File size: 2,262 Bytes
55a9e3f
 
 
 
 
 
 
 
 
541b5eb
55a9e3f
541b5eb
 
55a9e3f
 
 
 
 
7a4bdf2
 
 
 
 
 
 
 
 
 
55a9e3f
7a4bdf2
ab7f0bb
7a4bdf2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
08de00d
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
---
dataset_info:
  features:
  - name: transcript
    dtype: string
  - name: sentiment
    dtype: string
  splits:
  - name: test
    num_bytes: 182442
    num_examples: 700
  download_size: 98661
  dataset_size: 182442
configs:
- config_name: default
  data_files:
  - split: test
    path: data/test-*
license: mit
task_categories:
- text-generation
language:
- en
tags:
- finance
- financial sentiment
size_categories:
- n<1K
---

# Aiera Financial Sentiment Analysis Dataset

## Description

This dataset focuses on the sentiment analysis of earnings call transcript segments. It provides pre-segmented extracts from earnings calls, transcribed by Aiera, paired with sentiment labels. Each segment in the `transcript` column is annotated with a sentiment label (`sentiment`), which can be "positive", "negative", or "neutral". This dataset is intended for training and evaluating models on their ability to discern the underlying sentiment in financial communications.

## Dataset Structure

### Columns

- `transcript`: A segment of the earnings call transcript.
- `sentiment`: The sentiment label for the transcript segment, with possible values being "positive", "negative", or "neutral".

### Data Format

The dataset is structured in a tabular format, with each row representing a unique segment of an earnings call transcript alongside its corresponding sentiment label.

## Use Cases

This dataset is particularly suited for applications such as:
- Training machine learning models to perform sentiment analysis specifically in financial contexts.
- Developing algorithms to assist financial analysts and investors by providing quick sentiment assessments of earnings calls.
- Enhancing natural language processing systems used in finance for better understanding of market mood and company performance.

## Accessing the Dataset

To access this dataset, you can load it using the HuggingFace Datasets library with the following Python code:

```python
from datasets import load_dataset

dataset = load_dataset("Aiera/aiera-transcript-sentiment")
```

A guide for evaluating using EleutherAI's [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness) is available on [github](https://github.com/aiera-inc/aiera-benchmark-tasks).