Alijeff1214
commited on
Upload folder using huggingface_hub
Browse files- FineTune_GeneralOnly933282.out +247 -0
- FineTune_GeneralOnly933928.out +672 -0
FineTune_GeneralOnly933282.out
ADDED
@@ -0,0 +1,247 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Loading pytorch-gpu/py3/2.1.1
|
2 |
+
Loading requirement: cuda/11.8.0 nccl/2.18.5-1-cuda cudnn/8.7.0.84-cuda
|
3 |
+
gcc/8.5.0 openmpi/4.1.5-cuda intel-mkl/2020.4 magma/2.7.1-cuda sox/14.4.2
|
4 |
+
sparsehash/2.0.3 libjpeg-turbo/2.1.3 ffmpeg/4.4.4
|
5 |
+
+ HF_DATASETS_OFFLINE=1
|
6 |
+
+ TRANSFORMERS_OFFLINE=1
|
7 |
+
+ python3 OnlyGeneralTokenizer.py
|
8 |
+
|
9 |
+
Checking label assignment:
|
10 |
+
|
11 |
+
Domain: Mathematics
|
12 |
+
Categories: math.DS math.CA
|
13 |
+
Abstract: we prove an inequality for holder continuous differential forms on compact manifolds in which the in...
|
14 |
+
|
15 |
+
Domain: Computer Science
|
16 |
+
Categories: cs.NE
|
17 |
+
Abstract: when looking for a solution deterministic methods have the enormous advantage that they do find glob...
|
18 |
+
|
19 |
+
Domain: Physics
|
20 |
+
Categories: physics.hist-ph quant-ph
|
21 |
+
Abstract: maxwells demon was born in and still thrives in modern physics he plays important roles in clarifyin...
|
22 |
+
|
23 |
+
Domain: Chemistry
|
24 |
+
Categories: nlin.PS
|
25 |
+
Abstract: the modulational instability of two interacting waves in a nonlocal kerrtype medium is considered an...
|
26 |
+
|
27 |
+
Domain: Statistics
|
28 |
+
Categories: astro-ph stat.ME
|
29 |
+
Abstract: the identification of increasingly smaller signal from objects observed with a nonperfect instrument...
|
30 |
+
|
31 |
+
Domain: Biology
|
32 |
+
Categories: q-bio.MN cond-mat.stat-mech
|
33 |
+
Abstract: we find that discrete noise of inhibiting signal molecules can greatly delay the extinction of plasm...
|
34 |
+
/linkhome/rech/genrug01/uft12cr/.local/lib/python3.11/site-packages/transformers/tokenization_utils_base.py:2057: FutureWarning: Calling BertTokenizer.from_pretrained() with the path to a single file or url is deprecated and won't be possible anymore in v5. Use a model identifier or the path to a directory instead.
|
35 |
+
warnings.warn(
|
36 |
+
|
37 |
+
Training with General tokenizer:
|
38 |
+
Vocabulary size: 30522
|
39 |
+
Could not load pretrained weights from /linkhome/rech/genrug01/uft12cr/bert_Model. Starting with random weights. Error: It looks like the config file at '/linkhome/rech/genrug01/uft12cr/bert_Model/config.json' is not a valid JSON file.
|
40 |
+
Initialized model with vocabulary size: 30522
|
41 |
+
/gpfsdswork/projects/rech/fmr/uft12cr/finetuneAli/OnlyGeneralTokenizer.py:172: FutureWarning: `torch.cuda.amp.GradScaler(args...)` is deprecated. Please use `torch.amp.GradScaler('cuda', args...)` instead.
|
42 |
+
scaler = amp.GradScaler()
|
43 |
+
Batch 0:
|
44 |
+
input_ids shape: torch.Size([16, 256])
|
45 |
+
attention_mask shape: torch.Size([16, 256])
|
46 |
+
labels shape: torch.Size([16])
|
47 |
+
input_ids max value: 29464
|
48 |
+
Vocab size: 30522
|
49 |
+
/gpfsdswork/projects/rech/fmr/uft12cr/finetuneAli/OnlyGeneralTokenizer.py:192: FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead.
|
50 |
+
with amp.autocast():
|
51 |
+
Batch 100:
|
52 |
+
input_ids shape: torch.Size([16, 256])
|
53 |
+
attention_mask shape: torch.Size([16, 256])
|
54 |
+
labels shape: torch.Size([16])
|
55 |
+
input_ids max value: 29536
|
56 |
+
Vocab size: 30522
|
57 |
+
Batch 200:
|
58 |
+
input_ids shape: torch.Size([16, 256])
|
59 |
+
attention_mask shape: torch.Size([16, 256])
|
60 |
+
labels shape: torch.Size([16])
|
61 |
+
input_ids max value: 29536
|
62 |
+
Vocab size: 30522
|
63 |
+
Batch 300:
|
64 |
+
input_ids shape: torch.Size([16, 256])
|
65 |
+
attention_mask shape: torch.Size([16, 256])
|
66 |
+
labels shape: torch.Size([16])
|
67 |
+
input_ids max value: 29536
|
68 |
+
Vocab size: 30522
|
69 |
+
Batch 400:
|
70 |
+
input_ids shape: torch.Size([16, 256])
|
71 |
+
attention_mask shape: torch.Size([16, 256])
|
72 |
+
labels shape: torch.Size([16])
|
73 |
+
input_ids max value: 29513
|
74 |
+
Vocab size: 30522
|
75 |
+
Batch 500:
|
76 |
+
input_ids shape: torch.Size([16, 256])
|
77 |
+
attention_mask shape: torch.Size([16, 256])
|
78 |
+
labels shape: torch.Size([16])
|
79 |
+
input_ids max value: 29413
|
80 |
+
Vocab size: 30522
|
81 |
+
Batch 600:
|
82 |
+
input_ids shape: torch.Size([16, 256])
|
83 |
+
attention_mask shape: torch.Size([16, 256])
|
84 |
+
labels shape: torch.Size([16])
|
85 |
+
input_ids max value: 29237
|
86 |
+
Vocab size: 30522
|
87 |
+
Batch 700:
|
88 |
+
input_ids shape: torch.Size([16, 256])
|
89 |
+
attention_mask shape: torch.Size([16, 256])
|
90 |
+
labels shape: torch.Size([16])
|
91 |
+
input_ids max value: 29586
|
92 |
+
Vocab size: 30522
|
93 |
+
Batch 800:
|
94 |
+
input_ids shape: torch.Size([16, 256])
|
95 |
+
attention_mask shape: torch.Size([16, 256])
|
96 |
+
labels shape: torch.Size([16])
|
97 |
+
input_ids max value: 29221
|
98 |
+
Vocab size: 30522
|
99 |
+
Batch 900:
|
100 |
+
input_ids shape: torch.Size([16, 256])
|
101 |
+
attention_mask shape: torch.Size([16, 256])
|
102 |
+
labels shape: torch.Size([16])
|
103 |
+
input_ids max value: 29514
|
104 |
+
Vocab size: 30522
|
105 |
+
Epoch 1/3:
|
106 |
+
Val Accuracy: 0.7306, Val F1: 0.6541
|
107 |
+
Batch 0:
|
108 |
+
input_ids shape: torch.Size([16, 256])
|
109 |
+
attention_mask shape: torch.Size([16, 256])
|
110 |
+
labels shape: torch.Size([16])
|
111 |
+
input_ids max value: 29602
|
112 |
+
Vocab size: 30522
|
113 |
+
/gpfsdswork/projects/rech/fmr/uft12cr/finetuneAli/OnlyGeneralTokenizer.py:192: FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead.
