logtest2 / scrpt27.py
Alignment-Lab-AI's picture
Upload scrpt27.py with huggingface_hub
dc61d35 verified
raw
history blame
20.1 kB
import os
import json
import shutil
import argparse
import logging
import multiprocessing as mp
from concurrent.futures import ProcessPoolExecutor, as_completed
import torch
import psutil
import numpy as np
from tqdm import tqdm
from magic_pdf.pipe.UNIPipe import UNIPipe
from magic_pdf.libs.commons import read_file
from magic_pdf.libs.config_reader import get_device
from magic_pdf.tools.common import do_parse
from magic_pdf.libs.pdf_image_tools import cut_image
from magic_pdf.rw.DiskReaderWriter import DiskReaderWriter
from magic_pdf.filter.pdf_meta_scan import pdf_meta_scan
from magic_pdf.filter.pdf_classify_by_type import classify
import fitz # PyMuPDF
import time
import signal
# Set up logging
logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
# Minimum batch size
MIN_BATCH_SIZE = 1
def parse_arguments():
parser = argparse.ArgumentParser(description="Process multiple PDFs using Magic PDF")
parser.add_argument("--input", default="input", help="Input folder containing PDF files")
parser.add_argument("--output", default="output", help="Output folder for processed files")
parser.add_argument("--config", default="magic-pdf.template.json", help="Path to configuration file")
parser.add_argument("--timeout", type=int, default=240, help="Timeout for processing each PDF (in seconds)")
parser.add_argument("--max-workers", type=int, default=None, help="Maximum number of worker processes")
parser.add_argument("--use-bf16", action="store_true", help="Use bfloat16 precision for model inference")
parser.add_argument("--initial-batch-size", type=int, default=1, help="Initial batch size for processing")
return parser.parse_args()
def load_config(config_path):
with open(config_path, 'r') as f:
return json.load(f)
def get_available_memory(gpu_id):
return torch.cuda.get_device_properties(gpu_id).total_memory - torch.cuda.memory_allocated(gpu_id)
def extract_images(pdf_path, output_folder):
doc = fitz.open(pdf_path)
pdf_name = os.path.splitext(os.path.basename(pdf_path))[0]
images_folder = os.path.join(output_folder, 'images')
os.makedirs(images_folder, exist_ok=True)
for page_num, page in enumerate(doc):
for img_index, img in enumerate(page.get_images(full=True)):
xref = img[0]
base_image = doc.extract_image(xref)
image_bytes = base_image["image"]
image_ext = base_image["ext"]
image_filename = f'{pdf_name}_{page_num+1:03d}_{img_index+1:03d}.{image_ext}'
image_path = os.path.join(images_folder, image_filename)
with open(image_path, "wb") as image_file:
image_file.write(image_bytes)
doc.close()
class MagicModel:
def __init__(self, config):
self.config = config
def process_pdf(self, pdf_data, parse_type, layout_info, log_file_path):
processed_pages = []
with open(log_file_path, 'a') as log_file:
log_file.write(f"Entering process_pdf\n")
log_file.write(f" parse_type: {parse_type}, (expected: str)\n")
log_file.write(f" layout_info (length: {len(layout_info)}), (expected: list of dicts): {layout_info}\n")
for page_index, page_info in enumerate(layout_info):
try:
with open(log_file_path, 'a') as log_file:
log_file.write(f"Processing page {page_index}\n")
log_file.write(f" Page info (expected: dict): {page_info}\n")
processed_page = self.process_page(page_info, parse_type)
processed_pages.append(processed_page)
except Exception as e:
with open(log_file_path, 'a') as log_file:
log_file.write(f"Error processing page {page_index} in process_pdf: {str(e)}\n")
log_file.write(f"Page info (expected: dict): {page_info}\n")
with open(log_file_path, 'a') as log_file:
log_file.write(f"Exiting process_pdf\n")
return {
"processed_pages": processed_pages,
"parse_type": parse_type,
}
def process_page(self, page_info, parse_type):
with open(log_file_path, 'a') as log_file:
log_file.write(f"Entering process_page\n")
log_file.write(f" page_info (expected: dict): {page_info}\n")
log_file.write(f" parse_type (expected: str): {parse_type}\n")
result = {
"page_no": page_info.get("page_info", {}).get("page_no", "unknown"),
