File size: 18,580 Bytes
dc61d35 2b11880 dc61d35 2b11880 dc61d35 2b11880 dc61d35 2b11880 dc61d35 2b11880 dc61d35 2b11880 dc61d35 2b11880 dc61d35 2b11880 dc61d35 2b11880 dc61d35 2b11880 dc61d35 2b11880 dc61d35 2b11880 dc61d35 2b11880 dc61d35 2b11880 dc61d35 2b11880 dc61d35 2b11880 dc61d35 2b11880 dc61d35 2b11880 dc61d35 2b11880 dc61d35 2b11880 dc61d35 2b11880 dc61d35 2b11880 dc61d35 2b11880 dc61d35 2b11880 dc61d35 2b11880 dc61d35 2b11880 dc61d35 2b11880 dc61d35 2b11880 dc61d35 2b11880 dc61d35 2b11880 dc61d35 2b11880 dc61d35 2b11880 dc61d35 2b11880 dc61d35 2b11880 dc61d35 2b11880 dc61d35 2b11880 dc61d35 2b11880 dc61d35 2b11880 dc61d35 2b11880 dc61d35 2b11880 dc61d35 2b11880 dc61d35 2b11880 dc61d35 2b11880 dc61d35 2b11880 dc61d35 2b11880 dc61d35 2b11880 dc61d35 2b11880 dc61d35 2b11880 dc61d35 2b11880 dc61d35 2b11880 dc61d35 2b11880 dc61d35 2b11880 dc61d35 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 |
import os
import json
import shutil
import argparse
import logging
import multiprocessing as mp
from concurrent.futures import ProcessPoolExecutor, as_completed
import torch
import psutil
import numpy as np
from tqdm import tqdm
from magic_pdf.pipe.UNIPipe import UNIPipe
from magic_pdf.libs.commons import read_file
from magic_pdf.libs.config_reader import get_device
from magic_pdf.tools.common import do_parse
from magic_pdf.libs.pdf_image_tools import cut_image
from magic_pdf.rw.DiskReaderWriter import DiskReaderWriter
from magic_pdf.filter.pdf_meta_scan import pdf_meta_scan
from magic_pdf.filter.pdf_classify_by_type import classify
import fitz # PyMuPDF
import time
import signal
import traceback
# Set up logging
logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
# Minimum batch size
MIN_BATCH_SIZE = 1
def parse_arguments():
parser = argparse.ArgumentParser(description="Process multiple PDFs using Magic PDF")
parser.add_argument("--input", default="input", help="Input folder containing PDF files")
parser.add_argument("--output", default="output", help="Output folder for processed files")
parser.add_argument("--config", default="magic-pdf.template.json", help="Path to configuration file")
parser.add_argument("--timeout", type=int, default=240, help="Timeout for processing each PDF (in seconds)")
parser.add_argument("--max-workers", type=int, default=None, help="Maximum number of worker processes")
parser.add_argument("--use-bf16", action="store_true", help="Use bfloat16 precision for model inference")
parser.add_argument("--initial-batch-size", type=int, default=1, help="Initial batch size for processing")
return parser.parse_args()
def load_config(config_path):
with open(config_path, 'r') as f:
return json.load(f)
def get_available_memory(gpu_id):
return torch.cuda.get_device_properties(gpu_id).total_memory - torch.cuda.memory_allocated(gpu_id)
def extract_images(pdf_path, output_folder):
doc = fitz.open(pdf_path)
pdf_name = os.path.splitext(os.path.basename(pdf_path))[0]
images_folder = os.path.join(output_folder, 'images')
os.makedirs(images_folder, exist_ok=True)
for page_num, page in enumerate(doc):
for img_index, img in enumerate(page.get_images(full=True)):
xref = img[0]
base_image = doc.extract_image(xref)
image_bytes = base_image["image"]
image_ext = base_image["ext"]
image_filename = f'{pdf_name}_{page_num + 1:03d}_{img_index + 1:03d}.{image_ext}'
image_path = os.path.join(images_folder, image_filename)
with open(image_path, "wb") as image_file:
image_file.write(image_bytes)
doc.close()
class MagicModel:
def __init__(self, config):
self.config = config
def process_pdf(self, pdf_data, parse_type, layout_info, log_file_path):
processed_pages = []
with open(log_file_path, 'a') as log_file:
log_file.write(f"Entering process_pdf\n")
log_file.write(f" parse_type: {parse_type}, (expected: str)\n")
log_file.write(
f" layout_info (length: {len(layout_info)}), (expected: list of dicts): {layout_info}\n")
for page_index, page_info in enumerate(layout_info):
try:
with open(log_file_path, 'a') as log_file:
log_file.write(f"Processing page {page_index}\n")
log_file.write(f" Page info (expected: dict): {page_info}\n")
processed_page = self.process_page(page_info, parse_type)
processed_pages.append(processed_page)
except Exception as e:
with open(log_file_path, 'a') as log_file:
log_file.write(f"Error processing page {page_index} in process_pdf: {str(e)}\n")
log_file.write(f"Page info (expected: dict): {page_info}\n")
with open(log_file_path, 'a') as log_file:
log_file.write(f"Exiting process_pdf\n")
return {
"processed_pages": processed_pages,
"parse_type": parse_type,
}
def process_page(self, page_info, parse_type):
with open(log_file_path, 'a') as log_file:
log_file.write(f"Entering process_page\n")
log_file.write(f" page_info (expected: dict): {page_info}\n")
log_file.write(f" parse_type (expected: str): {parse_type}\n")
result = {
"page_no": page_info.get("page_info", {}).get("page_no", "unknown"),
"content": "Processed page content",
"parse_type": parse_type
}
with open(log_file_path, 'a') as log_file:
log_file.write(f"Exiting process_page\n")
return result
def process_single_pdf(input_file, output_folder, gpu_id, config, timeout, use_bf16, model, log_file_path):
start_time = time.time()
pdf_name = os.path.splitext(os.path.basename(input_file))[0]
output_subfolder = os.path.join(output_folder, pdf_name, 'auto')
os.makedirs(output_subfolder, exist_ok=True)
def timeout_handler(signum, frame):
raise TimeoutError("PDF processing timed out")
try:
signal.signal(signal.SIGALRM, timeout_handler)
signal.alarm(timeout)
if gpu_id >= 0:
torch.cuda.set_device(gpu_id)
if use_bf16 and torch.cuda.is_bf16_supported():
torch.set_default_dtype(torch.bfloat16)
else:
torch.set_default_dtype(torch.float32)
torch.set_default_device(f'cuda:{gpu_id}')
else:
if use_bf16:
torch.set_default_dtype(torch.bfloat16)
else:
torch.set_default_dtype(torch.float32)
torch.set_default_device('cpu')
pdf_data = read_file(input_file, 'rb')
# Perform PDF metadata scan
metadata = pdf_meta_scan(pdf_data)
with open(log_file_path, 'a') as log_file:
log_file.write(f"Processing PDF: {input_file}\n")
log_file.write(f"Metadata (expected: dict): {json.dumps(metadata, indent=2)}\n")
# Check if metadata indicates the PDF should be dropped
if metadata.get("_need_drop", False):
with open(log_file_path, 'a') as log_file:
log_file.write(
f"Dropping PDF {input_file}: {metadata.get('_drop_reason', 'Unknown reason')}\n")
return input_file, "Dropped", None
# Check if all required fields are present in metadata
required_fields = ['total_page', 'page_width_pts', 'page_height_pts', 'image_info_per_page',
'text_len_per_page', 'imgs_per_page', 'text_layout_per_page', 'invalid_chars']
for field in required_fields:
if field not in metadata:
raise ValueError(f"Required field '{field}' not found in metadata for {input_file}")
# Extract required fields for classify function
total_page = metadata['total_page']
page_width = metadata['page_width_pts']
page_height = metadata['page_height_pts']
img_sz_list = metadata['image_info_per_page']
text_len_list = metadata['text_len_per_page']
img_num_list = metadata['imgs_per_page']
text_layout_list = metadata['text_layout_per_page']
invalid_chars = metadata['invalid_chars']
with open(log_file_path, 'a') as log_file:
log_file.write(f"Classify parameters:\n")
log_file.write(f" total_page (expected: int): {total_page}\n")
log_file.write(f" page_width (expected: int): {page_width}\n")
log_file.write(f" page_height (expected: int): {page_height}\n")
log_file.write(f" img_sz_list (expected: list of lists): {img_sz_list[:5]}...\n")
log_file.write(f" text_len_list (expected: list of ints): {text_len_list[:5]}...\n")
log_file.write(f" img_num_list (expected: list of ints): {img_num_list[:5]}...\n")
log_file.write(
f" text_layout_list (expected: list of strs): {text_layout_list[:5]}...\n")
log_file.write(f" invalid_chars (expected: bool): {invalid_chars}\n")
# Classify PDF
is_text_pdf, classification_results = classify(
total_page, page_width, page_height, img_sz_list[:total_page],
text_len_list[:total_page], img_num_list[:total_page],
text_layout_list[:len(text_layout_list)], invalid_chars
)
with open(log_file_path, 'a') as log_file:
log_file.write(f"Classification Results:\n")
log_file.write(f" is_text_pdf (expected: bool): {is_text_pdf}\n")
log_file.write(
f" classification_results (expected: dict): {classification_results}\n")
image_writer = DiskReaderWriter(output_subfolder)
with open(log_file_path, 'a') as log_file:
log_file.write(f"Image writer initialized: {image_writer}\n")
# Create jso_useful_key as a dictionary
model_json = [] # Or load your model data here
jso_useful_key = {"_pdf_type": "", "model_list": model_json}
unipipe = UNIPipe(pdf_data, jso_useful_key, image_writer)
with open(log_file_path, 'a') as log_file:
log_file.write(f"UNIPipe initialized: {unipipe}\n")
parse_type = unipipe.pipe_classify()