|
114 |
+
with amp.autocast():
|
115 |
+
Batch 100:
|
116 |
+
input_ids shape: torch.Size([16, 256])
|
117 |
+
attention_mask shape: torch.Size([16, 256])
|
118 |
+
labels shape: torch.Size([16])
|
119 |
+
input_ids max value: 29374
|
120 |
+
Vocab size: 30522
|
121 |
+
Batch 200:
|
122 |
+
input_ids shape: torch.Size([16, 256])
|
123 |
+
attention_mask shape: torch.Size([16, 256])
|
124 |
+
labels shape: torch.Size([16])
|
125 |
+
input_ids max value: 29601
|
126 |
+
Vocab size: 30522
|
127 |
+
Batch 300:
|
128 |
+
input_ids shape: torch.Size([16, 256])
|
129 |
+
attention_mask shape: torch.Size([16, 256])
|
130 |
+
labels shape: torch.Size([16])
|
131 |
+
input_ids max value: 29464
|
132 |
+
Vocab size: 30522
|
133 |
+
Batch 400:
|
134 |
+
input_ids shape: torch.Size([16, 256])
|
135 |
+
attention_mask shape: torch.Size([16, 256])
|
136 |
+
labels shape: torch.Size([16])
|
137 |
+
input_ids max value: 29535
|
138 |
+
Vocab size: 30522
|
139 |
+
Batch 500:
|
140 |
+
input_ids shape: torch.Size([16, 256])
|
141 |
+
attention_mask shape: torch.Size([16, 256])
|
142 |
+
labels shape: torch.Size([16])
|
143 |
+
input_ids max value: 29464
|
144 |
+
Vocab size: 30522
|
145 |
+
Batch 600:
|
146 |
+
input_ids shape: torch.Size([16, 256])
|
147 |
+
attention_mask shape: torch.Size([16, 256])
|
148 |
+
labels shape: torch.Size([16])
|
149 |
+
input_ids max value: 29602
|
150 |
+
Vocab size: 30522
|
151 |
+
Batch 700:
|
152 |
+
input_ids shape: torch.Size([16, 256])
|
153 |
+
attention_mask shape: torch.Size([16, 256])
|
154 |
+
labels shape: torch.Size([16])
|
155 |
+
input_ids max value: 29454
|
156 |
+
Vocab size: 30522
|
157 |
+
Batch 800:
|
158 |
+
input_ids shape: torch.Size([16, 256])
|
159 |
+
attention_mask shape: torch.Size([16, 256])
|
160 |
+
labels shape: torch.Size([16])
|
161 |
+
input_ids max value: 29280
|
162 |
+
Vocab size: 30522
|
163 |
+
Batch 900:
|
164 |
+
input_ids shape: torch.Size([16, 256])
|
165 |
+
attention_mask shape: torch.Size([16, 256])
|
166 |
+
labels shape: torch.Size([16])
|
167 |
+
input_ids max value: 29417
|
168 |
+
Vocab size: 30522
|
169 |
+
Epoch 2/3:
|
170 |
+
Val Accuracy: 0.7961, Val F1: 0.7582
|
171 |
+
Batch 0:
|
172 |
+
input_ids shape: torch.Size([16, 256])
|
173 |
+
attention_mask shape: torch.Size([16, 256])
|
174 |
+
labels shape: torch.Size([16])
|
175 |
+
input_ids max value: 29299
|
176 |
+
Vocab size: 30522
|
177 |
+
/gpfsdswork/projects/rech/fmr/uft12cr/finetuneAli/OnlyGeneralTokenizer.py:192: FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead.