"content": "Processed page content",
"parse_type": parse_type
}
with open(log_file_path, 'a') as log_file:
log_file.write(f"Exiting process_page\n")
return result
def process_single_pdf(input_file, output_folder, gpu_id, config, timeout, use_bf16, model, log_file_path):
start_time = time.time()
pdf_name = os.path.splitext(os.path.basename(input_file))[0]
output_subfolder = os.path.join(output_folder, pdf_name, 'auto')
os.makedirs(output_subfolder, exist_ok=True)
def timeout_handler(signum, frame):
raise TimeoutError("PDF processing timed out")
try:
signal.signal(signal.SIGALRM, timeout_handler)
signal.alarm(timeout)
if gpu_id >= 0:
torch.cuda.set_device(gpu_id)
if use_bf16 and torch.cuda.is_bf16_supported():
torch.set_default_dtype(torch.bfloat16)
else:
torch.set_default_dtype(torch.float32)
torch.set_default_device(f'cuda:{gpu_id}')
else:
if use_bf16:
torch.set_default_dtype(torch.bfloat16)
else:
torch.set_default_dtype(torch.float32)
torch.set_default_device('cpu')
pdf_data = read_file(input_file, 'rb')
# Perform PDF metadata scan
metadata = pdf_meta_scan(pdf_data)
with open(log_file_path, 'a') as log_file:
log_file.write(f"Processing PDF: {input_file}\n")
log_file.write(f"Metadata (expected: dict): {json.dumps(metadata, indent=2)}\n")
# Check if metadata indicates the PDF should be dropped
if metadata.get("_need_drop", False):
with open(log_file_path, 'a') as log_file:
log_file.write(f"Dropping PDF {input_file}: {metadata.get('_drop_reason', 'Unknown reason')}\n")
return input_file, "Dropped", None
# Check if all required fields are present in metadata
required_fields = ['total_page', 'page_width_pts', 'page_height_pts', 'image_info_per_page',
'text_len_per_page', 'imgs_per_page', 'text_layout_per_page', 'invalid_chars']
for field in required_fields:
if field not in metadata:
raise ValueError(f"Required field '{field}' not found in metadata for {input_file}")
# Extract required fields for classify function
total_page = metadata['total_page']
page_width = metadata['page_width_pts']
page_height = metadata['page_height_pts']
img_sz_list = metadata['image_info_per_page']
text_len_list = metadata['text_len_per_page']
img_num_list = metadata['imgs_per_page']
text_layout_list = metadata['text_layout_per_page']
invalid_chars = metadata['invalid_chars']
with open(log_file_path, 'a') as log_file:
log_file.write(f"Classify parameters:\n")
log_file.write(f" total_page (expected: int): {total_page}\n")
log_file.write(f" page_width (expected: int): {page_width}\n")
log_file.write(f" page_height (expected: int): {page_height}\n")
log_file.write(f" img_sz_list (expected: list of lists): {img_sz_list[:5]}...\n")
log_file.write(f" text_len_list (expected: list of ints): {text_len_list[:5]}...\n")
log_file.write(f" img_num_list (expected: list of ints): {img_num_list[:5]}...\n")
log_file.write(f" text_layout_list (expected: list of strs): {text_layout_list[:5]}...\n")
log_file.write(f" invalid_chars (expected: bool): {invalid_chars}\n")
# Classify PDF
try:
is_text_pdf, classification_results = classify(
total_page, page_width, page_height, img_sz_list[:total_page],
text_len_list[:total_page], img_num_list[:total_page],
text_layout_list[:len(text_layout_list)], invalid_chars
)
with open(log_file_path, 'a') as log_file:
log_file.write(f"Classification Results:\n")
log_file.write(f" is_text_pdf (expected: bool): {is_text_pdf}\n")
log_file.write(f" classification_results (expected: dict): {classification_results}\n")
except Exception as e:
with open(log_file_path, 'a') as log_file:
log_file.write(f"Error in classify function for {input_file}: {str(e)}\n")
return input_file, f"Classification Error: {str(e)}", None
image_writer = DiskReaderWriter(output_subfolder)
with open(log_file_path, 'a') as log_file:
log_file.write(f"Image writer initialized: {image_writer}\n")
# Create jso_useful_key as a dictionary
model_json = [] # Or load your model data here
jso_useful_key = {"_pdf_type": "", "model_list": model_json}
unipipe = UNIPipe(pdf_data, jso_useful_key, image_writer)
with open(log_file_path, 'a') as log_file:
log_file.write(f"UNIPipe initialized: {unipipe}\n")
