Unnamed: 0
int64
0
389k
code
stringlengths
26
79.6k
docstring
stringlengths
1
46.9k
22,400
def check_periodrec_alias(actualperiod, recoveredperiod, tolerance=1.0e-3): actualtwicehalfratio_over_1plusratio_over_1minusratio_over_1plus_twiceratio_over_1minus_twiceratio_over_1plus_thriceratio_over_1minus_thriceratio_over_minus1ratio_over_twice_minus1 if not (np.isfinite(actualperiod) and np.isfinite(recoveredperiod)): LOGERROR("canunknown,other'
This determines what kind of aliasing (if any) exists between `recoveredperiod` and `actualperiod`. Parameters ---------- actualperiod : float The actual period of the object. recoveredperiod : float The recovered period of the object. tolerance : float The absolute difference required between the input periods to mark the recovered period as close to the actual period. Returns ------- str The type of alias determined for the input combination of periods. This will be CSV string with values taken from the following list, based on the types of alias found:: ['actual', 'twice', 'half', 'ratio_over_1plus', 'ratio_over_1minus', 'ratio_over_1plus_twice', 'ratio_over_1minus_twice', 'ratio_over_1plus_thrice', 'ratio_over_1minus_thrice', 'ratio_over_minus1', 'ratio_over_twice_minus1']
22,401
def set_dvs_network_resource_management_enabled(dvs_ref, enabled): dvs_name = get_managed_object_name(dvs_ref) log.trace( %s\, enabled, dvs_name) try: dvs_ref.EnableNetworkResourceManagement(enable=enabled) except vim.fault.NoPermission as exc: log.exception(exc) raise salt.exceptions.VMwareApiError( .format(exc.privilegeId)) except vim.fault.VimFault as exc: log.exception(exc) raise salt.exceptions.VMwareApiError(exc.msg) except vmodl.RuntimeFault as exc: log.exception(exc) raise salt.exceptions.VMwareRuntimeError(exc.msg)
Sets whether NIOC is enabled on a DVS. dvs_ref The DVS reference. enabled Flag specifying whether NIOC is enabled.
22,402
def receive(self, max_batch_size=None, timeout=None): if self.error: raise self.error if not self.running: raise ValueError("Unable to receive until client has been started.") data_batch = [] try: timeout_ms = 1000 * timeout if timeout else 0 message_batch = self._handler.receive_message_batch( max_batch_size=max_batch_size, timeout=timeout_ms) for message in message_batch: event_data = EventData(message=message) self.offset = event_data.offset data_batch.append(event_data) return data_batch except (errors.TokenExpired, errors.AuthenticationException): log.info("Receiver disconnected due to token error. Attempting reconnect.") self.reconnect() return data_batch except (errors.LinkDetach, errors.ConnectionClose) as shutdown: if shutdown.action.retry and self.auto_reconnect: log.info("Receiver detached. Attempting reconnect.") self.reconnect() return data_batch log.info("Receiver detached. Shutting down.") error = EventHubError(str(shutdown), shutdown) self.close(exception=error) raise error except errors.MessageHandlerError as shutdown: if self.auto_reconnect: log.info("Receiver detached. Attempting reconnect.") self.reconnect() return data_batch log.info("Receiver detached. Shutting down.") error = EventHubError(str(shutdown), shutdown) self.close(exception=error) raise error except Exception as e: log.info("Unexpected error occurred (%r). Shutting down.", e) error = EventHubError("Receive failed: {}".format(e)) self.close(exception=error) raise error
Receive events from the EventHub. :param max_batch_size: Receive a batch of events. Batch size will be up to the maximum specified, but will return as soon as service returns no new events. If combined with a timeout and no events are retrieve before the time, the result will be empty. If no batch size is supplied, the prefetch size will be the maximum. :type max_batch_size: int :rtype: list[~azure.eventhub.common.EventData]
22,403
def _integrateLinearOrbit(vxvv,pot,t,method,dt): if in method: if not ext_loaded or not _check_c(pot): if ( in method or in method): method= else: method= if not ext_loaded: warnings.warn("Cannot use C integration because C extension not loaded (using %s instead)" % (method), galpyWarning) else: warnings.warn("Cannot use C integration because some of the potentials are not implemented in C (using %s instead)" % (method), galpyWarning) if method.lower() == : return symplecticode.leapfrog(lambda x,t=t: _evaluatelinearForces(pot,x, t=t), nu.array(vxvv), t,rtol=10.**-8) elif method.lower() == : return dop853(func=_linearEOM, x=vxvv, t=t, args=(pot,)) elif ext_loaded and \ (method.lower() == or method.lower() == \ or method.lower() == or method.lower() == \ or method.lower() == or method.lower() == \ or method.lower() == ): warnings.warn("Using C implementation to integrate orbits", galpyWarningVerbose) out, msg= integrateLinearOrbit_c(pot,nu.array(vxvv),t,method,dt=dt) return out elif method.lower() == or not ext_loaded: return integrate.odeint(_linearEOM,vxvv,t,args=(pot,),rtol=10.**-8.)
NAME: integrateLinearOrbit PURPOSE: integrate a one-dimensional orbit INPUT: vxvv - initial condition [x,vx] pot - linearPotential or list of linearPotentials t - list of times at which to output (0 has to be in this!) method - 'odeint' or 'leapfrog' OUTPUT: [:,2] array of [x,vx] at each t HISTORY: 2010-07-13- Written - Bovy (NYU) 2018-10-05- Added support for C integration - Bovy (UofT)
22,404
def weighted(weights, sample_size, with_replacement=False): assert sample_size <= len(weights), "The sample size must be smaller \ than or equal to the number of weights it's taken from." weights = [float(w) for w in weights] weight_indexes = list(range(0, len(weights))) samples = [] while len(samples) < sample_size: sample = OneOf.weighted(weights) samples.append(weight_indexes[sample]) if not with_replacement: del weights[sample] del weight_indexes[sample] return samples
Return a set of random integers 0 <= N <= len(weights) - 1, where the weights determine the probability of each possible integer in the set.
22,405
def safe_date(self, x): t = x[self.col_name] if np.isnan(t): return t elif np.isposinf(t): t = sys.maxsize elif np.isneginf(t): t = -sys.maxsize tmp = time.localtime(float(t) / 1e9) return time.strftime(self.date_format, tmp)
Transform x[self.col_name] into a date string. Args: x(dict like / pandas.Series): Row containing data to cast safely. Returns: str
22,406
def printInput(self, x): print "Input" for c in xrange(self.numberOfCols): print int(x[c]), print
TODO: document :param x: :return:
22,407
def from_jsonf(cls, fpath: str, encoding: str=, force_snake_case=True, force_cast: bool=False, restrict: bool=False) -> T: return cls.from_dict(util.load_jsonf(fpath, encoding), force_snake_case=force_snake_case, force_cast=force_cast, restrict=restrict)
From json file path to instance :param fpath: Json file path :param encoding: Json file encoding :param force_snake_case: Keys are transformed to snake case in order to compliant PEP8 if True :param force_cast: Cast forcibly if True :param restrict: Prohibit extra parameters if True :return: Instance
22,408
def publishTemplate(self, templateMessage): desc = { "name": "CodeSuccessReslut", "desc": " http 成功返回结果", "fields": [{ "name": "code", "type": "Integer", "desc": "返回码,200 为正常。" }, { "name": "errorMessage", "type": "String", "desc": "错误信息。" }] } r = self.call_api( method=(, , ), action=, params=templateMessage) return Response(r, desc)
发送单聊模板消息方法(一个用户向多个用户发送不同消息内容,单条消息最大 128k。每分钟最多发送 6000 条信息,每次发送用户上限为 1000 人。) 方法 @param templateMessage:单聊模版消息。 @return code:返回码,200 为正常。 @return errorMessage:错误信息。
22,409
def set_object_info(self): self.attrs.pandas_type = str(self.pandas_kind) self.attrs.pandas_version = str(_version) self.set_version()
set my pandas type & version
22,410
def openWith(self, accel = True, gyro = True, temp = True, cycle = False, cycleFreq = 0x00): val_pwr_2 = 0x00 if accel == False: val_pwr_2 = val_pwr_2 | self.VAL_PWR_MGMT_2_STBY_XA val_pwr_2 = val_pwr_2 | self.VAL_PWR_MGMT_2_STBY_YA val_pwr_2 = val_pwr_2 | self.VAL_PWR_MGMT_2_STBY_ZA if gyro == False: val_pwr_2 = val_pwr_2 | self.VAL_PWR_MGMT_2_STBY_XG val_pwr_2 = val_pwr_2 | self.VAL_PWR_MGMT_2_STBY_YG val_pwr_2 = val_pwr_2 | self.VAL_PWR_MGMT_2_STBY_ZG val_pwr_1 = 0x00 if temp == False: val_pwr_1 = val_pwr_1 | self.VAL_PWR_MGMT_1_OFF_TEMP if cycle == True: val_pwr_1 = val_pwr_1 | self.VAL_PWR_MGMT_1_ON_CYCLE val_pwr_2 = val_pwr_2 | cycleFreq self._sendCmd( self.REG_PWR_MGMT_2, val_pwr_2 ) self._sendCmd( self.REG_PWR_MGMT_1, val_pwr_1 )
! Trun on device with configurable sensors into wake up mode @param accel: True - Enable accelerometer @param gyro: True - Enable gyroscope @param temp: True - Enable Thermometer @param cycle: True - Enable cycle wake-up mode @param cycleFreq: Cycle wake-up frequency, this value can be chosen: @see VAL_PWR_MGMT_2_LP_WAKE_CTRL_1_25HZ is default @see VAL_PWR_MGMT_2_LP_WAKE_CTRL_5HZ @see VAL_PWR_MGMT_2_LP_WAKE_CTRL_20HZ @see VAL_PWR_MGMT_2_LP_WAKE_CTRL_40HZ
22,411
def utf8(value): if isinstance(value, _UTF8_TYPES): return value if not isinstance(value, unicode_type): raise TypeError( "Expected bytes, unicode, or None; got %r" % type(value) ) return value.encode("utf-8")
Converts a string argument to a byte string. If the argument is already a byte string or None, it is returned unchanged. Otherwise it must be a unicode string and is encoded as utf8.