|
178 |
+
with amp.autocast():
|
179 |
+
Batch 100:
|
180 |
+
input_ids shape: torch.Size([16, 256])
|
181 |
+
attention_mask shape: torch.Size([16, 256])
|
182 |
+
labels shape: torch.Size([16])
|
183 |
+
input_ids max value: 29577
|
184 |
+
Vocab size: 30522
|
185 |
+
Batch 200:
|
186 |
+
input_ids shape: torch.Size([16, 256])
|
187 |
+
attention_mask shape: torch.Size([16, 256])
|
188 |
+
labels shape: torch.Size([16])
|
189 |
+
input_ids max value: 29536
|
190 |
+
Vocab size: 30522
|
191 |
+
Batch 300:
|
192 |
+
input_ids shape: torch.Size([16, 256])
|
193 |
+
attention_mask shape: torch.Size([16, 256])
|
194 |
+
labels shape: torch.Size([16])
|
195 |
+
input_ids max value: 29451
|
196 |
+
Vocab size: 30522
|
197 |
+
Batch 400:
|
198 |
+
input_ids shape: torch.Size([16, 256])
|
199 |
+
attention_mask shape: torch.Size([16, 256])
|
200 |
+
labels shape: torch.Size([16])
|
201 |
+
input_ids max value: 29454
|
202 |
+
Vocab size: 30522
|
203 |
+
Batch 500:
|
204 |
+
input_ids shape: torch.Size([16, 256])
|
205 |
+
attention_mask shape: torch.Size([16, 256])
|
206 |
+
labels shape: torch.Size([16])
|
207 |
+
input_ids max value: 29532
|
208 |
+
Vocab size: 30522
|
209 |
+
Batch 600:
|
210 |
+
input_ids shape: torch.Size([16, 256])
|
211 |
+
attention_mask shape: torch.Size([16, 256])
|
212 |
+
labels shape: torch.Size([16])
|
213 |
+
input_ids max value: 29413
|
214 |
+
Vocab size: 30522
|
215 |
+
Batch 700:
|
216 |
+
input_ids shape: torch.Size([16, 256])
|
217 |
+
attention_mask shape: torch.Size([16, 256])
|
218 |
+
labels shape: torch.Size([16])
|
219 |
+
input_ids max value: 29586
|
220 |
+
Vocab size: 30522
|
221 |
+
Batch 800:
|
222 |
+
input_ids shape: torch.Size([16, 256])
|
223 |
+
attention_mask shape: torch.Size([16, 256])
|
224 |
+
labels shape: torch.Size([16])
|
225 |
+
input_ids max value: 29280
|
226 |
+
Vocab size: 30522
|
227 |
+
Batch 900:
|
228 |
+
input_ids shape: torch.Size([16, 256])
|
229 |
+
attention_mask shape: torch.Size([16, 256])
|
230 |
+
labels shape: torch.Size([16])
|
231 |
+
input_ids max value: 29494
|
232 |
+
Vocab size: 30522
|
233 |
+
Epoch 3/3:
|
234 |
+
Val Accuracy: 0.8204, Val F1: 0.7894
|
235 |
+
|
236 |
+
Test Results for General tokenizer:
|
237 |
+
Accuracy: 0.8204
|
238 |
+
F1 Score: 0.7893
|
239 |
+
AUC-ROC: 0.8693
|
240 |
+
|
241 |
+
Class distribution in training set:
|
242 |
+
Class Biology: 439 samples
|
243 |
+
Class Chemistry: 454 samples
|
244 |
+
Class Computer Science: 1358 samples
|
245 |
+
Class Mathematics: 9480 samples
|
246 |
+
Class Physics: 2733 samples
|
247 |
+
Class Statistics: 200 samples
|
FineTune_GeneralOnly933928.out
ADDED
@@ -0,0 +1,672 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Loading pytorch-gpu/py3/2.1.1
|
2 |
+
Loading requirement: cuda/11.8.0 nccl/2.18.5-1-cuda cudnn/8.7.0.84-cuda
|
3 |
+
gcc/8.5.0 openmpi/4.1.5-cuda intel-mkl/2020.4 magma/2.7.1-cuda sox/14.4.2
|
4 |
+
sparsehash/2.0.3 libjpeg-turbo/2.1.3 ffmpeg/4.4.4
|
5 |
+
+ HF_DATASETS_OFFLINE=1
|
6 |
+
+ TRANSFORMERS_OFFLINE=1
|
7 |
+
+ python3 OnlyGeneralTokenizer.py
|
8 |
+
|
9 |
+
Checking label assignment:
|
10 |
+
|
11 |
+
Domain: Mathematics
|
12 |
+
Categories: math.OA
|
13 |
+
Abstract: a result of akemann anderson and pedersen states that if a sequence of pure states of a calgebra a a...
|
14 |
+
|
15 |
+
Domain: Computer Science
|
16 |
+
Categories: cs.PL
|
17 |
+
Abstract: a rigid loop is a forloop with a counter not accessible to the loop body or any other part of a prog...
|
18 |
+
|
19 |
+
Domain: Physics
|
20 |
+
Categories: physics.gen-ph
|
21 |
+
Abstract: fractional calculus and qdeformed lie algebras are closely related both concepts expand the scope of...
|
22 |
+
|
23 |
+
Domain: Chemistry
|
24 |
+
Categories: quant-ph nlin.CD
|
25 |
+
Abstract: we study scarring phenomena in open quantum systems we show numerical evidence that individual reson...
|
26 |
+
|
27 |
+
Domain: Statistics
|
28 |
+
Categories: stat.ME
|
29 |
+
Abstract: chess and chance are seemingly strange bedfellows luck andor randomness have no apparent role in mov...
|
30 |
+
|
31 |
+
Domain: Biology
|
32 |
+
Categories: q-bio.MN
|
33 |
+
Abstract: in the simplest view of transcriptional regulation the expression of a gene is turned on or off by c...
|
34 |
+
/linkhome/rech/genrug01/uft12cr/.local/lib/python3.11/site-packages/transformers/tokenization_utils_base.py:2057: FutureWarning: Calling BertTokenizer.from_pretrained() with the path to a single file or url is deprecated and won't be possible anymore in v5. Use a model identifier or the path to a directory instead.
|
35 |
+
warnings.warn(
|
36 |
+
|
37 |
+
Training with All Cluster tokenizer:
|
38 |
+
Vocabulary size: 16005
|
39 |
+
Could not load pretrained weights from /linkhome/rech/genrug01/uft12cr/bert_Model. Starting with random weights. Error: It looks like the config file at '/linkhome/rech/genrug01/uft12cr/bert_Model/config.json' is not a valid JSON file.
|
40 |
+
Initialized model with vocabulary size: 16005
|
41 |
+
/gpfsdswork/projects/rech/fmr/uft12cr/finetuneAli/OnlyGeneralTokenizer.py:172: FutureWarning: `torch.cuda.amp.GradScaler(args...)` is deprecated. Please use `torch.amp.GradScaler('cuda', args...)` instead.
|
42 |
+
scaler = amp.GradScaler()
|
43 |
+
Batch 0:
|
44 |
+
input_ids shape: torch.Size([16, 256])
|
45 |
+
attention_mask shape: torch.Size([16, 256])
|
46 |
+
labels shape: torch.Size([16])
|
47 |
+
input_ids max value: 16003
|
48 |
+
Vocab size: 16005
|
49 |
+
/gpfsdswork/projects/rech/fmr/uft12cr/finetuneAli/OnlyGeneralTokenizer.py:192: FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead.
