structure tptp :> tptp = struct open HolKernel Abbrev boolLib aiLib val ERR = mk_HOL_ERR "tptp" (* ------------------------------------------------------------------------- Value statements ------------------------------------------------------------------------- *) (* variables *) val lmc = list_mk_comb; val alpha3 = rpt_fun_type 3 alpha; val alpha4 = rpt_fun_type 4 alpha; val vx = mk_var ("Vx",alpha); val vy = mk_var ("Vy",alpha); val vz = mk_var ("Vz",alpha); (* constants *) val zero = mk_var ("z",alpha); val suc = mk_var ("s", rpt_fun_type 2 alpha); fun mk_suc x = mk_comb (suc,x); (* First-order axioms *) (* addition *) val addi = mk_var ("addi",alpha3); fun mk_addi (a,b) = lmc (addi,[a,b]); val ax0 = mk_eq (mk_addi (vx,zero), vx); val ax1 = mk_eq (mk_addi (vx, mk_suc vy), mk_suc (mk_addi (vx,vy))); (* substraction *) val diff = mk_var ("diff",alpha3); fun mk_diff (a,b) = lmc (diff,[a,b]); val ax2 = mk_eq (mk_diff (vx, zero), vx); val ax3 = mk_eq (mk_diff (zero, vx), zero); val ax4 = mk_eq (mk_diff (mk_suc vx, mk_suc vy), mk_diff (vx,vy)); (* multiplication *) val mult = mk_var ("mult",alpha3); fun mk_mult (a,b) = lmc (mult,[a,b]); val ax5 = mk_eq (mk_mult (vx, zero), zero); val ax6 = mk_eq (mk_mult (vx, mk_suc vy), mk_addi (vx, mk_mult (vx,vy))); (* division *) val divi = mk_var ("divi",alpha3); fun mk_divi (a,b) = lmc (divi,[a,b]); val ax7 = mk_eq (mk_divi (vx, zero), zero); val sxmy0 = mk_eq (mk_diff (mk_suc vx,vy),zero); (* x < y *) val ymx0 = mk_eq (mk_diff (vy,vx),zero); (* x >= y *) val eysz = mk_eq (vy,mk_suc vz); (* y = suc z *) val ax8 = mk_imp (sxmy0, mk_imp (eysz, mk_eq (mk_divi (vx,vy),zero))); val ax9 = mk_imp (ymx0,mk_imp (eysz, mk_eq (mk_divi (vx,vy), mk_suc (mk_divi (mk_diff (vx,vy),vy))))); (* x div 0 = 0 x < y & y = suc z ==> x div y = 0 x >= y & y = suc z ==> x div y = suc ((x - y) div y) *) (* modulo *) val modu = mk_var ("modu",alpha3); fun mk_modu (a,b) = lmc (modu,[a,b]); val ax10 = mk_eq (mk_modu (vx, zero), zero); val ax11 = mk_imp (sxmy0, mk_imp (eysz, mk_eq (mk_modu (vx,vy),vx))); val ax12 = mk_imp (ymx0,mk_imp (eysz, mk_eq (mk_modu (vx,vy), mk_modu (mk_diff (vx,vy),vy)) )); (* x mod 0 = 0 x < y & y = suc z ==> x mod y = x x >= y & y = suc z ==> x mod y = (x - y) mod y e(a+b,0) = e(a,0) + e(b,0) *) (* ------------------------------------------------------------------------- Program statements and evaluation ------------------------------------------------------------------------- *) val va = mk_var ("Va",alpha); val vb = mk_var ("Vb",alpha); val vc = mk_var ("Vc",alpha); (* Evaluation (higher-order) *) val eval = mk_var ("e", alpha3); fun mk_eval (a,b) = lmc (eval,[a,b]); val zerop = mk_var ("zerop",alpha); val onep = mk_var ("onep",alpha); val twop = mk_var ("twop",alpha); val addip = mk_var ("addip", alpha3); val diffp = mk_var ("diffp", alpha3); val multp = mk_var ("multp", alpha3); val divip = mk_var ("divip", alpha3); val modup = mk_var ("modup", alpha3); val varp = mk_var ("varp", alpha); val ax14 = mk_eq (lmc (eval, [zerop,vx]), zero); val ax15 = mk_eq (lmc (eval, [onep,vx]), mk_comb (suc,zero)); val ax16 = mk_eq (lmc (eval, [twop,vx]), mk_comb (suc,mk_comb (suc,zero))); fun transfer (operp,oper) = mk_eq ( mk_eval (lmc (operp,[va,vb]),vx), lmc (oper, [mk_eval (va,vx),mk_eval(vb,vx)]) ); val ax17 = transfer (addip,addi); val ax18 = transfer (diffp,diff); val ax19 = transfer (multp,mult); val ax20 = transfer (divip,divi); val ax21 = transfer (modup,modu); val ax22 = mk_eq (lmc (eval, [varp,vx]), vx); val condp = mk_var ("condp",alpha4); val cond = mk_var ("cond",rpt_fun_type 5 alpha); val ax23 = mk_eq ( mk_eval (lmc (condp, [va,vb,vc]),vx), lmc (cond, [mk_eval (va,vx),vb,vc,vx])); val ax24 = mk_eq (lmc (cond, [zero,vb,vc,vx]),mk_eval (vb,vx)); val ax25 = mk_eq (lmc (cond, [mk_suc vy,vb,vc,vx]),mk_eval (vc,vx)); (* e (condp (a,b,c),x) = cond (e(a,x),b,c,x) cond (0,b,c,x) = e(b,x) cond (s n,b,c,x) = e(c,x) *) val funpowp = mk_var ("funpowp",alpha4); val funpow = mk_var ("funpow",alpha4); val ax26 = mk_eq ( mk_eval (lmc (funpowp, [va,vb,vc]),vx), lmc (funpow, [va,mk_eval (vb,vx),mk_eval (vc,vx)])); val ax27 = mk_eq (lmc (funpow, [va,zero,vx]),vx); val ax28 = mk_eq (lmc (funpow, [va,mk_suc vy,vx]), lmc (funpow, [va,vy,mk_eval (va,vx)])); val axl_prev = [ax0,ax1,ax2,ax3,ax4,ax5,ax6,ax7,ax8,ax9,ax10,ax11,ax12] @ [ax14,ax15,ax16,ax17,ax18,ax19,ax20,ax21,ax22,ax23,ax24,ax25, ax26,ax27,ax28] val varl = [vx,vy,vz,va,vb,vc] fun smart_forall tm = let val vl = filter (fn x => tmem x varl) (free_vars_lr tm) in list_mk_forall (vl,tm) end val axl = map smart_forall axl_prev (* e (funpowp (a,b,c),x) = funpowp (a,e(b,x),e(c,x)) funpow (a,0,x) = x funpow (a,suc y,x) = funpow_aux (a,y,e(a,x)) *) (* ------------------------------------------------------------------------- Export conjecture from list of numbers ------------------------------------------------------------------------- *) (* ?a. e(a,0) = 0 /\ e(a,1) = 2 ... *) fun mk_sucn n = if n <= 0 then zero else mk_suc (mk_sucn (n-1)) fun mk_cj seq = let val seqi = number_fst 0 seq fun f(x,y) = mk_eq (mk_eval (va,mk_sucn x), mk_sucn y) in mk_exists (va, list_mk_conj (map f seqi)) end end (* load "tptp"; open tptp; load "hhExportFof"; open hhExportFof; val seq = List.tabulate (16,fn x => x + 1); p_flag := false; type_flag := false; name_flag := false; fof_export_goal "tptp/atp_in" (axl,mk_cj seq); *)