22,412
def logWrite(self, string): logFile = open(self.logFile, ) logFile.write(string + ) logFile.close()
Only write text to the log file, do not print
22,413
def detect_vec(df, max_anoms=0.10, direction=, alpha=0.05, period=None, only_last=False, threshold=None, e_value=False, longterm_period=None, plot=False, y_log=False, xlabel=, ylabel=, title=None, verbose=False): if (isinstance(df, DataFrame) and len(df.columns) == 1 and df.iloc[:,0].applymap(np.isreal).all(1)): d = { : range(len(df.iloc[:,0])), : df.iloc[:,0] } df = DataFrame(d, index=d[]) elif isinstance(df, Series): d = { : range(len(df)), : df } df = DataFrame(d, index=d[]) else: raise ValueError(("data must be a single data frame, " "list, or vector that holds numeric values.")) if max_anoms > 0.49: length = len(df.value) raise ValueError( ("max_anoms must be less than 50% of " "the data points (max_anoms =%f data_points =%s).") % (round(max_anoms * length, 0), length)) if not direction in [, , ]: raise ValueError("direction options are: pos | neg | both.") if not (0.01 <= alpha or alpha <= 0.1): if verbose: import warnings warnings.warn(("alpha is the statistical signifigance, " "and is usually between 0.01 and 0.1")) if not period: raise ValueError(("Period must be set to the number " "of data points in a single period")) if not isinstance(only_last, bool): raise ValueError("only_last must be a boolean") if not threshold in [None,,,]: raise ValueError("threshold options are: None | med_max | p95 | p99") if not isinstance(e_value, bool): raise ValueError("e_value must be a boolean") if not isinstance(plot, bool): raise ValueError("plot must be a boolean") if not isinstance(y_log, bool): raise ValueError("y_log must be a boolean") if not isinstance(xlabel, string_types): raise ValueError("xlabel must be a string") if not isinstance(ylabel, string_types): raise ValueError("ylabel must be a string") if title and not isinstance(title, string_types): raise ValueError("title must be a string") if not title: title = else: title = title + " : " num_obs = len(df.value) clamp = (1 / float(num_obs)) if max_anoms < clamp: max_anoms = clamp if longterm_period: all_data = [] for j in range(0, len(df.timestamp), longterm_period): start_index = df.timestamp.iloc[j] end_index = min((start_index + longterm_period), num_obs) if (end_index - start_index) == longterm_period: sub_df = df[(df.timestamp >= start_index) & (df.timestamp <= end_index)] else: sub_df = df[(df.timestamp >= (num_obs - longterm_period)) & (df.timestamp <= num_obs)] all_data.append(sub_df) else: all_data = [df] all_anoms = DataFrame(columns=[, ]) seasonal_plus_trend = DataFrame(columns=[, ]) for i in range(len(all_data)): directions = { : Direction(True, True), : Direction(True, False), : Direction(False, True) } anomaly_direction = directions[direction] s_h_esd_timestamps = detect_anoms(all_data[i], k=max_anoms, alpha=alpha, num_obs_per_period=period, use_decomp=True, one_tail=anomaly_direction.one_tail, upper_tail=anomaly_direction.upper_tail, verbose=verbose) data_decomp = s_h_esd_timestamps[] s_h_esd_timestamps = s_h_esd_timestamps[] if s_h_esd_timestamps: anoms = all_data[i][all_data[i].timestamp.isin(s_h_esd_timestamps)] else: anoms = DataFrame(columns=[, ]) if threshold: if isinstance(all_data[i].index[0], Timestamp): group = all_data[i].timestamp.map(Timestamp.date) else: group = all_data[i].timestamp.map(lambda t: int(t / period)) periodic_maxes = df.groupby(group).aggregate(np.max).value if threshold == : thresh = periodic_maxes.median() elif threshold == : thresh = periodic_maxes.quantile(.95) elif threshold == : thresh = periodic_maxes.quantile(.99) anoms = anoms[anoms.value >= thresh] all_anoms = all_anoms.append(anoms) seasonal_plus_trend = seasonal_plus_trend.append(data_decomp) try: all_anoms.drop_duplicates(subset=[]) seasonal_plus_trend.drop_duplicates(subset=[]) except TypeError: all_anoms.drop_duplicates(cols=[]) seasonal_plus_trend.drop_duplicates(cols=[]) if only_last: d = { : df.timestamp.iloc[-period:], : df.value.iloc[-period:] } x_subset_single_period = DataFrame(d, index = d[]) past_obs = period * 7 if num_obs < past_obs: past_obs = num_obs - period d = { : df.timestamp.iloc[-past_obs:-period], : df.value.iloc[-past_obs:-period] } x_subset_previous = DataFrame(d, index=d[]) all_anoms = all_anoms[all_anoms.timestamp >= x_subset_single_period.timestamp.iloc[0]] num_obs = len(x_subset_single_period.value) anom_pct = (len(df.value) / float(num_obs)) * 100 if anom_pct == 0: return { "anoms": None, "plot": None } all_anoms.index = all_anoms.timestamp if e_value: d = { : all_anoms.timestamp, : all_anoms.value, : seasonal_plus_trend[ seasonal_plus_trend.timestamp.isin( all_anoms.timestamp)].value } else: d = { : all_anoms.timestamp, : all_anoms.value } anoms = DataFrame(d, index=d[].index) return { : anoms, : None }
Anomaly Detection Using Seasonal Hybrid ESD Test A technique for detecting anomalies in seasonal univariate time series where the input is a series of observations. Args: x: Time series as a column data frame, list, or vector, where the column consists of the observations. max_anoms: Maximum number of anomalies that S-H-ESD will detect as a percentage of the data. direction: Directionality of the anomalies to be detected. Options are: ('pos' | 'neg' | 'both'). alpha: The level of statistical significance with which to accept or reject anomalies. period: Defines the number of observations in a single period, and used during seasonal decomposition. only_last: Find and report anomalies only within the last period in the time series. threshold: Only report positive going anoms above the threshold specified. Options are: ('None' | 'med_max' | 'p95' | 'p99'). e_value: Add an additional column to the anoms output containing the expected value. longterm_period: Defines the number of observations for which the trend can be considered flat. The value should be an integer multiple of the number of observations in a single period. This increases anom detection efficacy for time series that are greater than a month. plot: (Currently unsupported) A flag indicating if a plot with both the time series and the estimated anoms, indicated by circles, should also be returned. y_log: Apply log scaling to the y-axis. This helps with viewing plots that have extremely large positive anomalies relative to the rest of the data. xlabel: X-axis label to be added to the output plot. ylabel: Y-axis label to be added to the output plot. Details 'longterm_period' This option should be set when the input time series is longer than a month. The option enables the approach described in Vallis, Hochenbaum, and Kejariwal (2014). 'threshold' Filter all negative anomalies and those anomalies whose magnitude is smaller than one of the specified thresholds which include: the median of the daily max values (med_max), the 95th percentile of the daily max values (p95), and the 99th percentile of the daily max values (p99). 'title' Title for the output plot. 'verbose' Enable debug messages The returned value is a dictionary with the following components: anoms: Data frame containing index, values, and optionally expected values. plot: A graphical object if plotting was requested by the user. The plot contains the estimated anomalies annotated on the input time series.
22,414
def array_remove(col, element): sc = SparkContext._active_spark_context return Column(sc._jvm.functions.array_remove(_to_java_column(col), element))
Collection function: Remove all elements that equal to element from the given array. :param col: name of column containing array :param element: element to be removed from the array >>> df = spark.createDataFrame([([1, 2, 3, 1, 1],), ([],)], ['data']) >>> df.select(array_remove(df.data, 1)).collect() [Row(array_remove(data, 1)=[2, 3]), Row(array_remove(data, 1)=[])]
22,415
def logo_path(instance, filename): extension = os.path.splitext(filename)[1].lower() instance_id = str(instance.id) fullname = os.path.join("enterprise/branding/", instance_id, instance_id + "_logo" + extension) if default_storage.exists(fullname): default_storage.delete(fullname) return fullname
Delete the file if it already exist and returns the enterprise customer logo image path. Arguments: instance (:class:`.EnterpriseCustomerBrandingConfiguration`): EnterpriseCustomerBrandingConfiguration object filename (str): file to upload Returns: path: path of image file e.g. enterprise/branding/<model.id>/<model_id>_logo.<ext>.lower()
22,416
def script_repr(self,imports=[],prefix=" "): return self.pprint(imports,prefix,unknown_value=,qualify=True, separator="\n")
Same as Parameterized.script_repr, except that X.classname(Y is replaced with X.classname.instance(Y
22,417
def remove_date(self, file_path=, date=str(datetime.date.today())): languages_exists = os.path.isfile(file_path) if languages_exists: with open(file_path, ) as inp, open(, ) as out: writer = csv.writer(out) for row in csv.reader(inp): if row[0] != date: writer.writerow(row) inp.close() out.close() os.remove(file_path) os.rename("temp.csv",file_path)
Removes all rows of the associated date from the given csv file. Defaults to today.