|
50 |
+
with amp.autocast():
|
51 |
+
Batch 100:
|
52 |
+
input_ids shape: torch.Size([16, 256])
|
53 |
+
attention_mask shape: torch.Size([16, 256])
|
54 |
+
labels shape: torch.Size([16])
|
55 |
+
input_ids max value: 16003
|
56 |
+
Vocab size: 16005
|
57 |
+
Batch 200:
|
58 |
+
input_ids shape: torch.Size([16, 256])
|
59 |
+
attention_mask shape: torch.Size([16, 256])
|
60 |
+
labels shape: torch.Size([16])
|
61 |
+
input_ids max value: 16003
|
62 |
+
Vocab size: 16005
|
63 |
+
Batch 300:
|
64 |
+
input_ids shape: torch.Size([16, 256])
|
65 |
+
attention_mask shape: torch.Size([16, 256])
|
66 |
+
labels shape: torch.Size([16])
|
67 |
+
input_ids max value: 16003
|
68 |
+
Vocab size: 16005
|
69 |
+
Batch 400:
|
70 |
+
input_ids shape: torch.Size([16, 256])
|
71 |
+
attention_mask shape: torch.Size([16, 256])
|
72 |
+
labels shape: torch.Size([16])
|
73 |
+
input_ids max value: 16003
|
74 |
+
Vocab size: 16005
|
75 |
+
Batch 500:
|
76 |
+
input_ids shape: torch.Size([16, 256])
|
77 |
+
attention_mask shape: torch.Size([16, 256])
|
78 |
+
labels shape: torch.Size([16])
|
79 |
+
input_ids max value: 16003
|
80 |
+
Vocab size: 16005
|
81 |
+
Batch 600:
|
82 |
+
input_ids shape: torch.Size([16, 256])
|
83 |
+
attention_mask shape: torch.Size([16, 256])
|
84 |
+
labels shape: torch.Size([16])
|
85 |
+
input_ids max value: 16003
|
86 |
+
Vocab size: 16005
|
87 |
+
Batch 700:
|
88 |
+
input_ids shape: torch.Size([16, 256])
|
89 |
+
attention_mask shape: torch.Size([16, 256])
|
90 |
+
labels shape: torch.Size([16])
|
91 |
+
input_ids max value: 16003
|
92 |
+
Vocab size: 16005
|
93 |
+
Batch 800:
|
94 |
+
input_ids shape: torch.Size([16, 256])
|
95 |
+
attention_mask shape: torch.Size([16, 256])
|
96 |
+
labels shape: torch.Size([16])
|
97 |
+
input_ids max value: 16003
|
98 |
+
Vocab size: 16005
|
99 |
+
Batch 900:
|
100 |
+
input_ids shape: torch.Size([16, 256])
|
101 |
+
attention_mask shape: torch.Size([16, 256])
|
102 |
+
labels shape: torch.Size([16])
|
103 |
+
input_ids max value: 16003
|
104 |
+
Vocab size: 16005
|
105 |
+
Epoch 1/3:
|
106 |
+
Val Accuracy: 0.7549, Val F1: 0.6896
|
107 |
+
Batch 0:
|
108 |
+
input_ids shape: torch.Size([16, 256])
|
109 |
+
attention_mask shape: torch.Size([16, 256])
|
110 |
+
labels shape: torch.Size([16])
|
111 |
+
input_ids max value: 16003
|
112 |
+
Vocab size: 16005
|
113 |
+
/gpfsdswork/projects/rech/fmr/uft12cr/finetuneAli/OnlyGeneralTokenizer.py:192: FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead.
|
114 |
+
with amp.autocast():
|
115 |
+
Batch 100:
|
116 |
+
input_ids shape: torch.Size([16, 256])
|
117 |
+
attention_mask shape: torch.Size([16, 256])
|
118 |
+
labels shape: torch.Size([16])
|
119 |
+
input_ids max value: 16003
|
120 |
+
Vocab size: 16005
|
121 |
+
Batch 200:
|
122 |
+
input_ids shape: torch.Size([16, 256])
|
123 |
+
attention_mask shape: torch.Size([16, 256])
|
124 |
+
labels shape: torch.Size([16])
|
125 |
+
input_ids max value: 16003
|
126 |
+
Vocab size: 16005
|
127 |
+
Batch 300:
|
128 |
+
input_ids shape: torch.Size([16, 256])
|
129 |
+
attention_mask shape: torch.Size([16, 256])
|
130 |
+
labels shape: torch.Size([16])
|
131 |
+
input_ids max value: 16003
|
132 |
+
Vocab size: 16005
|
133 |
+
Batch 400:
|
134 |
+
input_ids shape: torch.Size([16, 256])
|
135 |
+
attention_mask shape: torch.Size([16, 256])
|
136 |
+
labels shape: torch.Size([16])
|
137 |
+
input_ids max value: 16003
|
138 |
+
Vocab size: 16005
|
139 |
+
Batch 500:
|
140 |
+
input_ids shape: torch.Size([16, 256])
|
141 |
+
attention_mask shape: torch.Size([16, 256])
|
142 |
+
labels shape: torch.Size([16])
|
143 |
+
input_ids max value: 16003
|
144 |
+
Vocab size: 16005
|
145 |
+
Batch 600:
|
146 |
+
input_ids shape: torch.Size([16, 256])
|
147 |
+
attention_mask shape: torch.Size([16, 256])
|
148 |
+
labels shape: torch.Size([16])
|
149 |
+
input_ids max value: 16003
|
150 |
+
Vocab size: 16005
|
151 |
+
Batch 700:
|
152 |
+
input_ids shape: torch.Size([16, 256])
|
153 |
+
attention_mask shape: torch.Size([16, 256])
|
154 |
+
labels shape: torch.Size([16])
|
155 |
+
input_ids max value: 16003
|
156 |
+
Vocab size: 16005
|
157 |
+
Batch 800:
|
158 |
+
input_ids shape: torch.Size([16, 256])
|
159 |
+
attention_mask shape: torch.Size([16, 256])
|
160 |
+
labels shape: torch.Size([16])
|
161 |
+
input_ids max value: 16003
|
162 |
+
Vocab size: 16005
|
163 |
+
Batch 900:
|
164 |
+
input_ids shape: torch.Size([16, 256])
|
165 |
+
attention_mask shape: torch.Size([16, 256])
|
166 |
+
labels shape: torch.Size([16])
|
167 |
+
input_ids max value: 16003
|
168 |
+
Vocab size: 16005
|
169 |
+
Epoch 2/3:
|
170 |
+
Val Accuracy: 0.7473, Val F1: 0.7221
|
171 |
+
Batch 0:
|
172 |
+
input_ids shape: torch.Size([16, 256])
|
173 |
+
attention_mask shape: torch.Size([16, 256])
|
174 |
+
labels shape: torch.Size([16])
|
175 |
+
input_ids max value: 16003
|
176 |
+
Vocab size: 16005
|
177 |
+
/gpfsdswork/projects/rech/fmr/uft12cr/finetuneAli/OnlyGeneralTokenizer.py:192: FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead.