parse_type = unipipe.pipe_classify()
with open(log_file_path, 'a') as log_file:
log_file.write(f"pipe_classify result (expected: str): {parse_type}\n")
# Add detailed logging for pipe_analyze inputs and output
with open(log_file_path, 'a') as log_file:
log_file.write(f"Detailed pipe_analyze Inputs for {input_file}:\n")
log_file.write(f" parse_type (expected: str): {parse_type}\n")
try:
layout_info = unipipe.pipe_analyze()
with open(log_file_path, 'a') as log_file:
log_file.write(f"pipe_analyze Results (expected: list of dicts, length: {len(layout_info)}): {layout_info}\n")
except Exception as e:
with open(log_file_path, 'a') as log_file:
log_file.write(f"Error in pipe_analyze for {input_file}: {str(e)}\n")
return input_file, f"pipe_analyze Error: {str(e)}", None
# Use OCR if it's not classified as a text PDF
if not is_text_pdf:
parse_type = 'ocr'
with open(log_file_path, 'a') as log_file:
log_file.write(f"parse_type after OCR check (expected: str): {parse_type}\n")
# Process the PDF using the model
try:
parse_result = model.process_pdf(pdf_data, parse_type, layout_info, log_file_path)
with open(log_file_path, 'a') as log_file:
log_file.write(f"Model process_pdf result (expected: dict): {parse_result}\n")
except Exception as e:
with open(log_file_path, 'a') as log_file:
log_file.write(f"Error in model processing for {input_file}: {str(e)}\n")
return input_file, f"Model Processing Error: {str(e)}", None
try:
markdown_content = unipipe.pipe_mk_markdown(parse_result)
with open(log_file_path, 'a') as log_file:
log_file.write(f"pipe_mk_markdown result (expected: str, length: {len(markdown_content)}): {markdown_content}\n")
except Exception as e:
with open(log_file_path, 'a') as log_file:
log_file.write(f"Error in pipe_mk_markdown for {input_file}: {str(e)}\n")
log_file.write(f" parse_result (expected: dict): {parse_result}\n")
return input_file, f"pipe_mk_markdown Error: {str(e)}", None
try:
uni_format = unipipe.pipe_mk_uni_format(parse_result)
with open(log_file_path, 'a') as log_file:
log_file.write(f"pipe_mk_uni_format result (expected: dict): {uni_format}\n")
except Exception as e:
with open(log_file_path, 'a') as log_file:
log_file.write(f"Error in pipe_mk_uni_format for {input_file}: {str(e)}\n")
log_file.write(f" parse_result (expected: dict): {parse_result}\n")
return input_file, f"pipe_mk_uni_format Error: {str(e)}", None
# Write markdown content
with open(os.path.join(output_subfolder, f'{pdf_name}.md'), 'w', encoding='utf-8') as f:
f.write(markdown_content)
# Write middle.json
with open(os.path.join(output_subfolder, 'middle.json'), 'w', encoding='utf-8') as f:
json.dump(parse_result, f, ensure_ascii=False, indent=2)
# Write model.json
with open(os.path.join(output_subfolder, 'model.json'), 'w', encoding='utf-8') as f:
json.dump(uni_format, f, ensure_ascii=False, indent=2)
# Copy original PDF
shutil.copy(input_file, os.path.join(output_subfolder, f'{pdf_name}.pdf'))
# Generate layout.pdf and spans.pdf
try:
do_parse(input_file, parse_type, output_subfolder, draw_bbox=True)
except Exception as e:
with open(log_file_path, 'a') as log_file:
log_file.write(f"Error in do_parse for {input_file}: {str(e)}\n")
return input_file, f"do_parse Error: {str(e)}", None
# Extract images
extract_images(input_file, output_subfolder)
processing_time = time.time() - start_time
with open(log_file_path, 'a') as log_file:
log_file.write(f"Successfully processed {input_file} on GPU {gpu_id} in {processing_time:.2f} seconds\n")
# Prepare result for JSONL output
result = {
"file_name": pdf_name,
"processing_time": processing_time,
"parse_type": parse_type,
"metadata": metadata,
"classification": classification_results,
"is_text_pdf": is_text_pdf
}
return input_file, "Success", result
except ValueError as ve:
with open(log_file_path, 'a') as log_file:
log_file.write(f"Metadata error: {str(ve)}\n")
return input_file, f"Metadata Error: {str(ve)}", None
except TimeoutError:
with open(log_file_path, 'a') as log_file:
log_file.write(f"Processing timed out after {timeout} seconds\n")
return input_file, "Timeout", None