22,418
def cell_ends_with_code(lines): if not lines: return False if not lines[-1].strip(): return False if lines[-1].startswith(): return False return True
Is the last line of the cell a line with code?
22,419
def delete(self): r = self._client._request(, self._client._build_url(, property_id=self.id)) if r.status_code != requests.codes.no_content: raise APIError("Could not delete property: {} with id {}".format(self.name, self.id))
Delete this property. :return: None :raises APIError: if delete was not successful
22,420
def collect_and_zip_files(dir_list, output_dir, zip_file_name, file_extension_list=None, file_name_list=None): temp_list = list() if isinstance(dir_list, list): for dir_name in dir_list: if not __os.path.isdir(dir_name): error = .format(dir_name) LOGGER.critical(error) raise Exception(error) else: error = .format(type(dir_list)) LOGGER.critical(error) raise TypeError(error) if not file_extension_list and not file_name_list: for dir_name in dir_list: temp_files_list = list_files_in_directory(dir_name) for file_name in temp_files_list: temp_list.append(__os.path.join(dir_name, file_name)) if file_extension_list: if isinstance(file_extension_list, list): for dir_name in dir_list: temp_files_list = list_files_in_directory(dir_name) for file_name in temp_files_list: garbage, extension = file_name.split() if extension in file_extension_list: temp_list.append(__os.path.join(dir_name, file_name)) else: error = \ .format(type(file_extension_list)) LOGGER.critical(error) raise TypeError(error) if file_name_list: if isinstance(file_name_list, list): for dir_name in dir_list: temp_files_list = list_files_in_directory(dir_name) for file_name in temp_files_list: if file_name in file_name_list: temp_list.append(__os.path.join(dir_name, file_name)) else: error = \ .format(type(file_name_list)) LOGGER.critical(error) raise TypeError(error) if len(zip_file_name.split()) == 2: name, ext = zip_file_name.split() if ext != : LOGGER.warning(.format(zip_file_name)) zip_file_name = .format(name, ) else: error = \ .format(zip_file_name) LOGGER.critical(error) raise NameError(error) with __zipfile.ZipFile(__os.path.join(output_dir, zip_file_name), ) as the_zip_file: for file in temp_list: the_zip_file.write(file) the_zip_file.close()
Function to collect files and make a zip file :param dir_list: A list of directories :param output_dir: The output directory :param zip_file_name: Zip file name :param file_extension_list: A list of extensions of files to find :param file_name_list: A list of file names to find :return: Outputs a zip file Note: If no file_extension_list and file_name_list are provided it will zip the entire directory.
22,421
def get_all_regions_with_tiles(self): for key in self.get_all_keys(): (layer, rx, ry) = struct.unpack(, key) if layer == 1: yield (rx, ry)
Generator which yields a set of (rx, ry) tuples which describe all regions for which the world has tile data
22,422
def gen_mu(K, delta, c): S = c * log(K/delta) * sqrt(K) tau = gen_tau(S, K, delta) rho = gen_rho(K) normalizer = sum(rho) + sum(tau) return [(rho[d] + tau[d])/normalizer for d in range(K)]
The Robust Soliton Distribution on the degree of transmitted blocks
22,423
def __calculate_bu_dfs(dfs_data): u = dfs_data[][0] b = {} b[u] = D(u, dfs_data) __calculate_bu_dfs_recursively(u, b, dfs_data) return b
Calculates the b(u) lookup table.
22,424
def rootChild_resetPassword(self, req, webViewer): from xmantissa.signup import PasswordResetResource return PasswordResetResource(self.store)
Return a page which will allow the user to re-set their password.
22,425
def set_target_ref(self, value): if value is None or not isinstance(value, str): raise TypeError("TargetRef is required and must be set to a String") else: self.__target_ref = value
Setter for 'target_ref' field. :param value - a new value of 'target_ref' field. Required field. Must be a String type.
22,426
def _build_pcollection(self, pipeline, filepaths, language): beam = tfds.core.lazy_imports.apache_beam def _extract_content(filepath): logging.info("generating examples from = %s", filepath) with tf.io.gfile.GFile(filepath) as f: for _, elem in etree.iterparse(f, events=("end",)): if not elem.tag.endswith("page"): continue namespace = elem.tag[:-4] title = elem.find("./{0}title".format(namespace)).text ns = elem.find("./{0}ns".format(namespace)).text if ns != "0": continue raw_content = elem.find( "./{0}revision/{0}text".format(namespace)).text elem.clear() if raw_content is None or raw_content.lower().startswith(" beam.metrics.Metrics.counter(language, "filtered-redirects").inc() continue beam.metrics.Metrics.counter(language, "extracted-examples").inc() yield (title, raw_content) def _clean_content(inputs): title, raw_content = inputs try: text = _parse_and_clean_wikicode(raw_content) except ( tfds.core.lazy_imports.mwparserfromhell.parser.ParserError) as e: beam.metrics.Metrics.counter(language, "parser-error").inc() logging.error("mwparserfromhell ParseError: %s", e) return beam.metrics.Metrics.counter(language, "cleaned-examples").inc() yield { "title": title, "text": text } return ( pipeline | beam.Create(filepaths) | beam.FlatMap(_extract_content) | beam.FlatMap(_clean_content) )
Build PCollection of examples in the raw (text) form.
22,427
def slamdunkGeneralStatsTable(self): headers = OrderedDict() headers[] = { : .format(config.read_count_prefix), : UTRs ({})shared_keyread_countminformat{:,.2f}scaleYlGnmodifyretainedtitle{} Retaineddescription } self.general_stats_addcols(self.slamdunk_data, headers)
Take the parsed summary stats from Slamdunk and add it to the basic stats table at the top of the report
22,428
def apply_update(self, value, index): _log.debug(.format(type(value).__name__, index, value.value)) builder = asiodnp3.UpdateBuilder() builder.Update(value, index) update = builder.Build() OutstationApplication.get_outstation().Apply(update)
Record an opendnp3 data value (Analog, Binary, etc.) in the outstation's database. The data value gets sent to the Master as a side-effect. :param value: An instance of Analog, Binary, or another opendnp3 data value. :param index: (integer) Index of the data definition in the opendnp3 database.
22,429
def syncdb(self, site=None, all=0, database=None, ignore_errors=1): r = self.local_renderer ignore_errors = int(ignore_errors) post_south = self.version_tuple >= (1, 7, 0) use_run_syncdb = self.version_tuple >= (1, 9, 0) r.env.db_syncdb_all_flag = if int(all) else r.env.db_syncdb_database = if database: r.env.db_syncdb_database = % database if self.is_local: r.env.project_dir = r.env.local_project_dir site = site or self.genv.SITE for _site, site_data in r.iter_unique_databases(site=site): r.env.SITE = _site with self.settings(warn_only=ignore_errors): if post_south: if use_run_syncdb: r.run_or_local( ) else: r.run_or_local( ) else: r.run_or_local( )
Runs the standard Django syncdb command for one or more sites.
22,430
def datasets(self): if self._datasets is None: self._datasets = self._fetch_datasets() return self._datasets
List of datasets in this mart.