|
178 |
+
with amp.autocast():
|
179 |
+
Batch 100:
|
180 |
+
input_ids shape: torch.Size([16, 256])
|
181 |
+
attention_mask shape: torch.Size([16, 256])
|
182 |
+
labels shape: torch.Size([16])
|
183 |
+
input_ids max value: 16003
|
184 |
+
Vocab size: 16005
|
185 |
+
Batch 200:
|
186 |
+
input_ids shape: torch.Size([16, 256])
|
187 |
+
attention_mask shape: torch.Size([16, 256])
|
188 |
+
labels shape: torch.Size([16])
|
189 |
+
input_ids max value: 16003
|
190 |
+
Vocab size: 16005
|
191 |
+
Batch 300:
|
192 |
+
input_ids shape: torch.Size([16, 256])
|
193 |
+
attention_mask shape: torch.Size([16, 256])
|
194 |
+
labels shape: torch.Size([16])
|
195 |
+
input_ids max value: 16003
|
196 |
+
Vocab size: 16005
|
197 |
+
Batch 400:
|
198 |
+
input_ids shape: torch.Size([16, 256])
|
199 |
+
attention_mask shape: torch.Size([16, 256])
|
200 |
+
labels shape: torch.Size([16])
|
201 |
+
input_ids max value: 16003
|
202 |
+
Vocab size: 16005
|
203 |
+
Batch 500:
|
204 |
+
input_ids shape: torch.Size([16, 256])
|
205 |
+
attention_mask shape: torch.Size([16, 256])
|
206 |
+
labels shape: torch.Size([16])
|
207 |
+
input_ids max value: 16003
|
208 |
+
Vocab size: 16005
|
209 |
+
Batch 600:
|
210 |
+
input_ids shape: torch.Size([16, 256])
|
211 |
+
attention_mask shape: torch.Size([16, 256])
|
212 |
+
labels shape: torch.Size([16])
|
213 |
+
input_ids max value: 16003
|
214 |
+
Vocab size: 16005
|
215 |
+
Batch 700:
|
216 |
+
input_ids shape: torch.Size([16, 256])
|
217 |
+
attention_mask shape: torch.Size([16, 256])
|
218 |
+
labels shape: torch.Size([16])
|
219 |
+
input_ids max value: 16003
|
220 |
+
Vocab size: 16005
|
221 |
+
Batch 800:
|
222 |
+
input_ids shape: torch.Size([16, 256])
|
223 |
+
attention_mask shape: torch.Size([16, 256])
|
224 |
+
labels shape: torch.Size([16])
|
225 |
+
input_ids max value: 16003
|
226 |
+
Vocab size: 16005
|
227 |
+
Batch 900:
|
228 |
+
input_ids shape: torch.Size([16, 256])
|
229 |
+
attention_mask shape: torch.Size([16, 256])
|
230 |
+
labels shape: torch.Size([16])
|
231 |
+
input_ids max value: 16003
|
232 |
+
Vocab size: 16005
|
233 |
+
Epoch 3/3:
|
234 |
+
Val Accuracy: 0.8081, Val F1: 0.7870
|
235 |
+
|
236 |
+
Test Results for All Cluster tokenizer:
|
237 |
+
Accuracy: 0.8084
|
238 |
+
F1 Score: 0.7874
|
239 |
+
AUC-ROC: 0.8421
|
240 |
+
|
241 |
+
Training with Final tokenizer:
|
242 |
+
Vocabulary size: 15253
|
243 |
+
Could not load pretrained weights from /linkhome/rech/genrug01/uft12cr/bert_Model. Starting with random weights. Error: It looks like the config file at '/linkhome/rech/genrug01/uft12cr/bert_Model/config.json' is not a valid JSON file.
|
244 |
+
Initialized model with vocabulary size: 15253
|
245 |
+
/gpfsdswork/projects/rech/fmr/uft12cr/finetuneAli/OnlyGeneralTokenizer.py:172: FutureWarning: `torch.cuda.amp.GradScaler(args...)` is deprecated. Please use `torch.amp.GradScaler('cuda', args...)` instead.
|
246 |
+
scaler = amp.GradScaler()
|
247 |
+
Batch 0:
|
248 |
+
input_ids shape: torch.Size([16, 256])
|
249 |
+
attention_mask shape: torch.Size([16, 256])
|
250 |
+
labels shape: torch.Size([16])
|
251 |
+
input_ids max value: 15252
|
252 |
+
Vocab size: 15253
|
253 |
+
/gpfsdswork/projects/rech/fmr/uft12cr/finetuneAli/OnlyGeneralTokenizer.py:192: FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead.