except Exception as e:
with open(log_file_path, 'a') as log_file:
log_file.write(f"Error occurred: {str(e)}\n")
return input_file, f"Error: {str(e)}", None
finally:
signal.alarm(0) # Cancel the alarm
if gpu_id >= 0:
torch.cuda.empty_cache()
def process_pdf_batch(batch, output_folder, gpu_id, config, timeout, use_bf16, model, log_file_path):
results = []
for pdf_file in batch:
result = process_single_pdf(pdf_file, output_folder, gpu_id, config, timeout, use_bf16, model, log_file_path)
results.append(result)
return results
def write_to_jsonl(results, output_file):
with open(output_file, 'a') as f:
for result in results:
if result[2]: # Check if result is not None
json.dump(result[2], f)
f.write('\n')
def get_gpu_memory_usage(gpu_id):
if gpu_id < 0:
return 0, 0 # CPU mode
total_memory = torch.cuda.get_device_properties(gpu_id).total_memory
allocated_memory = torch.cuda.memory_allocated(gpu_id)
return allocated_memory, total_memory
def main():
mp.set_start_method('spawn', force=True)
args = parse_arguments()
config = load_config(args.config)
input_folder = args.input
output_folder = args.output
os.makedirs(output_folder, exist_ok=True)
pdf_files = [os.path.join(input_folder, f) for f in os.listdir(input_folder) if f.endswith('.pdf')]
num_gpus = torch.cuda.device_count()
if num_gpus == 0:
print("No GPUs available. Using CPU.")
num_gpus = 1
gpu_ids = [-1]
else:
gpu_ids = list(range(num_gpus))
num_workers = args.max_workers or min(num_gpus, os.cpu_count())
main_jsonl = os.path.join(output_folder, 'processing_results.jsonl')
temp_jsonl = os.path.join(output_folder, 'temp_results.jsonl')
log_file_path = os.path.join(output_folder, 'processing_log.txt')
# Enable deterministic mode
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
# Load the model
model = MagicModel(config)
results = []
with ProcessPoolExecutor(max_workers=num_workers) as executor:
for gpu_id in gpu_ids:
batch_size = args.initial_batch_size
pdf_index = 0
oom_occurred = False
while pdf_index < len(pdf_files):
batch = pdf_files[pdf_index:pdf_index + batch_size]
try:
future = executor.submit(process_pdf_batch, batch, output_folder, gpu_id, config, args.timeout, args.use_bf16, model, log_file_path)
batch_results = future.result()
results.extend(batch_results)
for result in batch_results:
write_to_jsonl([result], temp_jsonl)
# Print VRAM usage
allocated, total = get_gpu_memory_usage(gpu_id)
with open(log_file_path, 'a') as log_file:
log_file.write(f"GPU {gpu_id} - Batch size: {batch_size}, VRAM usage: {allocated/1024**3:.2f}GB / {total/1024**3:.2f}GB\n")
# If successful and OOM hasn't occurred yet, increase batch size
if not oom_occurred:
batch_size += 1
pdf_index += len(batch)
except torch.cuda.OutOfMemoryError:
# If OOM occurs, reduce batch size
oom_occurred = True
batch_size = max(MIN_BATCH_SIZE, batch_size - 1)
with open(log_file_path, 'a') as log_file:
log_file.write(f"OOM error occurred. Reducing batch size to {batch_size}\n")
torch.cuda.empty_cache()
continue
# After processing each batch, move temp JSONL to main JSONL
if os.path.exists(temp_jsonl):
with open(temp_jsonl, 'r') as temp, open(main_jsonl, 'a') as main:
shutil.copyfileobj(temp, main)
os.remove(temp_jsonl)
# Clear GPU cache after each batch
if gpu_id >= 0:
torch.cuda.empty_cache()
success_count = sum(1 for _, status, _ in results if status == "Success")
timeout_count = sum(1 for _, status, _ in results if status == "Timeout")
error_count = len(results) - success_count - timeout_count
with open(log_file_path, 'a') as log_file:
log_file.write(f"Processed {len(results)} PDFs. {success_count} succeeded, {timeout_count} timed out, {error_count} failed.\n")
with open(os.path.join(output_folder, 'processing_summary.txt'), 'w') as summary:
summary.write(f"Total PDFs processed: {len(results)}\n")
summary.write(f"Successful: {success_count}\n")
summary.write(f"Timed out: {timeout_count}\n")
summary.write(f"Failed: {error_count}\n\n")
summary.write("Failed PDFs:\n")
for pdf, status, _ in [result for result in results if result[1] != "Success"]:
summary.write(f" - {pdf}: {status}\n")
if __name__ == '__main__':
main()