22,431
def softmask(X, X_ref, power=1, split_zeros=False): if X.shape != X_ref.shape: raise ParameterError(.format(X.shape, X_ref.shape)) if np.any(X < 0) or np.any(X_ref < 0): raise ParameterError() if power <= 0: raise ParameterError() dtype = X.dtype if not np.issubdtype(dtype, np.floating): dtype = np.float32 Z = np.maximum(X, X_ref).astype(dtype) bad_idx = (Z < np.finfo(dtype).tiny) Z[bad_idx] = 1 if np.isfinite(power): mask = (X / Z)**power ref_mask = (X_ref / Z)**power good_idx = ~bad_idx mask[good_idx] /= mask[good_idx] + ref_mask[good_idx] if split_zeros: mask[bad_idx] = 0.5 else: mask[bad_idx] = 0.0 else: mask = X > X_ref return mask
Robustly compute a softmask operation. `M = X**power / (X**power + X_ref**power)` Parameters ---------- X : np.ndarray The (non-negative) input array corresponding to the positive mask elements X_ref : np.ndarray The (non-negative) array of reference or background elements. Must have the same shape as `X`. power : number > 0 or np.inf If finite, returns the soft mask computed in a numerically stable way If infinite, returns a hard (binary) mask equivalent to `X > X_ref`. Note: for hard masks, ties are always broken in favor of `X_ref` (`mask=0`). split_zeros : bool If `True`, entries where `X` and X`_ref` are both small (close to 0) will receive mask values of 0.5. Otherwise, the mask is set to 0 for these entries. Returns ------- mask : np.ndarray, shape=`X.shape` The output mask array Raises ------ ParameterError If `X` and `X_ref` have different shapes. If `X` or `X_ref` are negative anywhere If `power <= 0` Examples -------- >>> X = 2 * np.ones((3, 3)) >>> X_ref = np.vander(np.arange(3.0)) >>> X array([[ 2., 2., 2.], [ 2., 2., 2.], [ 2., 2., 2.]]) >>> X_ref array([[ 0., 0., 1.], [ 1., 1., 1.], [ 4., 2., 1.]]) >>> librosa.util.softmask(X, X_ref, power=1) array([[ 1. , 1. , 0.667], [ 0.667, 0.667, 0.667], [ 0.333, 0.5 , 0.667]]) >>> librosa.util.softmask(X_ref, X, power=1) array([[ 0. , 0. , 0.333], [ 0.333, 0.333, 0.333], [ 0.667, 0.5 , 0.333]]) >>> librosa.util.softmask(X, X_ref, power=2) array([[ 1. , 1. , 0.8], [ 0.8, 0.8, 0.8], [ 0.2, 0.5, 0.8]]) >>> librosa.util.softmask(X, X_ref, power=4) array([[ 1. , 1. , 0.941], [ 0.941, 0.941, 0.941], [ 0.059, 0.5 , 0.941]]) >>> librosa.util.softmask(X, X_ref, power=100) array([[ 1.000e+00, 1.000e+00, 1.000e+00], [ 1.000e+00, 1.000e+00, 1.000e+00], [ 7.889e-31, 5.000e-01, 1.000e+00]]) >>> librosa.util.softmask(X, X_ref, power=np.inf) array([[ True, True, True], [ True, True, True], [False, False, True]], dtype=bool)
22,432
def init(self): "Initialize the message-digest and set all fields to zero." self.length = 0 self.input = [] self.H0 = 0x67452301 self.H1 = 0xEFCDAB89 self.H2 = 0x98BADCFE self.H3 = 0x10325476 self.H4 = 0xC3D2E1F0
Initialize the message-digest and set all fields to zero.
22,433
def build_type_dict(converters): more_types = {} for converter in converters: assert callable(converter) more_types[converter.name] = converter return more_types
Builds type dictionary for user-defined type converters, used by :mod:`parse` module. This requires that each type converter has a "name" attribute. :param converters: List of type converters (parse_types) :return: Type converter dictionary
22,434
def density_water(temp): ut.check_range([temp, ">0", "Temperature in Kelvin"]) rhointerpolated = interpolate.CubicSpline(WATER_DENSITY_TABLE[0], WATER_DENSITY_TABLE[1]) return np.asscalar(rhointerpolated(temp))
Return the density of water at a given temperature. If given units, the function will automatically convert to Kelvin. If not given units, the function will assume Kelvin.
22,435
def handle(self, *args, **options): for index in options.pop("indexes"): data = {} try: data = self.do_index_command(index, **options) except TransportError as ex: logger.warning("ElasticSearch threw an error: %s", ex) data = {"index": index, "status": ex.status_code, "reason": ex.error} finally: logger.info(data)
Run do_index_command on each specified index and log the output.
22,436
def ppiece(self, content): ve received from a peer, writing it out to one or more files !iiinfopieceshash matcheskindpiecepeerpiece_indexwriting piece {}. Length is {}...\nDownload complete\nt match. Discarding piece." self.piece = self.init_piece() self.request_all()
Process a piece that we've received from a peer, writing it out to one or more files
22,437
def xirr(values, dates, guess=0): if isinstance(values, Range): values = values.values if isinstance(dates, Range): dates = dates.values if guess is not None and guess != 0: raise ValueError( % guess) else: try: return scipy.optimize.newton(lambda r: xnpv(r, values, dates, lim_rate=False), 0.0) except RuntimeError: return scipy.optimize.brentq(lambda r: xnpv(r, values, dates, lim_rate=False), -1.0, 1e10)
Function to calculate the internal rate of return (IRR) using payments and non-periodic dates. It resembles the excel function XIRR(). Excel reference: https://support.office.com/en-ie/article/xirr-function-de1242ec-6477-445b-b11b-a303ad9adc9d :param values: the payments of which at least one has to be negative. :param dates: the dates as excel dates (e.g. 43571 for 16/04/2019). :param guess: an initial guess which is required by Excel but isn't used by this function. :return: a float being the IRR.
22,438
def print_dictionary(self, d, h, n, nl=False): if d in h: return "{}..." h.append(d) s = [] if nl: s.append("\n") s.append(self.indent(n)) s.append("{") for item in d.items(): s.append("\n") s.append(self.indent(n+1)) if isinstance(item[1], (list,tuple)): s.append(tostr(item[0])) s.append("[]") else: s.append(tostr(item[0])) s.append(" = ") s.append(self.process(item[1], h, n, True)) s.append("\n") s.append(self.indent(n)) s.append("}") h.pop() return "".join(s)
Print complex using the specified indent (n) and newline (nl).
22,439
def interpolate_colors(array: numpy.ndarray, x: int) -> numpy.ndarray: out_array = [] for i in range(x): if i % (x / (len(array) - 1)) == 0: index = i / (x / (len(array) - 1)) out_array.append(array[int(index)]) else: start_marker = array[math.floor(i / (x / (len(array) - 1)))] stop_marker = array[math.ceil(i / (x / (len(array) - 1)))] interp_amount = i % (x / (len(array) - 1)) / (x / (len(array) - 1)) interp_color = numpy.rint(start_marker + ((stop_marker - start_marker) * interp_amount)) out_array.append(interp_color) out_array[-1] = array[-1] return numpy.array(out_array).astype(numpy.uint8)
Creates a color map for values in array :param array: color map to interpolate :param x: number of colors :return: interpolated color map
22,440
def get_key(key_name, region=None, key=None, keyid=None, profile=None): t CLI Example: .. code-block:: bash salt myminion boto_ec2.get_key mykey ' conn = _get_conn(region=region, key=key, keyid=keyid, profile=profile) try: key = conn.get_key_pair(key_name) log.debug("the key to return is : %s", key) if key is None: return False return key.name, key.fingerprint except boto.exception.BotoServerError as e: log.debug(e) return False
Check to see if a key exists. Returns fingerprint and name if it does and False if it doesn't CLI Example: .. code-block:: bash salt myminion boto_ec2.get_key mykey
22,441
def country(anon, obj, field, val): return anon.faker.country(field=field)
Returns a randomly selected country.
22,442
def set_top_bar_color(self, index): dr = QtCore.Qt.ForegroundRole c = index.model().index(index.row(), 8, index.parent()).data(dr) if not c: c = self.upper_fr_default_bg_color self.upper_fr.setStyleSheet( % (c.red(), c.green(), c.blue()))
Set the color of the upper frame to the background color of the reftrack status :param index: the index :type index: :class:`QtGui.QModelIndex` :returns: None :rtype: None :raises: None
22,443
def create_ssh_pub_key(self, name, key): self.nova.keypairs.create(name, key)
Installs the public SSH key under the name :attr:`name`. Once installed, the key can be referenced when creating new server instances.
22,444
async def end_takeout(self, success): try: async with _TakeoutClient(True, self, None) as takeout: takeout.success = success except ValueError: return False return True
Finishes a takeout, with specified result sent back to Telegram. Returns: ``True`` if the operation was successful, ``False`` otherwise.