|
254 |
+
with amp.autocast():
|
255 |
+
Batch 100:
|
256 |
+
input_ids shape: torch.Size([16, 256])
|
257 |
+
attention_mask shape: torch.Size([16, 256])
|
258 |
+
labels shape: torch.Size([16])
|
259 |
+
input_ids max value: 15252
|
260 |
+
Vocab size: 15253
|
261 |
+
Batch 200:
|
262 |
+
input_ids shape: torch.Size([16, 256])
|
263 |
+
attention_mask shape: torch.Size([16, 256])
|
264 |
+
labels shape: torch.Size([16])
|
265 |
+
input_ids max value: 15252
|
266 |
+
Vocab size: 15253
|
267 |
+
Batch 300:
|
268 |
+
input_ids shape: torch.Size([16, 256])
|
269 |
+
attention_mask shape: torch.Size([16, 256])
|
270 |
+
labels shape: torch.Size([16])
|
271 |
+
input_ids max value: 15252
|
272 |
+
Vocab size: 15253
|
273 |
+
Batch 400:
|
274 |
+
input_ids shape: torch.Size([16, 256])
|
275 |
+
attention_mask shape: torch.Size([16, 256])
|
276 |
+
labels shape: torch.Size([16])
|
277 |
+
input_ids max value: 15252
|
278 |
+
Vocab size: 15253
|
279 |
+
Batch 500:
|
280 |
+
input_ids shape: torch.Size([16, 256])
|
281 |
+
attention_mask shape: torch.Size([16, 256])
|
282 |
+
labels shape: torch.Size([16])
|
283 |
+
input_ids max value: 15252
|
284 |
+
Vocab size: 15253
|
285 |
+
Batch 600:
|
286 |
+
input_ids shape: torch.Size([16, 256])
|
287 |
+
attention_mask shape: torch.Size([16, 256])
|
288 |
+
labels shape: torch.Size([16])
|
289 |
+
input_ids max value: 15252
|
290 |
+
Vocab size: 15253
|
291 |
+
Batch 700:
|
292 |
+
input_ids shape: torch.Size([16, 256])
|
293 |
+
attention_mask shape: torch.Size([16, 256])
|
294 |
+
labels shape: torch.Size([16])
|
295 |
+
input_ids max value: 15252
|
296 |
+
Vocab size: 15253
|
297 |
+
Batch 800:
|
298 |
+
input_ids shape: torch.Size([16, 256])
|
299 |
+
attention_mask shape: torch.Size([16, 256])
|
300 |
+
labels shape: torch.Size([16])
|
301 |
+
input_ids max value: 15252
|
302 |
+
Vocab size: 15253
|
303 |
+
Batch 900:
|
304 |
+
input_ids shape: torch.Size([16, 256])
|
305 |
+
attention_mask shape: torch.Size([16, 256])
|
306 |
+
labels shape: torch.Size([16])
|
307 |
+
input_ids max value: 15252
|
308 |
+
Vocab size: 15253
|
309 |
+
Epoch 1/3:
|
310 |
+
Val Accuracy: 0.7096, Val F1: 0.6564
|
311 |
+
Batch 0:
|
312 |
+
input_ids shape: torch.Size([16, 256])
|
313 |
+
attention_mask shape: torch.Size([16, 256])
|
314 |
+
labels shape: torch.Size([16])
|
315 |
+
input_ids max value: 15252
|
316 |
+
Vocab size: 15253
|
317 |
+
/gpfsdswork/projects/rech/fmr/uft12cr/finetuneAli/OnlyGeneralTokenizer.py:192: FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead.
|
318 |
+
with amp.autocast():
|
319 |
+
Batch 100:
|
320 |
+
input_ids shape: torch.Size([16, 256])
|
321 |
+
attention_mask shape: torch.Size([16, 256])
|
322 |
+
labels shape: torch.Size([16])
|
323 |
+
input_ids max value: 15252
|
324 |
+
Vocab size: 15253
|
325 |
+
Batch 200:
|
326 |
+
input_ids shape: torch.Size([16, 256])
|
327 |
+
attention_mask shape: torch.Size([16, 256])
|
328 |
+
labels shape: torch.Size([16])
|
329 |
+
input_ids max value: 15252
|
330 |
+
Vocab size: 15253
|
331 |
+
Batch 300:
|
332 |
+
input_ids shape: torch.Size([16, 256])
|
333 |
+
attention_mask shape: torch.Size([16, 256])
|
334 |
+
labels shape: torch.Size([16])
|
335 |
+
input_ids max value: 15252
|
336 |
+
Vocab size: 15253
|
337 |
+
Batch 400:
|
338 |
+
input_ids shape: torch.Size([16, 256])
|
339 |
+
attention_mask shape: torch.Size([16, 256])
|
340 |
+
labels shape: torch.Size([16])
|
341 |
+
input_ids max value: 15252
|
342 |
+
Vocab size: 15253
|
343 |
+
Batch 500:
|
344 |
+
input_ids shape: torch.Size([16, 256])
|
345 |
+
attention_mask shape: torch.Size([16, 256])
|
346 |
+
labels shape: torch.Size([16])
|
347 |
+
input_ids max value: 15252
|
348 |
+
Vocab size: 15253
|
349 |
+
Batch 600:
|
350 |
+
input_ids shape: torch.Size([16, 256])
|
351 |
+
attention_mask shape: torch.Size([16, 256])
|
352 |
+
labels shape: torch.Size([16])
|
353 |
+
input_ids max value: 15252
|
354 |
+
Vocab size: 15253
|
355 |
+
Batch 700:
|
356 |
+
input_ids shape: torch.Size([16, 256])
|
357 |
+
attention_mask shape: torch.Size([16, 256])
|
358 |
+
labels shape: torch.Size([16])
|
359 |
+
input_ids max value: 15252
|
360 |
+
Vocab size: 15253
|
361 |
+
Batch 800:
|
362 |
+
input_ids shape: torch.Size([16, 256])
|
363 |
+
attention_mask shape: torch.Size([16, 256])
|
364 |
+
labels shape: torch.Size([16])
|
365 |
+
input_ids max value: 15252
|
366 |
+
Vocab size: 15253
|
367 |
+
Batch 900:
|
368 |
+
input_ids shape: torch.Size([16, 256])
|
369 |
+
attention_mask shape: torch.Size([16, 256])
|
370 |
+
labels shape: torch.Size([16])
|
371 |
+
input_ids max value: 15252
|
372 |
+
Vocab size: 15253
|
373 |
+
Epoch 2/3:
|
374 |
+
Val Accuracy: 0.7246, Val F1: 0.6799
|
375 |
+
Batch 0:
|
376 |
+
input_ids shape: torch.Size([16, 256])
|
377 |
+
attention_mask shape: torch.Size([16, 256])
|
378 |
+
labels shape: torch.Size([16])
|
379 |
+
input_ids max value: 15252
|
380 |
+
Vocab size: 15253
|
381 |
+
/gpfsdswork/projects/rech/fmr/uft12cr/finetuneAli/OnlyGeneralTokenizer.py:192: FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead.
