Upload final3.py with huggingface_hub
Browse files
final3.py
ADDED
@@ -0,0 +1,200 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torchaudio
|
3 |
+
import time
|
4 |
+
import os
|
5 |
+
import numpy as np
|
6 |
+
import json
|
7 |
+
from datasets import load_dataset, Audio
|
8 |
+
from snac import SNAC
|
9 |
+
from torch.nn import functional as F
|
10 |
+
from tqdm import tqdm
|
11 |
+
import wandb
|
12 |
+
|
13 |
+
# Constants
|
14 |
+
SNAC_SAMPLE_RATE = 24000
|
15 |
+
OUTPUT_DIR = "processed_common_voice"
|
16 |
+
BATCH_SIZE = 1000
|
17 |
+
|
18 |
+
# Ensure CUDA is available
|
19 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
20 |
+
|
21 |
+
def load_snac_model(sample_rate):
|
22 |
+
if sample_rate == 24000:
|
23 |
+
model = SNAC.from_pretrained("hubertsiuzdak/snac_24khz").eval().to(device)
|
24 |
+
else:
|
25 |
+
raise ValueError("Unsupported sample rate. Please use 24000.")
|
26 |
+
return model
|
27 |
+
|
28 |
+
snac_model = load_snac_model(SNAC_SAMPLE_RATE)
|
29 |
+
|
30 |
+
def chunk_and_pad_audio(audio, chunk_size):
|
31 |
+
length = audio.shape[-1]
|
32 |
+
padded_length = ((length + chunk_size - 1) // chunk_size) * chunk_size
|
33 |
+
padded_audio = F.pad(audio, (0, padded_length - length), mode="constant", value=0)
|
34 |
+
batched_audio = padded_audio.unfold(-1, size=chunk_size, step=chunk_size)
|
35 |
+
return batched_audio
|
36 |
+
|
37 |
+
def generate_snac_encoding(audio):
|
38 |
+
waveform = torch.tensor(audio["array"]).float().to(device)
|
39 |
+
if audio["sampling_rate"] != SNAC_SAMPLE_RATE:
|
40 |
+
resampler = torchaudio.transforms.Resample(
|
41 |
+
orig_freq=audio["sampling_rate"], new_freq=SNAC_SAMPLE_RATE
|
42 |
+
)
|
43 |
+
waveform = resampler(waveform)
|
44 |
+
|
45 |
+
if waveform.dim() == 2:
|
46 |
+
waveform = waveform.mean(dim=0, keepdim=True)
|
47 |
+
elif waveform.dim() == 1:
|
48 |
+
waveform = waveform.unsqueeze(0)
|
49 |
+
|
50 |
+
num_second = 1
|
51 |
+
chunk_size_initial = num_second * SNAC_SAMPLE_RATE
|
52 |
+
lcm = np.lcm.reduce([snac_model.vq_strides[0], snac_model.attn_window_size or 1])
|
53 |
+
pad_to = snac_model.hop_length * lcm
|
54 |
+
chunk_size = int(np.ceil(chunk_size_initial / pad_to) * pad_to)
|
55 |
+
|
56 |
+
audio = chunk_and_pad_audio(waveform, chunk_size)
|
57 |
+
audio = audio.permute(1, 0, 2)
|
58 |
+
|
59 |
+
codes_list = []
|
60 |
+
with torch.no_grad():
|
61 |
+
for chunk in audio:
|
62 |
+
codes = snac_model.encode(chunk.unsqueeze(0))
|
63 |
+
codes = [c.cpu() for c in codes]
|
64 |
+
codes_list.append(codes)
|
65 |
+
|
66 |
+
codes_list = [torch.cat(codes_list, dim=0) for codes_list in zip(*codes_list)]
|
67 |
+
codes_list = [code.reshape(-1).cpu().tolist() for code in codes_list]
|
68 |
+
|
69 |
+
string_codes = " ".join(map(str, codes_list[0]))
|
70 |
+
return string_codes
|
71 |
+
|
72 |
+
def process_audio(item):
|
73 |
+
start_time = time.time()
|
74 |
+
try:
|
75 |
+
snac_tokens = generate_snac_encoding(item["audio"])
|
76 |
+
|
77 |
+
if not snac_tokens:
|
78 |
+
raise ValueError("Generated SNAC tokens are empty")
|
79 |
+
|
80 |
+
except Exception as e:
|
81 |
+
return None
|
82 |
+
|
83 |
+
processing_time = time.time() - start_time
|
84 |
+
|
85 |
+
return {
|
86 |
+
"path": item["path"],
|
87 |
+
"sentence": item["sentence"],
|
88 |
+
"age": item["age"],
|
89 |
+
"gender": item["gender"],
|
90 |
+
"accent": item["accent"],
|
91 |
+
"locale": item["locale"],
|
92 |
+
"snac": snac_tokens,
|
93 |
+
"processing_time": processing_time,
|
94 |
+
"audio_duration": len(item["audio"]["array"]) / item["audio"]["sampling_rate"],
|
95 |
+
}
|
96 |
+
|
97 |
+
def save_to_jsonl(data, file_path):
|
98 |
+
# Open the file in append mode to add new data to the existing language-specific JSONL file
|
99 |
+
with open(file_path, "a") as f:
|
100 |
+
for item in data:
|
101 |
+
json.dump(item, f)
|
102 |
+
f.write("\n")
|
103 |
+
|
104 |
+
def process_language(language):
|
105 |
+
# Ensure output directory exists
|
106 |
+