22,445
def handle_job_exception(self, exception, variables=None): try: error_str, traceback_str = six.text_type(exception), traceback.format_exc() except Exception: self.metrics.counter().increment() error_str, traceback_str = , traceback.format_exc() self.logger.exception(exception) if not isinstance(traceback_str, six.text_type): try: traceback_str = traceback_str.decode() except UnicodeDecodeError: traceback_str = error_dict = { : ERROR_CODE_SERVER_ERROR, : % error_str, : traceback_str, } if variables is not None: try: error_dict[] = {key: repr(value) for key, value in variables.items()} except Exception: self.metrics.counter().increment() error_dict[] = return JobResponse(errors=[error_dict])
Makes and returns a last-ditch error response. :param exception: The exception that happened :type exception: Exception :param variables: A dictionary of context-relevant variables to include in the error response :type variables: dict :return: A `JobResponse` object :rtype: JobResponse
22,446
def update_image(self, ami_id, instance_id): log = logging.getLogger(self.cls_logger + ) if not isinstance(ami_id, basestring): msg = .format(t=ami_id.__class__.__name__) raise ImageUtilError(msg) if not isinstance(instance_id, basestring): msg = .format(t=instance_id.__class__.__name__) raise ImageUtilError(msg) if ami_id is None or instance_id is None: raise ImageUtilError() log.info(.format( a=ami_id, i=instance_id)) try: ami_info = self.ec2.describe_images(DryRun=False, ImageIds=[ami_id], Owners=[self.owner_id]) except ClientError: _, ex, trace = sys.exc_info() msg = .format(n=ex.__class__.__name__, a=ami_id, e=str(ex)) raise AWSAPIError, msg, trace log.debug(.format(a=ami_info)) cons3rt_uuid = None try: image_tags = ami_info[][0][] for image_tag in image_tags: if image_tag[] == : cons3rt_uuid = image_tag[] except KeyError: _, ex, trace = sys.exc_info() msg = .format( a=ami_id, n=ex.__class__.__name__, e=str(ex)) raise ImageUtilError, msg, trace if cons3rt_uuid is None: raise ImageUtilError(.format(a=ami_id)) log.info(.format(u=cons3rt_uuid)) log.debug(.format(t=image_tags)) try: snapshot_id = ami_info[][0][][0][][] except KeyError: _, ex, trace = sys.exc_info() raise ImageUtilError(.format( n=ex.__class__.__name__, a=ami_id, e=str(ex))) log.info(.format(s=snapshot_id)) try: image_name = ami_info[][0][] except KeyError: _, ex, trace = sys.exc_info() raise ImageUtilError(.format( n=ex.__class__.__name__, a=ami_id, e=str(ex))) log.info(.format(n=image_name)) try: image_description = ami_info[][0][] except KeyError: _, ex, trace = sys.exc_info() log.warn(.format( n=ex.__class__.__name__, a=ami_id, e=str(ex))) image_description = log.info(.format(d=image_description)) log.debug(.format(a=ami_id)) try: self.ec2.deregister_image(DryRun=False, ImageId=ami_id) except ClientError: _, ex, trace = sys.exc_info() msg = .format(n=ex.__class__.__name__, a=ami_id, e=str(ex)) raise ImageUtilError, msg, trace log.info(.format(a=ami_id)) log.info() time.sleep(20) log.info(.format(i=instance_id)) try: create_res = self.ec2.create_image( DryRun=False, InstanceId=instance_id, Name=image_name, Description=image_description, NoReboot=False ) except ClientError: _, ex, trace = sys.exc_info() msg = .format( n=ex.__class__.__name__, m=image_name, i=instance_id, e=str(ex)) raise ImageUtilError, msg, trace try: new_ami_id = create_res[] except KeyError: _, ex, trace = sys.exc_info() msg = .format( n=ex.__class__.__name__, i=instance_id, e=str(ex)) raise ImageUtilError, msg, trace log.info(.format(w=new_ami_id)) log.info(.format(w=new_ami_id)) time.sleep(20) try: self.ec2.create_tags(DryRun=False, Resources=[new_ami_id], Tags=image_tags) except ClientError: _, ex, trace = sys.exc_info() msg = .format( n=ex.__class__.__name__, i=new_ami_id, t=image_tags, e=str(ex)) raise ImageUtilError, msg, trace log.info(.format(w=new_ami_id, t=image_tags)) log.debug(.format(s=snapshot_id)) try: self.ec2.delete_snapshot(DryRun=False, SnapshotId=snapshot_id) except ClientError: _, ex, trace = sys.exc_info() msg = .format( n=ex.__class__.__name__, s=snapshot_id, e=str(ex)) raise ImageUtilError, msg, trace
Replaces an existing AMI ID with an image created from the provided instance ID :param ami_id: (str) ID of the AMI to delete and replace :param instance_id: (str) ID of the instance ID to create an image from :return: None
22,447
def pdchAssignmentCommand(ChannelDescription_presence=0, CellChannelDescription_presence=0, MobileAllocation_presence=0, StartingTime_presence=0, FrequencyList_presence=0, ChannelDescription_presence1=0, FrequencyChannelSequence_presence=0, MobileAllocation_presence1=0, PacketChannelDescription_presence=0, DedicatedModeOrTBF_presence=0): a = TpPd(pd=0x6) b = MessageType(mesType=0x23) c = ChannelDescription() packet = a / b / c if ChannelDescription_presence is 1: d = ChannelDescriptionHdr(ieiCD=0x62, eightBitCD=0x0) packet = packet / d if CellChannelDescription_presence is 1: e = CellChannelDescriptionHdr(ieiCCD=0x05, eightBitCCD=0x0) packet = packet / e if MobileAllocation_presence is 1: f = MobileAllocationHdr(ieiMA=0x72, eightBitMA=0x0) packet = packet / f if StartingTime_presence is 1: g = StartingTimeHdr(ieiST=0x7C, eightBitST=0x0) packet = packet / g if FrequencyList_presence is 1: h = FrequencyListHdr(ieiFL=0x19, eightBitFL=0x0) packet = packet / h if ChannelDescription_presence1 is 1: i = ChannelDescriptionHdr(ieiCD=0x1C, eightBitCD=0x0) packet = packet / i if FrequencyChannelSequence_presence is 1: j = FrequencyChannelSequenceHdr(ieiFCS=0x1E, eightBitFCS=0x0) packet = packet / j if MobileAllocation_presence1 is 1: k = MobileAllocationHdr(ieiMA=0x21, eightBitMA=0x0) packet = packet / k if PacketChannelDescription_presence is 1: l = PacketChannelDescription(ieiPCD=0x22) packet = packet / l if DedicatedModeOrTBF_presence is 1: m = DedicatedModeOrTBFHdr(ieiDMOT=0x23, eightBitDMOT=0x0) packet = packet / m return packet
PDCH ASSIGNMENT COMMAND Section 9.1.13a
22,448
def _handle_pyout(self, msg): self.log.debug("pyout: %s", msg.get(, )) if not self._hidden and self._is_from_this_session(msg): text = msg[][] self._append_plain_text(text + , before_prompt=True)
Handle display hook output.
22,449
def format_table(table, align=, format=, colwidth=None, maxwidth=None, spacing=2, truncate=0, suffix="..." ): table = list(deepcopy(table)) if not isinstance(align, list): align = [align] if not isinstance(format, list): format = [format] if not isinstance(format[0], list): format = [format] num_cols = len(table[0]) if len(set([len(row) for row in table]))>1: raise ValueError("All rows must have the same number of columns") for i in range(len(table)): table[i] = list(table[i]) colformat = format[min(i,len(format)-1)] for j, cell in enumerate(table[i]): f = colformat[min(j,len(colformat)-1)] if isinstance(f, str): fun = lambda x: f.format(x) else: fun = f try: table[i][j] = fun(cell) except: table[i][j] = str(cell) if colwidth==None: cellwidth = [[len(cell) for cell in row] for row in table] colwidth = list(map(max, zip(*cellwidth))) elif not isinstance(colwidth, list): colwidth = [colwidth] colwidth.extend([colwidth[-1]]*(num_cols-len(colwidth))) if maxwidth==None: maxwidth = get_terminal_size().columns-1 width = sum(colwidth)+spacing*(num_cols-1) if width>maxwidth: colwidth[truncate] -= (width-maxwidth) for j, cw in enumerate(colwidth): if cw<1: raise RuntimeError("Column {} in format_table() has width {}. " "Make sure all columns have width >0. " "Read docstring for further details." .format(j,cw) ) s = for i, row in enumerate(table): if i != 0: s += "\n" colalign = align[min(i,len(align)-1)] colformat = format[min(i,len(format)-1)] for j, col in enumerate(row): a = colalign[min(j,len(colalign)-1)] f = colformat[min(j,len(colformat)-1)] w = colwidth[j] if j!=0: s+= *spacing s += format_fit(format_time(col), w, a, suffix) return s
Formats a table represented as an iterable of iterable into a nice big string suitable for printing. Parameters: ----------- align : string or list of strings Alignment of cell contents. Each character in a string specifies the alignment of one column. * ``<`` - Left aligned (default) * ``^`` - Centered * ``>`` - Right aligned The last alignment is repeated for unspecified columns. If it's a list of strings, each string specifies the alignment of one row. The last string is used repeatedly for unspecified rows. format : string/function, or (nested) list of string/function Formats the contents of the cells using the specified function(s) or format string(s). If it's a list of strings/functions each entry specifies formatting for one column, the last entry being used repeatedly for unspecified columns. If it's a list of lists, each sub-list specifies one row, the last sub-list being used repeatedly for unspecified rows. colwidth : int, list of ints or None The width of each column. The last width is used repeatedly for unspecified columns. If ``None`` the width is fitted to the contents. maxwidth : int or None The maximum width of the table. Defaults to terminal width minus 1 if ``None``. If the table would be wider than ``maxwidth`` one of the columns is truncated. spacing : int The spacing between columns truncate : int Which column to truncate if table width would exceed ``maxwidth``. Beware that no columns can have zero or negative width. If for instance 'maxwidth' is 80 and 'colwidth' is [10, 30, 30, 30] with spacing 2 the total width will initially be 10+2+30+2+30+2+30=106. That's 26 characters too much, so a width of 26 will be removed from the truncated column. If 'truncate' is 0, column 0 will have a width of -16 which is not permitted.
22,450
def gmm_cause(points, k=4, p1=2, p2=2): g = GMM(k, covariance_type="spherical") g.fit(np.random.randn(300, 1)) g.means_ = p1 * np.random.randn(k, 1) g.covars_ = np.power(abs(p2 * np.random.randn(k, 1) + 1), 2) g.weights_ = abs(np.random.rand(k)) g.weights_ = g.weights_ / sum(g.weights_) return g.sample(points)[0].reshape(-1)
Init a root cause with a Gaussian Mixture Model w/ a spherical covariance type.
