neighbors of x in the observed input data :arg x: center :arg k: the number of nearest neighbors to return (default: 1) :arg eps: approximate nearest neighbors. the k-th returned value is guaranteed to be no further than (1 + eps) times the distance to the real k-th nearest neighbor. :arg p: Which Minkowski p-norm to use. (default: 2, euclidean) :arg radius: the maximum radius (default: +inf) :return: distance and indexes of found nearest neighbors.
22,384
def fetch_userid(self, side): for user in self.users: obj = self.users[user] if obj.side == side: return user
Return the userid for the specified bed side.
22,385
def ICM(input_dim, num_outputs, kernel, W_rank=1,W=None,kappa=None,name=): if kernel.input_dim != input_dim: kernel.input_dim = input_dim warnings.warn("kernelB'),name=name) return K
Builds a kernel for an Intrinsic Coregionalization Model :input_dim: Input dimensionality (does not include dimension of indices) :num_outputs: Number of outputs :param kernel: kernel that will be multiplied by the coregionalize kernel (matrix B). :type kernel: a GPy kernel :param W_rank: number tuples of the corregionalization parameters 'W' :type W_rank: integer
22,386
def _declare_namespace(self, package_name): t seem to properly find all available namespace paths. declare_namespace'](package_name) mod = sys.modules[package_name] mod.__path__ = pkgutil.extend_path(mod.__path__, package_name)
Mock for #pkg_resources.declare_namespace() which calls #pkgutil.extend_path() afterwards as the original implementation doesn't seem to properly find all available namespace paths.
22,387
def pad(cls, sequences, padding, pad_len=None): max_len = max([len(s) for s in sequences]) pad_len = pad_len or max_len assert pad_len >= max_len, .format(pad_len, max_len) for i, s in enumerate(sequences): sequences[i] = [padding] * (pad_len - len(s)) + s return np.array(sequences)
Pads a list of sequences such that they form a matrix. :param sequences: a list of sequences of varying lengths. :param padding: the value of padded cells. :param pad_len: the length of the maximum padded sequence.
22,388
def sync(self, resync=False): if resync: self._clear() while True: logger.debug(, self._reminder_version) changes = self._reminders_api.list() if in changes: self._parseTasks(changes[]) self._reminder_version = changes[] logger.debug(, self._reminder_version) history = self._reminders_api.history(self._reminder_version) if self._reminder_version == history[]: break while True: logger.debug(, self._keep_version) labels_updated = any((i.dirty for i in self._labels.values())) changes = self._keep_api.changes( target_version=self._keep_version, nodes=[i.save() for i in self._findDirtyNodes()], labels=[i.save() for i in self._labels.values()] if labels_updated else None, ) if changes.get(): raise exception.ResyncRequiredException() if changes.get(): raise exception.UpgradeRecommendedException() if in changes: self._parseUserInfo(changes[]) if in changes: self._parseNodes(changes[]) self._keep_version = changes[] logger.debug(, self._keep_version) if not changes[]: break if _node.DEBUG: self._clean()
Sync the local Keep tree with the server. If resyncing, local changes will be detroyed. Otherwise, local changes to notes, labels and reminders will be detected and synced up. Args: resync (bool): Whether to resync data. Raises: SyncException: If there is a consistency issue.
