axolotl2 / tests /e2e /test_dpo.py
Alignment-Lab-AI's picture
Upload folder using huggingface_hub
1bad0bb verified
raw
history blame
7.35 kB
"""
E2E tests for lora llama
"""
import logging
import os
import unittest
from pathlib import Path
import pytest
from axolotl.cli import load_rl_datasets
from axolotl.common.cli import TrainerCliArgs
from axolotl.train import train
from axolotl.utils.config import normalize_config
from axolotl.utils.dict import DictDefault
from .utils import with_temp_dir
LOG = logging.getLogger("axolotl.tests.e2e")
os.environ["WANDB_DISABLED"] = "true"
@pytest.mark.skip(reason="doesn't seem to work on modal")
class TestDPOLlamaLora(unittest.TestCase):
"""
Test case for DPO Llama models using LoRA
"""
@with_temp_dir
def test_dpo_lora(self, temp_dir):
# pylint: disable=duplicate-code
cfg = DictDefault(
{
"base_model": "JackFram/llama-68m",
"tokenizer_type": "LlamaTokenizer",
"sequence_len": 1024,
"load_in_8bit": True,
"adapter": "lora",
"lora_r": 64,
"lora_alpha": 32,
"lora_dropout": 0.1,
"lora_target_linear": True,
"special_tokens": {},
"rl": "dpo",
"datasets": [
{
"path": "Intel/orca_dpo_pairs",
"type": "chatml.intel",
"split": "train",
},
],
"num_epochs": 1,
"micro_batch_size": 4,
"gradient_accumulation_steps": 1,
"output_dir": temp_dir,
"learning_rate": 0.00001,
"optimizer": "paged_adamw_8bit",
"lr_scheduler": "cosine",
"max_steps": 20,
"save_steps": 10,
"warmup_steps": 5,
"gradient_checkpointing": True,
"gradient_checkpointing_kwargs": {"use_reentrant": True},
}
)
normalize_config(cfg)
cli_args = TrainerCliArgs()
dataset_meta = load_rl_datasets(cfg=cfg, cli_args=cli_args)
train(cfg=cfg, cli_args=cli_args, dataset_meta=dataset_meta)
assert (Path(temp_dir) / "checkpoint-20/adapter_model.safetensors").exists()
@with_temp_dir
def test_kto_pair_lora(self, temp_dir):
# pylint: disable=duplicate-code
cfg = DictDefault(
{
"base_model": "JackFram/llama-68m",
"tokenizer_type": "LlamaTokenizer",
"sequence_len": 1024,
"load_in_8bit": True,
"adapter": "lora",
"lora_r": 64,
"lora_alpha": 32,
"lora_dropout": 0.1,
"lora_target_linear": True,
"special_tokens": {},
"rl": "kto_pair",
"datasets": [
{
"path": "Intel/orca_dpo_pairs",
"type": "chatml.intel",
"split": "train",
},
],
"num_epochs": 1,
"micro_batch_size": 4,
"gradient_accumulation_steps": 1,
"output_dir": temp_dir,
"learning_rate": 0.00001,
"optimizer": "paged_adamw_8bit",
"lr_scheduler": "cosine",
"max_steps": 20,
"save_steps": 10,
"warmup_steps": 5,
"gradient_checkpointing": True,
"gradient_checkpointing_kwargs": {"use_reentrant": True},
}
)
normalize_config(cfg)
cli_args = TrainerCliArgs()
dataset_meta = load_rl_datasets(cfg=cfg, cli_args=cli_args)
train(cfg=cfg, cli_args=cli_args, dataset_meta=dataset_meta)
assert (Path(temp_dir) / "checkpoint-20/adapter_model.safetensors").exists()
@with_temp_dir
def test_ipo_lora(self, temp_dir):
# pylint: disable=duplicate-code
cfg = DictDefault(
{
"base_model": "JackFram/llama-68m",
"tokenizer_type": "LlamaTokenizer",
"sequence_len": 1024,
"load_in_8bit": True,
"adapter": "lora",
"lora_r": 64,
"lora_alpha": 32,
"lora_dropout": 0.1,
"lora_target_linear": True,
"special_tokens": {},
"rl": "ipo",
"datasets": [
{
"path": "Intel/orca_dpo_pairs",
"type": "chatml.intel",
"split": "train",
},
],
"num_epochs": 1,
"micro_batch_size": 4,
"gradient_accumulation_steps": 1,
"output_dir": temp_dir,
"learning_rate": 0.00001,
"optimizer": "paged_adamw_8bit",
"lr_scheduler": "cosine",
"max_steps": 20,
"save_steps": 10,
"warmup_steps": 5,
"gradient_checkpointing": True,
"gradient_checkpointing_kwargs": {"use_reentrant": True},
}
)
normalize_config(cfg)
cli_args = TrainerCliArgs()
dataset_meta = load_rl_datasets(cfg=cfg, cli_args=cli_args)
train(cfg=cfg, cli_args=cli_args, dataset_meta=dataset_meta)
assert (Path(temp_dir) / "checkpoint-20/adapter_model.safetensors").exists()
@with_temp_dir
def test_orpo_lora(self, temp_dir):
# pylint: disable=duplicate-code
cfg = DictDefault(
{
"base_model": "JackFram/llama-68m",
"tokenizer_type": "LlamaTokenizer",
"sequence_len": 1024,
"load_in_8bit": True,
"adapter": "lora",
"lora_r": 64,
"lora_alpha": 32,
"lora_dropout": 0.1,
"lora_target_linear": True,
"special_tokens": {},
"rl": "orpo",
"orpo_alpha": 0.1,
"remove_unused_columns": False,
"chat_template": "chatml",
"datasets": [
{
"path": "argilla/ultrafeedback-binarized-preferences-cleaned",
"type": "chat_template.argilla",
"split": "train",
},
],
"num_epochs": 1,
"micro_batch_size": 4,
"gradient_accumulation_steps": 1,
"output_dir": temp_dir,
"learning_rate": 0.00001,
"optimizer": "paged_adamw_8bit",
"lr_scheduler": "cosine",
"max_steps": 20,
"save_steps": 10,
"warmup_steps": 5,
"gradient_checkpointing": True,
"gradient_checkpointing_kwargs": {"use_reentrant": True},
}
)
normalize_config(cfg)
cli_args = TrainerCliArgs()
dataset_meta = load_rl_datasets(cfg=cfg, cli_args=cli_args)
train(cfg=cfg, cli_args=cli_args, dataset_meta=dataset_meta)
assert (Path(temp_dir) / "checkpoint-20/adapter_model.safetensors").exists()