22,451
def _zoom_rows(self, zoom): self.grid.SetDefaultRowSize(self.grid.std_row_size * zoom, resizeExistingRows=True) self.grid.SetRowLabelSize(self.grid.row_label_size * zoom) for row, tab in self.code_array.row_heights: if tab == self.grid.current_table and \ row < self.grid.code_array.shape[0]: base_row_width = self.code_array.row_heights[(row, tab)] if base_row_width is None: base_row_width = self.grid.GetDefaultRowSize() zoomed_row_size = base_row_width * zoom self.grid.SetRowSize(row, zoomed_row_size)
Zooms grid rows
22,452
def get_cached_item(cache_key, alternative_cache_key, *func_args, **func_kwargs): key = get_cache_key(cache_key, func, *func_args, **func_kwargs) return cache.get(key)
Not a decorator, but a helper function to retrieve the cached item for a key created via get_cache_key. Args: - cache_key: if there was a specific cache key used to cache the function, it should be provided here. If not this should be None - func: the function which was cache - *func_args: arguments of the function - **func_kwargs: keyword arguments of this function
22,453
def field(*, default=MISSING, default_factory=MISSING, init=True, repr=True, hash=None, compare=True, metadata=None): if default is not MISSING and default_factory is not MISSING: raise ValueError() return Field(default, default_factory, init, repr, hash, compare, metadata)
Return an object to identify dataclass fields. default is the default value of the field. default_factory is a 0-argument function called to initialize a field's value. If init is True, the field will be a parameter to the class's __init__() function. If repr is True, the field will be included in the object's repr(). If hash is True, the field will be included in the object's hash(). If compare is True, the field will be used in comparison functions. metadata, if specified, must be a mapping which is stored but not otherwise examined by dataclass. It is an error to specify both default and default_factory.
22,454
def save_yaml_file(file, val): opened = False if not hasattr(file, "write"): file = io.open(file, "w", encoding="utf-8") opened = True try: yaml.dump(val, file) finally: if opened: file.close()
Save data to yaml file :param file: Writable object or path to file :type file: FileIO | str | unicode :param val: Value or struct to save :type val: None | int | float | str | unicode | list | dict
22,455
def submatrix(matrix,i1,i2,j1,j2): new = [] for i in range(i1,i2+1): new.append(matrix[i][j1:j2+1]) return _n.array(new)
returns the submatrix defined by the index bounds i1-i2 and j1-j2 Endpoints included!
22,456
def _unassembled_reads2_out_file_name(self): if self.Parameters[].isOn(): unassembled_reads2 = self._absolute( str(self.Parameters[].Value)) else: raise ValueError("No reads2 (flag -2) output path specified") return unassembled_reads2
Checks if file name is set for reads2 output. Returns absolute path.
22,457
def add_legend(self): cuts = [tag for tag in self.tags if tag is not self._new_cut] self.cuts_plot.ax.legend(cuts, loc=, shadow=True, fancybox=True, prop={: 8}, labelspacing=0.2)
Add or update Cuts plot legend.
22,458
def build_url(self, data): query_part_one = [] query_part_two = [] keys_to_be_removed = [] for key, value in data.items(): if key not in [, , ]: if key == : query_part_one.append(.join(str(val) for val in value)) keys_to_be_removed.append(key) elif key == : query_part_one.append(value) keys_to_be_removed.append(key) else: if isinstance(value, list): value = .join(str(val) for val in value) query_part_two.append(.format(key, value)) keys_to_be_removed.append(key) for k in keys_to_be_removed: del data[k] data[] = .format(.join(query_part_one), .join(query_part_two)) return data
This method occurs after dumping the data into the class. Args: data (dict): dictionary of all the query values Returns: data (dict): ordered dict of all the values
22,459
def get_content_size(self, path): "Return size of files/dirs contents excluding parent node." node = self._get_node(path) return self._get_content_size(node) - node.size
Return size of files/dirs contents excluding parent node.
22,460
def list_sub_commmands(self, cmd_name, cmd): ret = {} if isinstance(cmd, click.core.Group): for sub_cmd_name in cmd.commands: sub_cmd = cmd.commands[sub_cmd_name] sub = self.list_sub_commmands(sub_cmd_name, sub_cmd) if sub: if isinstance(sub, dict): for n, c in sub.items(): ret[ % (cmd_name, n)] = c else: ret[ % (cmd_name, sub[0])] = sub[1] elif isinstance(cmd, click.core.Command): return (cmd.name, cmd) return ret
Return all commands for a group
22,461
def detect_emg_activations(emg_signal, sample_rate, smooth_level=20, threshold_level=10, time_units=False, volts=False, resolution=None, device="biosignalsplux", plot_result=False): if volts is True: if resolution is not None: emg_signal = raw_to_phy("EMG", device, emg_signal, resolution, option="mV") units = "mV" else: raise RuntimeError( "For converting raw units to mV is mandatory the specification of acquisition " "resolution.") else: units = "Input Units" if time_units is True: time_units_str = "Time (s)" time = numpy.linspace(0, len(emg_signal) / sample_rate, len(emg_signal)) else: time = numpy.linspace(0, len(emg_signal) - 1, len(emg_signal)) time_units_str = "Sample Number" pre_pro_signal = numpy.array(emg_signal) - numpy.average(emg_signal) low_cutoff = 10 high_cutoff = 300 pre_pro_signal = _butter_bandpass_filter(pre_pro_signal, low_cutoff, high_cutoff, sample_rate) tkeo = [] for i, signal_sample in enumerate(pre_pro_signal): if i in (0, len(pre_pro_signal) - 1): tkeo.append(signal_sample) else: tkeo.append(numpy.power(signal_sample, 2) - (pre_pro_signal[i + 1] * pre_pro_signal[i - 1])) smoothing_level = int((smooth_level / 100) * sample_rate) rect_signal = numpy.absolute(tkeo) rect_signal = _moving_average(rect_signal, sample_rate / 10) smooth_signal = [] for i in range(0, len(rect_signal)): if smoothing_level < i < len(rect_signal) - smoothing_level: smooth_signal.append(numpy.mean(rect_signal[i - smoothing_level:i + smoothing_level])) else: smooth_signal.append(0) avg_pre_pro_signal = numpy.average(pre_pro_signal) std_pre_pro_signal = numpy.std(pre_pro_signal) threshold_level = avg_pre_pro_signal + _thres_norm_reg(threshold_level, smooth_signal, pre_pro_signal) * std_pre_pro_signal binary_signal = [] for i in range(0, len(time)): if smooth_signal[i] >= threshold_level: binary_signal.append(1) else: binary_signal.append(0) diff_signal = numpy.diff(binary_signal) act_begin = numpy.where(diff_signal == 1)[0] act_end = numpy.where(diff_signal == -1)[0] if time_units is True: time_begin = numpy.array(time)[act_begin] time_end = numpy.array(time)[act_end] else: time_begin = act_begin time_end = act_end if plot_result is True: plot([list(time), list(time)], [list(emg_signal), list(numpy.array(binary_signal) * numpy.max(emg_signal))], yAxisLabel=["Data Samples (" + units + ")"] * 2, x_axis_label=time_units_str, legend=["EMG Signal", "Activation Signal"]) return time_begin, time_end, smooth_signal, threshold_level
----- Brief ----- Python implementation of Burst detection algorithm using Teager Kaiser Energy Operator. ----------- Description ----------- Activation events in EMG readings correspond to an increase of muscular activity, namely, from inaction to action. These events are characterised by an increase in electric potential that returns to the initial values when the muscle returns to a state of inaction. This function detects activation events using the Teager Kaiser Energy Operator. ---------- Parameters ---------- emg_signal : list List of EMG acquired samples. sample_rate : int Sampling frequency. smooth_level : number Defines a percentage proportional to the smoothing level, i.e. the bigger this value is, the more smoothed is the signal. threshold_level : number Specification of the single threshold position, used for distinguishing between activation (above) and inactivation samples (below). time_units : boolean If True this function will return the Burst begin and end positions in seconds. volts : boolean If True, then the conversion of raw units to mV will be done. Resolution need to be specified. resolution : int Selected resolution for data acquisition. device : str Specification of the device category. plot_result : boolean If True it will be presented a graphical representation of the detected burst in the EMG signal. Returns ------- out : bursts begin (ndarray), bursts end (ndarray) Begin and end of bursts (sample number or time instant in seconds). smooth_signal: list It is returned the smoothed EMG signal (after the processing steps intended to simplify the signal). threshold_level: float The value of the detection threshold used to locate the begin and end of each muscular activation period.
22,462
def _get_private_room(self, invitees: List[User]): return self._client.create_room( None, invitees=[user.user_id for user in invitees], is_public=False, )
Create an anonymous, private room and invite peers
22,463
def import_object(name): parts = name.split() if len(parts) < 2: raise ValueError("Invalid name " % name) module_name = ".".join(parts[:-1]) obj_name = parts[-1] module = importlib.import_module(module_name) return getattr(module, obj_name)
Import module and return object from it. *name* is :class:`str` in format ``module.path.ObjectClass``. :: >>> import_command('module.path.ObjectClass') <class 'module.path.ObjectClass'>
22,464
def get_p2o_params_from_url(cls, url): return params
Get the p2o params given a URL for the data source
22,465
def on_ok(self, sender): logger.debug("in on_ok with sender %s" % sender) if sender == self.ion_task and not self.transfer_done: ion_structure = self.ion_task.get_final_structure() self.ioncell_task._change_structure(ion_structure) self.transfer_done = True self.ioncell_task.unlock(source_node=self) elif sender == self.ioncell_task and self.target_dilatmx: actual_dilatmx = self.ioncell_task.get_inpvar(, 1.) if self.target_dilatmx < actual_dilatmx: self.ioncell_task.reduce_dilatmx(target=self.target_dilatmx) self.history.info( .format(actual_dilatmx, self.ioncell_task.get_inpvar())) self.ioncell_task.reset_from_scratch() return super().on_ok(sender)
This callback is called when one task reaches status S_OK. If sender == self.ion_task, we update the initial structure used by self.ioncell_task and we unlock it so that the job can be submitted.