language_dir = os.path.join(OUTPUT_DIR, language)
|
107 |
+
os.makedirs(language_dir, exist_ok=True)
|
108 |
+
jsonl_path = os.path.join(language_dir, f"{language}_processed.jsonl")
|
109 |
+
|
110 |
+
# Read existing data
|
111 |
+
existing_data = set()
|
112 |
+
if os.path.exists(jsonl_path):
|
113 |
+
with open(jsonl_path, "r") as f:
|
114 |
+
existing_data = set(f.readlines())
|
115 |
+
|
116 |
+
# Load the Common Voice dataset for this language
|
117 |
+
dataset = load_dataset(
|
118 |
+
"mozilla-foundation/common_voice_16_1", language, split="train", streaming=True
|
119 |
+
)
|
120 |
+
|
121 |
+
# Cast the dataset to include audio
|
122 |
+
dataset = dataset.cast_column("audio", Audio(sampling_rate=SNAC_SAMPLE_RATE))
|
123 |
+
|
124 |
+
processed_data = []
|
125 |
+
total_processed = 0
|
126 |
+
report_counter = 0
|
127 |
+
|
128 |
+
for item in tqdm(dataset, desc=f"Processing {language}"):
|
129 |
+
result = process_audio(item)
|
130 |
+
if result:
|
131 |
+
json_line = json.dumps(result) + "\n"
|
132 |
+
if json_line not in existing_data:
|
133 |
+
processed_data.append(result)
|
134 |
+
existing_data.add(json_line)
|
135 |
+
total_processed += 1
|
136 |
+
report_counter += 1
|
137 |
+
|
138 |
+
if report_counter % 1000 == 0: # Report to wandb every 1000 rows
|
139 |
+
wandb.log(
|
140 |
+
{
|
141 |
+
"language": language,
|
142 |
+
"average_processing_time": np.mean(
|
143 |
+
[item["processing_time"] for item in processed_data]
|
144 |
+
),
|
145 |
+
"average_audio_duration": np.mean(
|
146 |
+
[item["audio_duration"] for item in processed_data]
|
147 |
+
),
|
148 |
+
"average_snac_token_count": np.mean(
|
149 |
+
[len(item["snac"].split()) for item in processed_data]
|
150 |
+
),
|
151 |
+
}
|
152 |
+
)
|
153 |
+
report_counter = 0 # Reset the counter
|
154 |
+
|
155 |
+
# Save every BATCH_SIZE items
|
156 |
+
if len(processed_data) >= BATCH_SIZE:
|
157 |
+
save_to_jsonl(processed_data, jsonl_path)
|
158 |
+
processed_data = [] # Clear the list after saving
|
159 |
+
|
160 |
+
# Save any remaining processed data
|
161 |
+
if processed_data:
|
162 |
+
save_to_jsonl(processed_data, jsonl_path)
|
163 |
+
|
164 |
+
return total_processed
|
165 |
+
|
166 |
+
def main():
|
167 |
+
# Initialize wandb
|
168 |
+
wandb.init(project="common-voice-processing", job_type="data-processing")
|
169 |
+
|
170 |
+
# List of languages to process, starting with English
|
171 |
+
languages = ['ckb', 'cnh', 'cs', 'cv', 'cy', 'da', 'de']
|
172 |
+
# languages = ['dv', 'dyu', 'el', 'en', 'eo', 'es', 'et']
|
173 |
+
# languages = ['eu', 'fa', 'fi', 'fr', 'fy-NL', 'ga-IE', 'gl']
|
174 |
+
# languages = ['gn', 'ha', 'he', 'hi', 'hsb', 'hu', 'hy-AM']
|
175 |
+
# languages = ['ia', 'id', 'ig', 'is', 'it', 'ja', 'ka']
|
176 |
+
# languages = ['kab', 'kk', 'kmr', 'ko', 'ky', 'lg', 'lij']
|
177 |
+
# languages = ['lo', 'lt', 'ltg', 'lv', 'mdf', 'mhr', 'mk']
|
178 |
+
# languages = ['ml', 'mn', 'mr', 'mrj', 'mt', 'myv', 'nan-tw']
|
179 |
+
# languages = ['ne-NP', 'nhi', 'nl', 'nn-NO', 'oc', 'or', 'os']
|
180 |
+
# languages = ['pa-IN', 'pl', 'ps', 'pt', 'quy', 'rm-sursilv', 'rm-vallader']
|
181 |
+
# languages = ['ro', 'ru', 'rw', 'sah', 'sat', 'sc', 'sk']
|
182 |
+
# languages = ['skr', 'sl', 'sq', 'sr', 'sv-SE', 'sw', 'ta']
|
183 |
+
# languages = ['te', 'th', 'ti', 'tig', 'tk', 'tok', 'tr']
|
184 |
+
# languages = ['tt', 'tw', 'ug', 'uk', 'ur', 'uz', 'vi', 'vot', 'yi', 'yo', 'yue', 'zgh', 'zh-CN', 'zh-HK', 'zh-TW']
|
185 |
+
|
186 |
+
total_processed_all_languages = 0
|
187 |
+
|
188 |
+
# Process each language
|
189 |
+
for language in languages:
|
190 |
+
total_processed = process_language(language)
|
191 |
+
total_processed_all_languages += total_processed
|
192 |
+
|
193 |
+
print(
|
194 |
+
f"\nCompleted processing all languages. Total files processed across all languages: {total_processed_all_languages}"
|
195 |
+
)
|
196 |
+
|
197 |
+
wandb.finish()
|
198 |
+
|
199 |
+
if __name__ == "__main__":
|
200 |
+
main()
|