22,389
def get_subgraphs_as_molecules(self, use_weights=False): if getattr(self, , None) is None: self._supercell_sg = supercell_sg = self*(3,3,3) supercell_sg.graph = nx.Graph(supercell_sg.graph) all_subgraphs = list(nx.connected_component_subgraphs(supercell_sg.graph)) molecule_subgraphs = [] for subgraph in all_subgraphs: intersects_boundary = any([d[] != (0, 0, 0) for u, v, d in subgraph.edges(data=True)]) if not intersects_boundary: molecule_subgraphs.append(subgraph) for subgraph in molecule_subgraphs: for n in subgraph: subgraph.add_node(n, specie=str(supercell_sg.structure[n].specie)) def node_match(n1, n2): return n1[] == n2[] def edge_match(e1, e2): if use_weights: return e1[] == e2[] else: return True unique_subgraphs = [] for subgraph in molecule_subgraphs: already_present = [nx.is_isomorphic(subgraph, g, node_match=node_match, edge_match=edge_match) for g in unique_subgraphs] if not any(already_present): unique_subgraphs.append(subgraph) molecules = [] for subgraph in unique_subgraphs: coords = [supercell_sg.structure[n].coords for n in subgraph.nodes()] species = [supercell_sg.structure[n].specie for n in subgraph.nodes()] molecule = Molecule(species, coords) molecule = molecule.get_centered_molecule() molecules.append(molecule) return molecules
Retrieve subgraphs as molecules, useful for extracting molecules from periodic crystals. Will only return unique molecules, not any duplicates present in the crystal (a duplicate defined as an isomorphic subgraph). :param use_weights (bool): If True, only treat subgraphs as isomorphic if edges have the same weights. Typically, this means molecules will need to have the same bond lengths to be defined as duplicates, otherwise bond lengths can differ. This is a fairly robust approach, but will treat e.g. enantiomers as being duplicates. :return: list of unique Molecules in Structure
22,390
def get_extra_pids(self): while not self.is_retired: for proc in psutil.process_iter(): for conn in proc.connections(): if conn.laddr.port == self.port: self.logger.debug(f) return [proc.pid] if self.is_executable_configured(): return [] time.sleep(1) if self.java_executable_path is None: self.logger.info( "Cant auto-start java because {self.java_executable_path} is not found. " "Please start java manually!")
Gets the list of process ids that should be marked as high priority. :return: A list of process ids that are used by this bot in addition to the ones inside the python process.
22,391
def _group_by(data, criteria): if isinstance(criteria, str): criteria_str = criteria def criteria(x): return x[criteria_str] res = defaultdict(list) for element in data: key = criteria(element) res[key].append(element) return res
Group objects in data using a function or a key
22,392
def mmi_to_raster(self, force_flag=False, algorithm=USE_ASCII): LOGGER.debug() if algorithm is None: algorithm = USE_ASCII if self.algorithm_name: tif_path = os.path.join( self.output_dir, % ( self.output_basename, algorithm)) else: tif_path = os.path.join( self.output_dir, % self.output_basename) if os.path.exists(tif_path) and force_flag is not True: return tif_path if algorithm == USE_ASCII: ascii_path = self.mmi_to_ascii(True) command = ( ( ) % { : which()[0], : ascii_path, : tif_path } ) LOGGER.info( % command) self._run_command(command) else: vrt_path = self.mmi_to_vrt(force_flag) if INVDIST in algorithm: algorithm = command = ( ( ) % { : which()[0], : algorithm, : self.x_minimum, : self.x_maximum, : self.y_minimum, : self.y_maximum, : self.columns, : self.rows, : vrt_path, : tif_path } ) LOGGER.info( % command) self._run_command(command) if INVDIST in algorithm: algorithm = self.create_keyword_file(algorithm) if self.algorithm_name: qml_path = os.path.join( self.output_dir, % ( self.output_basename, algorithm)) else: qml_path = os.path.join( self.output_dir, % self.output_basename) qml_source_path = resources_path(, ) shutil.copyfile(qml_source_path, qml_path) return tif_path
Convert the grid.xml's mmi column to a raster using gdal_grid. A geotiff file will be created. Unfortunately no python bindings exist for doing this so we are going to do it using a shell call. .. see also:: http://www.gdal.org/gdal_grid.html Example of the gdal_grid call we generate:: gdal_grid -zfield "mmi" -a invdist:power=2.0:smoothing=1.0 \ -txe 126.29 130.29 -tye 0.802 4.798 -outsize 400 400 -of GTiff \ -ot Float16 -l mmi mmi.vrt mmi.tif .. note:: It is assumed that gdal_grid is in your path. :param force_flag: Whether to force the regeneration of the output file. Defaults to False. :type force_flag: bool :param algorithm: Which re-sampling algorithm to use. valid options are 'nearest' (for nearest neighbour), 'invdist' (for inverse distance), 'average' (for moving average). Defaults to 'nearest' if not specified. Note that passing re-sampling alg parameters is currently not supported. If None is passed it will be replaced with 'use_ascii'. 'use_ascii' algorithm will convert the mmi grid to ascii file then convert it to raster using gdal_translate. :type algorithm: str :returns: Path to the resulting tif file. :rtype: str .. note:: For interest you can also make quite beautiful smoothed raster using this: gdal_grid -zfield "mmi" -a_srs EPSG:4326 -a invdist:power=2.0:smoothing=1.0 -txe 122.45 126.45 -tye -2.21 1.79 -outsize 400 400 -of GTiff -ot Float16 -l mmi mmi.vrt mmi-trippy.tif
22,393
def lmx_h3k_f12k(): hparams = lmx_base() hparams.hidden_size = 3072 hparams.filter_size = 12288 hparams.batch_size = 2048 hparams.weight_dtype = "bfloat16" return hparams
HParams for training languagemodel_lm1b32k_packed. 880M Params.