22,466
def process_tag(self, tag): try: if not self._is_function(tag): self._tag_type_processor[tag.data_type](tag) except KeyError as ex: raise Exception( .format( tag.data_type, tag.name), ex)
Processes tag and detects which function to use
22,467
def _datetime_to_stata_elapsed_vec(dates, fmt): index = dates.index NS_PER_DAY = 24 * 3600 * 1000 * 1000 * 1000 US_PER_DAY = NS_PER_DAY / 1000 def parse_dates_safe(dates, delta=False, year=False, days=False): d = {} if is_datetime64_dtype(dates.values): if delta: delta = dates - stata_epoch d[] = delta.values.astype( np.int64) // 1000 if days or year: dates = DatetimeIndex(dates) d[], d[] = dates.year, dates.month if days: days = (dates.astype(np.int64) - to_datetime(d[], format=).astype(np.int64)) d[] = days // NS_PER_DAY elif infer_dtype(dates, skipna=False) == : if delta: delta = dates.values - stata_epoch f = lambda x: \ US_PER_DAY * x.days + 1000000 * x.seconds + x.microseconds v = np.vectorize(f) d[] = v(delta) if year: year_month = dates.apply(lambda x: 100 * x.year + x.month) d[] = year_month.values // 100 d[] = (year_month.values - d[] * 100) if days: f = lambda x: (x - datetime.datetime(x.year, 1, 1)).days v = np.vectorize(f) d[] = v(dates) else: raise ValueError( ) return DataFrame(d, index=index) bad_loc = isna(dates) index = dates.index if bad_loc.any(): dates = Series(dates) if is_datetime64_dtype(dates): dates[bad_loc] = to_datetime(stata_epoch) else: dates[bad_loc] = stata_epoch if fmt in ["%tc", "tc"]: d = parse_dates_safe(dates, delta=True) conv_dates = d.delta / 1000 elif fmt in ["%tC", "tC"]: warnings.warn("Stata Internal Format tC not supported.") conv_dates = dates elif fmt in ["%td", "td"]: d = parse_dates_safe(dates, delta=True) conv_dates = d.delta // US_PER_DAY elif fmt in ["%tw", "tw"]: d = parse_dates_safe(dates, year=True, days=True) conv_dates = (52 * (d.year - stata_epoch.year) + d.days // 7) elif fmt in ["%tm", "tm"]: d = parse_dates_safe(dates, year=True) conv_dates = (12 * (d.year - stata_epoch.year) + d.month - 1) elif fmt in ["%tq", "tq"]: d = parse_dates_safe(dates, year=True) conv_dates = 4 * (d.year - stata_epoch.year) + (d.month - 1) // 3 elif fmt in ["%th", "th"]: d = parse_dates_safe(dates, year=True) conv_dates = (2 * (d.year - stata_epoch.year) + (d.month > 6).astype(np.int)) elif fmt in ["%ty", "ty"]: d = parse_dates_safe(dates, year=True) conv_dates = d.year else: raise ValueError( "Format {fmt} is not a known Stata date format".format(fmt=fmt)) conv_dates = Series(conv_dates, dtype=np.float64) missing_value = struct.unpack(, b)[0] conv_dates[bad_loc] = missing_value return Series(conv_dates, index=index)
Convert from datetime to SIF. http://www.stata.com/help.cgi?datetime Parameters ---------- dates : Series Series or array containing datetime.datetime or datetime64[ns] to convert to the Stata Internal Format given by fmt fmt : str The format to convert to. Can be, tc, td, tw, tm, tq, th, ty
22,468
def run(self, *args): params = self.parser.parse_args(args) code = self.unify(params.matching, params.sources, params.fast_matching, params.no_strict, params.interactive, params.recovery) return code
Merge unique identities using a matching algorithm.
22,469
def add_affiliation(self, value, curated_relation=None, record=None): if value: affiliation = { : value } if record: affiliation[] = record if curated_relation is not None: affiliation[] = curated_relation self._ensure_list_field(, affiliation)
Add an affiliation. Args: value (string): affiliation value curated_relation (bool): is relation curated record (dict): affiliation JSON reference
22,470
def step(self, state, clamping): ns = state.copy() for var in state: if clamping.has_variable(var): ns[var] = int(clamping.bool(var)) else: or_value = 0 for clause, _ in self.in_edges_iter(var): or_value = or_value or clause.bool(state) if or_value: break ns[var] = int(or_value) return ns
Performs a simulation step from the given state and with respect to the given clamping Parameters ---------- state : dict The key-value mapping describing the current state of the logical network clamping : caspo.core.clamping.Clamping A clamping over variables in the logical network Returns ------- dict The key-value mapping describing the next state of the logical network
22,471
def export_default_instruments(target_folder, source_folder = None, raise_errors = False, verbose=True): print() instruments_to_load = get_classes_in_folder(source_folder, Instrument, verbose = True) print() print(instruments_to_load) if verbose: print((.format(len(instruments_to_load)))) loaded_instruments, failed = Instrument.load_and_append(instruments_to_load, raise_errors = raise_errors) print() print(loaded_instruments, failed) for name, value in loaded_instruments.items(): filename = os.path.join(target_folder, .format(name)) value.save_b26(filename) if verbose: print() print() print((.format(len(loaded_instruments), len(failed)))) if failed != {}: for error_name, error in failed.items(): print((, error_name, error))
tries to instantiate all the instruments that are imported in /instruments/__init__.py and saves instruments that could be instantiate into a .b2 file in the folder path Args: target_folder: target path for .b26 files
22,472
def overview(name, server): print( % name) print(" Interop namespace: %s" % server.interop_ns) print(" Brand: %s" % server.brand) print(" Version: %s" % server.version) print(" Namespaces: %s" % ", ".join(server.namespaces)) print( % server.namespace_classname) if VERBOSE: print( % server.cimom_inst.tomof()) print( % server) print( % server) try: insts = server.conn.EnumerateInstances(, namespace=server.interop_ns) print( % name) for inst in insts: print( % inst) except pywbem.Error as er: print( % (name, er)) try: insts = server.conn.EnumerateInstances(, namespace=server.interop_ns) print( % name) for inst in insts: print( % inst) except pywbem.Error as er: print( % (name, er))
Overview of the server as seen through the properties of the server class.
22,473
def edge_label(self, edge): return self.get_edge_properties( edge ).setdefault( self.LABEL_ATTRIBUTE_NAME, self.DEFAULT_LABEL )
Get the label of an edge. @type edge: edge @param edge: One edge. @rtype: string @return: Edge label
22,474
def secret_loader(self, callback): if not callback or not callable(callback): raise Exception("Please pass in a callable that loads secret keys") self.secret_loader_callback = callback return callback
Decorate a method that receives a key id and returns a secret key
22,475
def close(self): if self.closed: return super().close() if not self.upload_on_close: return local_loc = os.path.join(self.local_base, self.log_relative_path) remote_loc = os.path.join(self.remote_base, self.log_relative_path) if os.path.exists(local_loc): with open(local_loc, ) as logfile: log = logfile.read() self.wasb_write(log, remote_loc, append=True) if self.delete_local_copy: shutil.rmtree(os.path.dirname(local_loc)) self.closed = True
Close and upload local log file to remote storage Wasb.
22,476
def discard_logcat_logs(self): if self.driver_wrapper.is_android_test(): try: self.driver_wrapper.driver.get_log() except Exception: pass
Discard previous logcat logs
22,477
def weighted_n(self): if not self.is_weighted: return float(self.unweighted_n) return float(sum(self._cube_dict["result"]["measures"]["count"]["data"]))
float count of returned rows adjusted for weighting.
22,478
def is_stop_here(self, frame, event, arg): lineno = frame.f_lineno filename = frame.f_code.co_filename if self.different_line and event == : if self.last_lineno == lineno and self.last_filename == filename: return False pass self.last_lineno = lineno self.last_filename = filename if self.stop_level is not None: if frame != self.last_frame: self.last_level = Mstack.count_frames(frame) self.last_frame = frame pass if self.last_level > self.stop_level: return False elif self.last_level == self.stop_level and \ self.stop_on_finish and event in [, ]: self.stop_level = None self.stop_reason = "in return for command" return True pass if self._is_step_next_stop(event): self.stop_reason = return True return False
Does the magic to determine if we stop here and run a command processor or not. If so, return True and set self.stop_reason; if not, return False. Determining factors can be whether a breakpoint was encountered, whether we are stepping, next'ing, finish'ing, and, if so, whether there is an ignore counter.
22,479
def add_user_to_allow(self, name, user): if not self.remove_user_from_acl(name, user): return False if name not in self._acl: return False self._acl[name][].append(user) return True
Add a user to the given acl allow block.
22,480
def stream(self, amt=2**16, decode_content=None): while not is_fp_closed(self._fp): data = self.read(amt=amt, decode_content=decode_content) if data: yield data
A generator wrapper for the read() method. A call will block until ``amt`` bytes have been read from the connection or until the connection is closed. :param amt: How much of the content to read. The generator will return up to much data per iteration, but may return less. This is particularly likely when using compressed data. However, the empty string will never be returned. :param decode_content: If True, will attempt to decode the body based on the 'content-encoding' header.