with open(log_file_path, 'a') as log_file:
log_file.write(f"pipe_classify result (expected: str): {parse_type}\n")
# Add detailed logging for pipe_analyze inputs and output
with open(log_file_path, 'a') as log_file:
log_file.write(f"Detailed pipe_analyze Inputs for {input_file}:\n")
log_file.write(f" parse_type (expected: str): {parse_type}\n")
layout_info = unipipe.pipe_analyze()
with open(log_file_path, 'a') as log_file:
log_file.write(
f"pipe_analyze Results (expected: list of dicts, length: {len(layout_info)}): {layout_info}\n")
# Use OCR if it's not classified as a text PDF
if not is_text_pdf:
parse_type = 'ocr'
with open(log_file_path, 'a') as log_file:
log_file.write(
f"parse_type after OCR check (expected: str): {parse_type}\n")
# Process the PDF using the model
parse_result = model.process_pdf(pdf_data, parse_type, layout_info, log_file_path)
with open(log_file_path, 'a') as log_file:
log_file.write(f"Model process_pdf result (expected: dict): {parse_result}\n")
markdown_content = unipipe.pipe_mk_markdown(parse_result)
with open(log_file_path, 'a') as log_file:
log_file.write(
f"pipe_mk_markdown result (expected: str, length: {len(markdown_content)}): {markdown_content}\n")
uni_format = unipipe.pipe_mk_uni_format(parse_result)
with open(log_file_path, 'a') as log_file:
log_file.write(f"pipe_mk_uni_format result (expected: dict): {uni_format}\n")
# Write markdown content
with open(os.path.join(output_subfolder, f'{pdf_name}.md'), 'w', encoding='utf-8') as f:
f.write(markdown_content)
# Write middle.json
with open(os.path.join(output_subfolder, 'middle.json'), 'w', encoding='utf-8') as f:
json.dump(parse_result, f, ensure_ascii=False, indent=2)
# Write model.json
with open(os.path.join(output_subfolder, 'model.json'), 'w', encoding='utf-8') as f:
json.dump(uni_format, f, ensure_ascii=False, indent=2)
# Copy original PDF
shutil.copy(input_file, os.path.join(output_subfolder, f'{pdf_name}.pdf'))
# Generate layout.pdf and spans.pdf
do_parse(input_file, parse_type, output_subfolder, draw_bbox=True)
# Extract images
extract_images(input_file, output_subfolder)
processing_time = time.time() - start_time
with open(log_file_path, 'a') as log_file:
log_file.write(
f"Successfully processed {input_file} on GPU {gpu_id} in {processing_time:.2f} seconds\n")
# Prepare result for JSONL output
result = {
"file_name": pdf_name,
"processing_time": processing_time,
"parse_type": parse_type,
"metadata": metadata,
"classification": classification_results,
"is_text_pdf": is_text_pdf
}
return input_file, "Success", result
except ValueError as ve:
with open(log_file_path, 'a') as log_file:
log_file.write(f"Metadata error: {str(ve)}\n")
return input_file, f"Metadata Error: {str(ve)}", None
except TimeoutError:
with open(log_file_path, 'a') as log_file:
log_file.write(f"Processing timed out after {timeout} seconds\n")
return input_file, "Timeout", None
except Exception as e:
# Save full traceback to a file
traceback_file = os.path.join(output_folder, 'traceback.txt')
with open(traceback_file, 'w') as f:
f.write(traceback.format_exc())
# Print error message and traceback location to CLI
print(f"Error occurred: {e}")
print(f"Full traceback saved to: {traceback_file}")
exit(1) # Terminate the script
finally:
signal.alarm(0) # Cancel the alarm
if gpu_id >= 0:
torch.cuda.empty_cache()
def process_pdf_batch(batch, output_folder, gpu_id, config, timeout, use_bf16, model, log_file_path):
results = []
for pdf_file in batch:
result = process_single_pdf(pdf_file, output_folder, gpu_id, config, timeout, use_bf16, model, log_file_path)
results.append(result)
return results
def write_to_jsonl(results, output_file):
with open(output_file, 'a') as f:
for result in results:
if result[2]: # Check if result is not None
json.dump(result[2], f)
f.write('\n')
def get_gpu_memory_usage(gpu_id):
if gpu_id < 0:
return 0, 0 # CPU mode
total_memory = torch.cuda.get_device_properties(gpu_id).total_memory
allocated_memory = torch.cuda.memory_allocated(gpu_id)
return allocated_memory, total_memory
def main():
mp.set_start_method('spawn', force=True)
args = parse_arguments()
config = load_config(args.config)
input_folder = args.input
output_folder = args.output
os.makedirs(output_folder, exist_ok=True)
pdf_files = [os.path.join(input_folder, f) for f in os.listdir(input_folder) if f.endswith('.pdf')]
num_gpus = torch.cuda.device_count()
if num_gpus == 0:
print("No GPUs available. Using CPU.")
