Inductive Program Synthesis for ARC

Aditya Challa

28th September 2022

Overview

- Decoupling elements of ARC task
 - What is the ARC challenge?
 - Issues with ARC challenge?
 - Decoupling ARC tasks
- 2 Can ILP help? Böhm Jacopini theorem
- Introducing IPARC Challenge
- 4 Demo of the GitHub repository

ARC Task

An example task from the ARC (taken from https://samacquaviva.com/LARC/explore/). The task to be solved is of the form "if A1:B1 and A2:B2 and A3:B3 then C: ?".

• The operation is to take the intersection of left and right region.

Issues with ARC

- Nothing is known about the data.
- No background knowledge is provided.
- What would such a function look like.
- In short, ARC is too open-ended.

We premise that ARC tasks consists of three parts-

- Color Change
- Grid Resize
- Structure

• Color Change

- ARC tasks are Color-Permulation-Equivariant
- That is, if *f* is an answer and *P* denotes the permutation of colors, then,

$$f(P(.)) = P(f(.))$$

5/9

- Resizing Grids
 - Standard way to deal with this is to assume infinite grids.
 - However, we still need to know which part to focus on. So, we need a Crop function!

Structural Changes

- Trickiest of them all and least understood aspect of ARC.
- We use ideas from Mathematical Morphology (MM) to understand this.

• Mathematical Morphology Operators - Dilation.

- The dilation operator takes a pixel and transforms it to a set, coincidentally called structuring element.
- If there are multiple pixels, take the union.

• Mathematical Morphology Operators - Erosion.

• Informally, it selects only those pixels at which, structuring element is contained within the set.

• Mathematical Morphology Operators - Hit-Or-Miss.

- Selects those pixels which fit a pattern. Essentially an intersection of erosions for foreground and background.
- As you can intuitively imagine, these three would form the basis of identifying the structure of the ARC task.

- Putting the basic elements together
 - Let $I_{m,n}^k$ denote an ARC image. m, n denotes the size, k denotes the number of colors.
 - Each color can also be seen as an binary image!

$$I_{m,n}^k = \langle I_{m,n}^{(1)}, I_{m,n}^{(2)}, \cdots, I_{m,n}^{(k)} \rangle$$

where $I_{m,n}^{(1)}$ is binary image corresponding to color k

• Let us call, $\mathcal{L}_{m,n}^k = \{I_{m,n}^k\}$

- Putting the basic elements together
 - Consider only color and structure for the time-being.

- The structure part operates on the individual binary images.
- The color change resolves the color operations by mapping $\{0,1\}^k$ to one-hot vectors.
- Resizing operators, Pad and Crop allows us to increase the size of the image and focus on particular region.

- Adding memory to the program.
 - The memory can be modelled using the Endomorphism functions

ullet Let the set of functions which are a composition of these elements be Σ .

• Are these sufficient??

Proposition

If $I_{m_1,n_1}^k, \tilde{I}_{m_2,n_2}^k$ are from $\bigcup \mathcal{L}_{m,n}^k$ and I_{m_1,n_1}^k is non-empty, then there exists a sequence of functions $\langle f_1, f_2, \ldots, f_N \rangle$ s.t. each $f_i \in \Sigma$ and $\tilde{I}_{m_2,n_2}^k = f_N(f_{N-1} \cdots (f_1(I_{m_1,n_1}^k)) \cdots)$.

• A small catch!

Proposition

Given the set of functions Σ_1 there exists an ARC-like task T that contains elements $(I_1, \tilde{I_1})$, $(I_2, \tilde{I_2})$, s.t. $\tilde{I_1} =_{\Sigma_1} f(I_1)$, and $\tilde{I_2} =_{\Sigma_1} g(I_2)$ but there is no h s.t. $\tilde{I_1} =_{\Sigma_1} h(I_1)$ and $\tilde{I_2} =_{\Sigma_1} h(I_2)$.

There seems to be LOGIC missing the framework!

ILP and Böhm Jacopini theorem

ILP formulation:

Given: The set of basic functions B as background knowl-

edge, and examples E of input-output images,

Find: a program H s.t. $B \land H \models E$.

ILP and Böhm Jacopini theorem

ILP formulation:

Structured Program Theorem The following three control structures are sufficient to construct any computable function:

• Does there exist an ILP engine capable of this?

 \bullet IPARC - Simple dataset to test an ILP engine capable of Program Synthesis

Three Categories:

- Category A requires finding a sequence which explains the examples in E.
- Category B requires finding incorporating the Sequence/Selection/Conditional program synthesis into the ILP engine.
- Category C asks Would program synthesis be any simpler if snapshots are given?
- We use the framework we described above to construct these programs.