|
382 |
+
with amp.autocast():
|
383 |
+
Batch 100:
|
384 |
+
input_ids shape: torch.Size([16, 256])
|
385 |
+
attention_mask shape: torch.Size([16, 256])
|
386 |
+
labels shape: torch.Size([16])
|
387 |
+
input_ids max value: 15252
|
388 |
+
Vocab size: 15253
|
389 |
+
Batch 200:
|
390 |
+
input_ids shape: torch.Size([16, 256])
|
391 |
+
attention_mask shape: torch.Size([16, 256])
|
392 |
+
labels shape: torch.Size([16])
|
393 |
+
input_ids max value: 15252
|
394 |
+
Vocab size: 15253
|
395 |
+
Batch 300:
|
396 |
+
input_ids shape: torch.Size([16, 256])
|
397 |
+
attention_mask shape: torch.Size([16, 256])
|
398 |
+
labels shape: torch.Size([16])
|
399 |
+
input_ids max value: 15252
|
400 |
+
Vocab size: 15253
|
401 |
+
Batch 400:
|
402 |
+
input_ids shape: torch.Size([16, 256])
|
403 |
+
attention_mask shape: torch.Size([16, 256])
|
404 |
+
labels shape: torch.Size([16])
|
405 |
+
input_ids max value: 15252
|
406 |
+
Vocab size: 15253
|
407 |
+
Batch 500:
|
408 |
+
input_ids shape: torch.Size([16, 256])
|
409 |
+
attention_mask shape: torch.Size([16, 256])
|
410 |
+
labels shape: torch.Size([16])
|
411 |
+
input_ids max value: 15252
|
412 |
+
Vocab size: 15253
|
413 |
+
Batch 600:
|
414 |
+
input_ids shape: torch.Size([16, 256])
|
415 |
+
attention_mask shape: torch.Size([16, 256])
|
416 |
+
labels shape: torch.Size([16])
|
417 |
+
input_ids max value: 15252
|
418 |
+
Vocab size: 15253
|
419 |
+
Batch 700:
|
420 |
+
input_ids shape: torch.Size([16, 256])
|
421 |
+
attention_mask shape: torch.Size([16, 256])
|
422 |
+
labels shape: torch.Size([16])
|
423 |
+
input_ids max value: 15252
|
424 |
+
Vocab size: 15253
|
425 |
+
Batch 800:
|
426 |
+
input_ids shape: torch.Size([16, 256])
|
427 |
+
attention_mask shape: torch.Size([16, 256])
|
428 |
+
labels shape: torch.Size([16])
|
429 |
+
input_ids max value: 15252
|
430 |
+
Vocab size: 15253
|
431 |
+
Batch 900:
|
432 |
+
input_ids shape: torch.Size([16, 256])
|
433 |
+
attention_mask shape: torch.Size([16, 256])
|
434 |
+
labels shape: torch.Size([16])
|
435 |
+
input_ids max value: 15252
|
436 |
+
Vocab size: 15253
|
437 |
+
Epoch 3/3:
|
438 |
+
Val Accuracy: 0.7661, Val F1: 0.7440
|
439 |
+
|
440 |
+
Test Results for Final tokenizer:
|
441 |
+
Accuracy: 0.7661
|
442 |
+
F1 Score: 0.7441
|
443 |
+
AUC-ROC: 0.8256
|
444 |
+
|
445 |
+
Training with General tokenizer:
|
446 |
+
Vocabulary size: 30522
|
447 |
+
Could not load pretrained weights from /linkhome/rech/genrug01/uft12cr/bert_Model. Starting with random weights. Error: It looks like the config file at '/linkhome/rech/genrug01/uft12cr/bert_Model/config.json' is not a valid JSON file.
|
448 |
+
Initialized model with vocabulary size: 30522
|
449 |
+
/gpfsdswork/projects/rech/fmr/uft12cr/finetuneAli/OnlyGeneralTokenizer.py:172: FutureWarning: `torch.cuda.amp.GradScaler(args...)` is deprecated. Please use `torch.amp.GradScaler('cuda', args...)` instead.
|
450 |
+
scaler = amp.GradScaler()
|
451 |
+
Batch 0:
|
452 |
+
input_ids shape: torch.Size([16, 256])
|
453 |
+
attention_mask shape: torch.Size([16, 256])
|
454 |
+
labels shape: torch.Size([16])
|
455 |
+
input_ids max value: 29464
|
456 |
+
Vocab size: 30522
|
457 |
+
/gpfsdswork/projects/rech/fmr/uft12cr/finetuneAli/OnlyGeneralTokenizer.py:192: FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead.
|
458 |
+
with amp.autocast():
|
459 |
+
Batch 100:
|
460 |
+
input_ids shape: torch.Size([16, 256])
|
461 |
+
attention_mask shape: torch.Size([16, 256])
|
462 |
+
labels shape: torch.Size([16])
|
463 |
+
input_ids max value: 29536
|
464 |
+
Vocab size: 30522
|
465 |
+
Batch 200:
|
466 |
+
input_ids shape: torch.Size([16, 256])
|
467 |
+
attention_mask shape: torch.Size([16, 256])
|
468 |
+
labels shape: torch.Size([16])
|
469 |
+
input_ids max value: 29464
|
470 |
+
Vocab size: 30522
|
471 |
+
Batch 300:
|
472 |
+
input_ids shape: torch.Size([16, 256])
|
473 |
+
attention_mask shape: torch.Size([16, 256])
|
474 |
+
labels shape: torch.Size([16])
|
475 |
+
input_ids max value: 29402
|
476 |
+
Vocab size: 30522
|
477 |
+
Batch 400:
|
478 |
+
input_ids shape: torch.Size([16, 256])
|
479 |
+
attention_mask shape: torch.Size([16, 256])
|
480 |
+
labels shape: torch.Size([16])
|
481 |
+
input_ids max value: 29535
|
482 |
+
Vocab size: 30522
|
483 |
+
Batch 500:
|
484 |
+
input_ids shape: torch.Size([16, 256])
|
485 |
+
attention_mask shape: torch.Size([16, 256])
|
486 |
+
labels shape: torch.Size([16])
|
487 |
+
input_ids max value: 29494
|
488 |
+
Vocab size: 30522
|
489 |
+
Batch 600:
|
490 |
+
input_ids shape: torch.Size([16, 256])
|
491 |
+
attention_mask shape: torch.Size([16, 256])
|
492 |
+
labels shape: torch.Size([16])
|
493 |
+
input_ids max value: 29454
|
494 |
+
Vocab size: 30522
|
495 |
+
Batch 700:
|
496 |
+
input_ids shape: torch.Size([16, 256])
|
497 |
+
attention_mask shape: torch.Size([16, 256])
|
498 |
+
labels shape: torch.Size([16])
|
499 |
+
input_ids max value: 29413
|
500 |
+
Vocab size: 30522
|
501 |
+
Batch 800:
|
502 |
+
input_ids shape: torch.Size([16, 256])
|
503 |
+
attention_mask shape: torch.Size([16, 256])
|
504 |
+
labels shape: torch.Size([16])
|
505 |
+
input_ids max value: 28993
|
506 |
+
Vocab size: 30522
|
507 |
+
Batch 900:
|
508 |
+
input_ids shape: torch.Size([16, 256])
|
509 |
+
attention_mask shape: torch.Size([16, 256])
|
510 |
+
labels shape: torch.Size([16])
|
511 |
+
input_ids max value: 29602
|
512 |
+
Vocab size: 30522
|
513 |
+
Epoch 1/3:
|
514 |
+
Val Accuracy: 0.7601, Val F1: 0.7079
|
515 |
+
Batch 0:
|
516 |
+
input_ids shape: torch.Size([16, 256])
|
517 |
+
attention_mask shape: torch.Size([16, 256])
|
518 |
+
labels shape: torch.Size([16])
|
519 |
+
input_ids max value: 29413
|
520 |
+
Vocab size: 30522
|
521 |
+
/gpfsdswork/projects/rech/fmr/uft12cr/finetuneAli/OnlyGeneralTokenizer.py:192: FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead.