22,394
def temporal_from_literal(text): if text.count() == 1: start, end = text.split() return db.DateRange( start=parse_dt(start).date(), end=parse_dt(end).date() ) else: separators = text.count() if separators == 0: return db.DateRange( start=date(int(text), 1, 1), end=date(int(text), 12, 31) ) elif separators == 1: dt = parse_dt(text).date() return db.DateRange( start=dt.replace(day=1), end=dt.replace(day=calendar.monthrange(dt.year, dt.month)[1]) )
Parse a temporal coverage from a literal ie. either: - an ISO date range - a single ISO date period (month,year)
22,395
def TrimBeginningAndEndingSlashes(path): if path.startswith(): path = path[1:] if path.endswith(): path = path[:-1] return path
Trims beginning and ending slashes :param str path: :return: Path with beginning and ending slashes trimmed. :rtype: str
22,396
def overlay_gateway_enable_statistics_vlan_action(self, **kwargs): config = ET.Element("config") overlay_gateway = ET.SubElement(config, "overlay-gateway", xmlns="urn:brocade.com:mgmt:brocade-tunnels") name_key = ET.SubElement(overlay_gateway, "name") name_key.text = kwargs.pop() enable = ET.SubElement(overlay_gateway, "enable") statistics = ET.SubElement(enable, "statistics") vlan_action = ET.SubElement(statistics, "vlan-action") vlan_action.text = kwargs.pop() callback = kwargs.pop(, self._callback) return callback(config)
Auto Generated Code
22,397
def set_computer_policy(name, setting, cumulative_rights_assignments=True, adml_language=): en-US* pol = {} pol[name] = setting ret = set_(computer_policy=pol, user_policy=None, cumulative_rights_assignments=cumulative_rights_assignments, adml_language=adml_language) return ret
Set a single computer policy Args: name (str): The name of the policy to configure setting (str): The setting to configure the named policy with cumulative_rights_assignments (bool): Determine how user rights assignment policies are configured. If True, user right assignment specifications are simply added to the existing policy. If False, only the users specified will get the right (any existing will have the right revoked) adml_language (str): The language files to use for looking up Administrative Template policy data (i.e. how the policy is displayed in the GUI). Defaults to 'en-US' (U.S. English). Returns: bool: True if successful, otherwise False CLI Example: .. code-block:: bash salt '*' lgpo.set_computer_policy LockoutDuration 1440
22,398
def get_dict_from_json_file(path, encoding=): with open(path, encoding=encoding) as data_file: return json.loads(data_file.read())
Gets a dict of data form a json file. :param path: the absolute path to the file :param encoding: the encoding the file is in
22,399
def user_loc_value_to_class(axis_tag, user_loc): if axis_tag == "wght": return int(user_loc) elif axis_tag == "wdth": return min( sorted(WIDTH_CLASS_TO_VALUE.items()), key=lambda item: abs(item[1] - user_loc), )[0] raise NotImplementedError
Return the OS/2 weight or width class that is closest to the provided user location. For weight the user location is between 0 and 1000 and for width it is a percentage. >>> user_loc_value_to_class('wght', 310) 310 >>> user_loc_value_to_class('wdth', 62) 2