num_gpus = 1
gpu_ids = [-1]
else:
gpu_ids = list(range(num_gpus))
num_workers = args.max_workers or min(num_gpus, os.cpu_count())
main_jsonl = os.path.join(output_folder, 'processing_results.jsonl')
temp_jsonl = os.path.join(output_folder, 'temp_results.jsonl')
log_file_path = os.path.join(output_folder, 'processing_log.txt')
# Enable deterministic mode
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
# Load the model
model = MagicModel(config)
results = []
with ProcessPoolExecutor(max_workers=num_workers) as executor:
for gpu_id in gpu_ids:
batch_size = args.initial_batch_size
pdf_index = 0
oom_occurred = False
while pdf_index < len(pdf_files):
batch = pdf_files[pdf_index:pdf_index + batch_size]
try:
future = executor.submit(process_pdf_batch, batch, output_folder, gpu_id, config, args.timeout,
args.use_bf16, model, log_file_path)
batch_results = future.result()
results.extend(batch_results)
for result in batch_results:
write_to_jsonl([result], temp_jsonl)
# Print VRAM usage
allocated, total = get_gpu_memory_usage(gpu_id)
with open(log_file_path, 'a') as log_file:
log_file.write(
f"GPU {gpu_id} - Batch size: {batch_size}, VRAM usage: {allocated / 1024 ** 3:.2f}GB / {total / 1024 ** 3:.2f}GB\n")
# If successful and OOM hasn't occurred yet, increase batch size
if not oom_occurred:
batch_size += 1
pdf_index += len(batch)
except torch.cuda.OutOfMemoryError:
# If OOM occurs, reduce batch size
oom_occurred = True
batch_size = max(MIN_BATCH_SIZE, batch_size - 1)
with open(log_file_path, 'a') as log_file:
log_file.write(f"OOM error occurred. Reducing batch size to {batch_size}\n")
torch.cuda.empty_cache()
continue
# After processing each batch, move temp JSONL to main JSONL
if os.path.exists(temp_jsonl):
with open(temp_jsonl, 'r') as temp, open(main_jsonl, 'a') as main:
shutil.copyfileobj(temp, main)
os.remove(temp_jsonl)
# Clear GPU cache after each batch
if gpu_id >= 0:
torch.cuda.empty_cache()
success_count = sum(1 for _, status, _ in results if status == "Success")
timeout_count = sum(1 for _, status, _ in results if status == "Timeout")
error_count = len(results) - success_count - timeout_count
with open(log_file_path, 'a') as log_file:
log_file.write(
f"Processed {len(results)} PDFs. {success_count} succeeded, {timeout_count} timed out, {error_count} failed.\n")
with open(os.path.join(output_folder, 'processing_summary.txt'), 'w') as summary:
summary.write(f"Total PDFs processed: {len(results)}\n")
summary.write(f"Successful: {success_count}\n")
summary.write(f"Timed out: {timeout_count}\n")
summary.write(f"Failed: {error_count}\n\n")
summary.write("Failed PDFs:\n")
for pdf, status, _ in [result for result in results if result[1] != "Success"]:
summary.write(f" - {pdf}: {status}\n")
if __name__ == '__main__':
main()
|