Datasets:

Modalities:
Image
Formats:
parquet
Size:
< 1K
ArXiv:
Libraries:
Datasets
pandas
License:
yhyhy3 commited on
Commit
81d1ef1
·
verified ·
1 Parent(s): 37947fa

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +69 -27
README.md CHANGED
@@ -1,29 +1,71 @@
1
  ---
2
- configs:
3
- - config_name: default
4
- data_files:
5
- - split: train
6
- path: data/train-*
7
- - split: validation
8
- path: data/validation-*
9
- dataset_info:
10
- features:
11
- - name: image
12
- dtype: image
13
- - name: label
14
- dtype:
15
- class_label:
16
- names:
17
- '0': begnin
18
- '1': malignant
19
- splits:
20
- - name: train
21
- num_bytes: 3675514.0
22
- num_examples: 160
23
- - name: validation
24
- num_bytes: 452027.0086991301
25
- num_examples: 40
26
- download_size: 4290812
27
- dataset_size: 4127541.0086991303
28
  ---
29
- license: mit
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ license: mit
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
4
+ # Lymphnode Cancer Biopsy Dataset (100k)
5
+
6
+ ## Overview
7
+ This dataset contains biopsy images of lymphnode cancer tissues, divided into two classes: benign and malignant. Each sample is stored in a separate image file, organized into respective class folders. The dataset is structured to be compatible with Lumina AI's Random Contrast Learning (RCL) algorithm via the PrismRCL application or API.
8
+
9
+ ## Dataset Structure
10
+ The dataset is organized into the following structure:
11
+
12
+ ```
13
+ {dataset_folder_name}/
14
+ train_data/
15
+ benign/
16
+ sample_0.png
17
+ sample_1.png
18
+ ...
19
+ malignant/
20
+ sample_0.png
21
+ sample_1.png
22
+ ...
23
+ test_data/
24
+ benign/
25
+ sample_0.png
26
+ sample_1.png
27
+ ...
28
+ malignant/
29
+ sample_0.png
30
+ sample_1.png
31
+ ...
32
+ ```
33
+
34
+ **Note**: All image file names must be unique across all class folders.
35
+
36
+ ## Features
37
+ - **Image Data**: Each file contains a biopsy image of lymphnode cancer tissue.
38
+ - **Classes**: There are two classes, each represented by a separate folder based on the type of tissue (benign or malignant).
39
+
40
+ ## Usage (not pre-split)
41
+ Here is an example of how to load the dataset using PrismRCL:
42
+ ```bash
43
+ C:\PrismRCL\PrismRCL.exe chisquared rclticks=10 boxdown=0 data=C:\path\to\Lymphnode_Cancer_Biopsy_100k testsize=0.1 savemodel=C:\path\to\models\mymodel.classify log=C:\path\to\log_files stopwhendone
44
+ ```
45
+
46
+ Explanation of Command:
47
+ - `C:\PrismRCL\PrismRCL.exe`: Path to the PrismRCL executable for classification
48
+ - `chisquared`: Specifies Chi-squared as the training evaluation method
49
+ - `rclticks=10`: Sets the number of RCL iterations during training to 10
50
+ - `boxdown=0`: Configuration parameter for training behavior
51
+ - `data=C:\path\to\Lymphnode_Cancer_Biopsy_100k`: Path to the complete dataset for Lymphnode Cancer Biopsy classification
52
+ - `testsize=0.1`: Specifies that 10% of the data should be used for testing
53
+ - `savemodel=C:\path\to\models\mymodel.classify`: Path to save the resulting trained model
54
+ - `log=C:\path\to\log_files`: Directory path for storing log files of the training process
55
+ - `stopwhendone`: Instructs PrismRCL to end the session once training is complete
56
+
57
+ ## License
58
+ This dataset is licensed under the Creative Commons Attribution 4.0 International License. See the LICENSE file for more details.
59
+
60
+ ## Original Source
61
+ This dataset was originally sourced from the [GitHub Repository](https://github.com/basveeling/pcam). Please cite the original source if you use this dataset in your research or applications.
62
+
63
+ ## Additional Information
64
+ The data values have been prepared to ensure compatibility with PrismRCL. No normalization is required as of version 2.4.0.
65
+
66
+ ## Citations
67
+ If you use this dataset in your research, please cite the following papers:
68
+
69
+ 1. Veeling, B. S., Linmans, J., Winkens, J., Cohen, T., & Welling, M. (2018). Rotation Equivariant CNNs for Digital Pathology. arXiv preprint arXiv:1806.03962.
70
+
71
+ 2. Ehteshami Bejnordi, B., Veta, M., Johannes van Diest, P., van Ginneken, B., Karssemeijer, N., Litjens, G., ... & the CAMELYON16 Consortium. (2017). Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer. JAMA, 318(22), 2199–2210. https://doi.org/10.1001/jama.2017.14585