22,481
def setting(self, name_hyphen): if name_hyphen in self._instance_settings: value = self._instance_settings[name_hyphen][1] else: msg = "No setting named " % name_hyphen raise UserFeedback(msg) if hasattr(value, ) and value.startswith("$"): env_var = value.lstrip("$") if env_var in os.environ: return os.getenv(env_var) else: msg = " is not defined in your environment" % env_var raise UserFeedback(msg) elif hasattr(value, ) and value.startswith("\$"): return value.replace("\$", "$") else: return value
Retrieves the setting value whose name is indicated by name_hyphen. Values starting with $ are assumed to reference environment variables, and the value stored in environment variables is retrieved. It's an error if thes corresponding environment variable it not set.
22,482
def delete_ip4(self, id_ip): if not is_valid_int_param(id_ip): raise InvalidParameterError(u) url = + str(id_ip) + "/" code, xml = self.submit(None, , url) return self.response(code, xml)
Delete an IP4 :param id_ip: Ipv4 identifier. Integer value and greater than zero. :return: None :raise IpNotFoundError: IP is not registered. :raise DataBaseError: Networkapi failed to access the database.
22,483
def rel_curve_to(self, dx1, dy1, dx2, dy2, dx3, dy3): cairo.cairo_rel_curve_to(self._pointer, dx1, dy1, dx2, dy2, dx3, dy3) self._check_status()
Relative-coordinate version of :meth:`curve_to`. All offsets are relative to the current point. Adds a cubic Bézier spline to the path from the current point to a point offset from the current point by ``(dx3, dy3)``, using points offset by ``(dx1, dy1)`` and ``(dx2, dy2)`` as the control points. After this call the current point will be offset by ``(dx3, dy3)``. Given a current point of ``(x, y)``, ``context.rel_curve_to(dx1, dy1, dx2, dy2, dx3, dy3)`` is logically equivalent to ``context.curve_to(x+dx1, y+dy1, x+dx2, y+dy2, x+dx3, y+dy3)``. :param dx1: The X offset to the first control point. :param dy1: The Y offset to the first control point. :param dx2: The X offset to the second control point. :param dy2: The Y offset to the second control point. :param dx3: The X offset to the end of the curve. :param dy3: The Y offset to the end of the curve. :type dx1: float :type dy1: float :type dx2: float :type dy2: float :type dx3: float :type dy3: float :raises: :exc:`CairoError` if there is no current point. Doing so will cause leave the context in an error state.
22,484
def interpolate(self, year): df = self.pivot_table(index=IAMC_IDX, columns=[], values=, aggfunc=np.sum) if year in df.columns: df = df[np.isnan(df[year])] fill_values = df.apply(fill_series, raw=False, axis=1, year=year) fill_values = fill_values.dropna().reset_index() fill_values = fill_values.rename(columns={0: "value"}) fill_values[] = year self.data = self.data.append(fill_values, ignore_index=True)
Interpolate missing values in timeseries (linear interpolation) Parameters ---------- year: int year to be interpolated
22,485
def serialize(self): def _serialize(value): if hasattr(value, ): return value.serialize() elif hasattr(value, ): return value.to_dict() else: return value return list(map(_serialize, self.items))
Get the collection of items as a serialized object (ready to be json encoded). :rtype: dict or list
22,486
def add_note(self, body): from highton.models.note import Note created_id = self._post_request( endpoint=self.ENDPOINT + + str(self.id) + + Note.ENDPOINT, data=self.element_to_string( Note(body=body).encode() ) ).headers.get().replace(, ).split()[-1] return Note.get(created_id)
Create a Note to current object :param body: the body of the note :type body: str :return: newly created Note :rtype: Tag
22,487
def process(self): for filename in self.hairball_files(self.paths, self.extensions): if not self.options.quiet: print(filename) try: if self.cache: scratch = self.cache.load(filename) else: scratch = kurt.Project.load(filename) except Exception: traceback.print_exc() continue for plugin in self.plugins: plugin._process(scratch, filename=filename)
Run the analysis across all files found in the given paths. Each file is loaded once and all plugins are run against it before loading the next file.
22,488
def define_trajectory(self, trajectory_id, offset, n_pieces): self._send_packet(struct.pack(, self.COMMAND_DEFINE_TRAJECTORY, trajectory_id, self.TRAJECTORY_LOCATION_MEM, self.TRAJECTORY_TYPE_POLY4D, offset, n_pieces))
Define a trajectory that has previously been uploaded to memory. :param trajectory_id: The id of the trajectory :param offset: offset in uploaded memory :param n_pieces: Nr of pieces in the trajectory :return:
22,489
def format(self, pattern=): s standard format function and will receive the following keyword arguments as context: * *head* - Common leading part of the collection. * *tail* - Common trailing part of the collection. * *padding* - Padding value in ``%0d`` format. * *range* - Total range in the form ``start-end`` * *ranges* - Comma separated ranges of indexes. * *holes* - Comma separated ranges of missing indexes. headtailpadding%0{0}dpadding%d{holes}holes{ranges}{range}{ranges}rangerange{0}range{0}-{1}{ranges}{range}rangeranges, '.join(ranges) return pattern.format(**data)
Return string representation as specified by *pattern*. Pattern can be any format accepted by Python's standard format function and will receive the following keyword arguments as context: * *head* - Common leading part of the collection. * *tail* - Common trailing part of the collection. * *padding* - Padding value in ``%0d`` format. * *range* - Total range in the form ``start-end`` * *ranges* - Comma separated ranges of indexes. * *holes* - Comma separated ranges of missing indexes.
22,490
def basic_auth_handler(url, method, timeout, headers, data, username=None, password=None): def handle(): if username is not None and password is not None: auth_value = .format(username, password).encode() auth_token = base64.b64encode(auth_value) auth_header = b + auth_token headers.append([, auth_header]) default_handler(url, method, timeout, headers, data)() return handle
Handler that implements HTTP/HTTPS connections with Basic Auth. Sets auth headers using supplied 'username' and 'password', if set. Used by the push_to_gateway functions. Can be re-used by other handlers.
22,491
def frequency_cutoff_from_name(name, m1, m2, s1z, s2z): params = {"mass1":m1, "mass2":m2, "spin1z":s1z, "spin2z":s2z} return named_frequency_cutoffs[name](params)
Returns the result of evaluating the frequency cutoff function specified by 'name' on a template with given parameters. Parameters ---------- name : string Name of the cutoff function m1 : float or numpy.array First component mass in solar masses m2 : float or numpy.array Second component mass in solar masses s1z : float or numpy.array First component dimensionless spin S_1/m_1^2 projected onto L s2z : float or numpy.array Second component dimensionless spin S_2/m_2^2 projected onto L Returns ------- f : float or numpy.array Frequency in Hz
22,492
def commitreturn(self,qstring,vals=()): "commit and return result. This is intended for sql UPDATE ... RETURNING" with self.withcur() as cur: cur.execute(qstring,vals) return cur.fetchone()
commit and return result. This is intended for sql UPDATE ... RETURNING
22,493
def reserve_ipblock(self, ipblock): properties = { "name": ipblock.name } if ipblock.location: properties[] = ipblock.location if ipblock.size: properties[] = str(ipblock.size) raw = { "properties": properties, } response = self._perform_request( url=, method=, data=json.dumps(raw)) return response
Reserves an IP block within your account.
22,494
def from_json(cls, data): role = cls() role.role_id = data[] role.name = data[] role.color = data[] return role
Return object based on JSON / dict input Args: data (dict): Dictionary containing a serialized Role object Returns: :obj:`Role`: Role object representing the data
22,495
def delete_beacon(self, name): if name in self._get_beacons(include_opts=False): comment = \ .format(name) complete = False else: if name in self.opts[]: del self.opts[][name] comment = .format(name) else: comment = .format(name) complete = True evt = salt.utils.event.get_event(, opts=self.opts) evt.fire_event({: complete, : comment, : self.opts[]}, tag=) return True
Delete a beacon item
22,496
def str_rate(self): if not self._eta.started or self._eta.stalled or not self.rate: return unit_rate, unit = UnitByte(self._eta.rate_overall if self.done else self.rate).auto if unit_rate >= 100: formatter = elif unit_rate >= 10: formatter = else: formatter = return .format(locale.format(formatter, unit_rate, grouping=False), unit)
Returns the rate with formatting. If done, returns the overall rate instead.
22,497
def search_videos_by_tag(self, tag, category=None, period=, orderby=, page=1, count=20): url = params = { : self.client_id, : tag, : period, : orderby, : page, : count } if category: params[] = category r = requests.get(url, params=params) check_error(r) return r.json()
doc: http://open.youku.com/docs/doc?id=80
22,498
def alias_get(indices=None, aliases=None, hosts=None, profile=None): es = _get_instance(hosts, profile) try: return es.indices.get_alias(index=indices, name=aliases) except elasticsearch.exceptions.NotFoundError: return None except elasticsearch.TransportError as e: raise CommandExecutionError("Cannot get alias {0} in index {1}, server returned code {2} with message {3}".format(aliases, indices, e.status_code, e.error))
Check for the existence of an alias and if it exists, return it indices Single or multiple indices separated by comma, use _all to perform the operation on all indices. aliases Alias names separated by comma CLI example:: salt myminion elasticsearch.alias_get testindex
22,499
def mdf_path(self): try: return self._mdf_path except AttributeError: path = self.outdir.has_abiext("MDF.nc") if path: self._mdf_path = path return path
Absolute path of the MDF file. Empty string if file is not present.