• Searching for Structuring Elements

• Specific Structuring elements (SE) to search.

- Category A (Simple)
 - Aim is to find a sequence of operators which explain the input-output pairs.

```
Dilation SE* \to Dilation SE* \to Dilation SE* \to Dilation SE* \to Erosion SE* \to Erosion SE* \to Erosion SE*
```

Category A (Simple)

- Category A (Hard)
 - Recall that each color can be operated on separately and are combined using a color-change rule.
 - The aim is to find a sequence for each different color Dilation SE* \rightarrow Dilation SE* \rightarrow Dilation SE* \rightarrow Dilation SE* \rightarrow Erosion SE* \rightarrow Erosion SE* \rightarrow Erosion SE*
 - And identify a color change rule.
 - To simplify we stick to 3 colors.

Category A (Hard)

- Category B Sequence
 - Invent a sequence predicate which are common across tasks.
 - Example, Two tasks Dilation SE5 \rightarrow Dilation SE7 \rightarrow Erosion SE5 \rightarrow Erosion SE7 \rightarrow Dilation SE6 \rightarrow Dilation SE7 \rightarrow Erosion SE6 \rightarrow Erosion SE7 and Dilation SE7 \rightarrow Dilation SE7 \rightarrow Erosion SE7 \rightarrow Erosion SE7 \rightarrow Dilation SE6 \rightarrow Dilation SE7 \rightarrow Erosion SE6 \rightarrow Erosion SE7 Should identify Dilation SE6 \rightarrow Dilation SE7 \rightarrow Erosion SE6 \rightarrow Erosion SE7 as common predicate.

Category B (Sequence)

- Category B Selection
 - Recall Hit-or-Miss selects pixels corresponding to a pattern. This is used to simulate the IF condition.
 - So, Given a binary image these tasks require the ILP engine to -
 - (a) Select the pixels which match a pattern and assign these a new color.
 - (b) Operate on the two sets of pixels with two distinct sequences.
 - (c) Use a color-change to resolve conflicts

Category B (Selection)

- Category B Iteration
 - Invent a Iterate_k predicate which are common across tasks.
 - Two subtasks with common iterate predicate should add the iterate to the background knowledge

Category B (Iteration)

- Category B Hard
 - The hard task combines all three Sequence, Selection and Iteration
 - Given a binary image, these tasks ILP engine to -
 - (a) Select the pixels which match a pattern (using Hit-or-Miss) and assign these a new color.
 - (b) Operate on one set of pixels with a sequence.
 - (c) Operate on one set of pixels using an iteration.
 - (d) Use a color-change to resolve conflicts.

• Category B (Hard)

- Category C
 - Would intermediate snapshots help solve the task?

- Background Knowledge
 - ops Dilation, Erosion, HitOrMiss, ChangeColor
 - se SE1-SE8
 - ChangeColor use an mapping in the form of array, $C: \{0,1\}^k \to \{0,1,\cdots,k\}$

$$\begin{bmatrix}
0 & 0 & 0 \\
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 2
\end{bmatrix}$$
(1)

- Understanding color (band)
 - Dilation, Erosion can operate on an individual color (a.k.a band).
 - HitOrMiss creates a new color (band) for the selected pixels.
 - ChangeColor works across colors (bands).

- Data
 - Use .json files to store the data
 - Solutions are provided in both .txt format and .json format.

8/9

- Testing a program
 - A program can be tested using TestSequence.py
 - each op is written as <band>-<op>-<se>-<iterate>
 - <band> specifies the band on which the operator is applied. Ignored not work for HitorMiss and ChangeColor.
 - <op> specifies the operation.
 - <se> denotes a structuring element SE1-SE8 or array for ChangeColor
 - <iterate> defines the number of times this operator is repeated.

• Testing a program (Example)
python TestSequence.py ./Dataset/CatB_Hard/Task000.json
1-HitOrMiss-SE8-1 1-Dilation-SE6-2 1-Erosion-SE6-2
2-Dilation-SE8-1 2-Dilation-SE7-1 2-Dilation-SE5-1
2-Dilation-SE7-1 2-Erosion-SE7-1 2-Erosion-SE5-1
2-Erosion-SE7-1
1-ChangeColor-[[0,0,0],[0,1,2],[1,0,1],[1,1,2]]-1

- Evaluation:
 - How many of the examples does the program explain?
 - How long is the program?
 - Is there any additional information used?

DEMO of the GitHub Repo.