|
522 |
+
with amp.autocast():
|
523 |
+
Batch 100:
|
524 |
+
input_ids shape: torch.Size([16, 256])
|
525 |
+
attention_mask shape: torch.Size([16, 256])
|
526 |
+
labels shape: torch.Size([16])
|
527 |
+
input_ids max value: 29413
|
528 |
+
Vocab size: 30522
|
529 |
+
Batch 200:
|
530 |
+
input_ids shape: torch.Size([16, 256])
|
531 |
+
attention_mask shape: torch.Size([16, 256])
|
532 |
+
labels shape: torch.Size([16])
|
533 |
+
input_ids max value: 29464
|
534 |
+
Vocab size: 30522
|
535 |
+
Batch 300:
|
536 |
+
input_ids shape: torch.Size([16, 256])
|
537 |
+
attention_mask shape: torch.Size([16, 256])
|
538 |
+
labels shape: torch.Size([16])
|
539 |
+
input_ids max value: 29098
|
540 |
+
Vocab size: 30522
|
541 |
+
Batch 400:
|
542 |
+
input_ids shape: torch.Size([16, 256])
|
543 |
+
attention_mask shape: torch.Size([16, 256])
|
544 |
+
labels shape: torch.Size([16])
|
545 |
+
input_ids max value: 29339
|
546 |
+
Vocab size: 30522
|
547 |
+
Batch 500:
|
548 |
+
input_ids shape: torch.Size([16, 256])
|
549 |
+
attention_mask shape: torch.Size([16, 256])
|
550 |
+
labels shape: torch.Size([16])
|
551 |
+
input_ids max value: 29560
|
552 |
+
Vocab size: 30522
|
553 |
+
Batch 600:
|
554 |
+
input_ids shape: torch.Size([16, 256])
|
555 |
+
attention_mask shape: torch.Size([16, 256])
|
556 |
+
labels shape: torch.Size([16])
|
557 |
+
input_ids max value: 29464
|
558 |
+
Vocab size: 30522
|
559 |
+
Batch 700:
|
560 |
+
input_ids shape: torch.Size([16, 256])
|
561 |
+
attention_mask shape: torch.Size([16, 256])
|
562 |
+
labels shape: torch.Size([16])
|
563 |
+
input_ids max value: 29536
|
564 |
+
Vocab size: 30522
|
565 |
+
Batch 800:
|
566 |
+
input_ids shape: torch.Size([16, 256])
|
567 |
+
attention_mask shape: torch.Size([16, 256])
|
568 |
+
labels shape: torch.Size([16])
|
569 |
+
input_ids max value: 29458
|
570 |
+
Vocab size: 30522
|
571 |
+
Batch 900:
|
572 |
+
input_ids shape: torch.Size([16, 256])
|
573 |
+
attention_mask shape: torch.Size([16, 256])
|
574 |
+
labels shape: torch.Size([16])
|
575 |
+
input_ids max value: 29413
|
576 |
+
Vocab size: 30522
|
577 |
+
Epoch 2/3:
|
578 |
+
Val Accuracy: 0.8002, Val F1: 0.7716
|
579 |
+
Batch 0:
|
580 |
+
input_ids shape: torch.Size([16, 256])
|
581 |
+
attention_mask shape: torch.Size([16, 256])
|
582 |
+
labels shape: torch.Size([16])
|
583 |
+
input_ids max value: 29536
|
584 |
+
Vocab size: 30522
|
585 |
+
/gpfsdswork/projects/rech/fmr/uft12cr/finetuneAli/OnlyGeneralTokenizer.py:192: FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead.
|
586 |
+
with amp.autocast():
|
587 |
+
Batch 100:
|
588 |
+
input_ids shape: torch.Size([16, 256])
|
589 |
+
attention_mask shape: torch.Size([16, 256])
|
590 |
+
labels shape: torch.Size([16])
|
591 |
+
input_ids max value: 29413
|
592 |
+
Vocab size: 30522
|
593 |
+
Batch 200:
|
594 |
+
input_ids shape: torch.Size([16, 256])
|
595 |
+
attention_mask shape: torch.Size([16, 256])
|
596 |
+
labels shape: torch.Size([16])
|
597 |
+
input_ids max value: 29605
|
598 |
+
Vocab size: 30522
|
599 |
+
Batch 300:
|
600 |
+
input_ids shape: torch.Size([16, 256])
|
601 |
+
attention_mask shape: torch.Size([16, 256])
|
602 |
+
labels shape: torch.Size([16])
|
603 |
+
input_ids max value: 29464
|
604 |
+
Vocab size: 30522
|
605 |
+
Batch 400:
|
606 |
+
input_ids shape: torch.Size([16, 256])
|
607 |
+
attention_mask shape: torch.Size([16, 256])
|
608 |
+
labels shape: torch.Size([16])
|
609 |
+
input_ids max value: 29237
|
610 |
+
Vocab size: 30522
|
611 |
+
Batch 500:
|
612 |
+
input_ids shape: torch.Size([16, 256])
|
613 |
+
attention_mask shape: torch.Size([16, 256])
|
614 |
+
labels shape: torch.Size([16])
|
615 |
+
input_ids max value: 29292
|
616 |
+
Vocab size: 30522
|
617 |
+
Batch 600:
|
618 |
+
input_ids shape: torch.Size([16, 256])
|
619 |
+
attention_mask shape: torch.Size([16, 256])
|
620 |
+
labels shape: torch.Size([16])
|
621 |
+
input_ids max value: 29461
|
622 |
+
Vocab size: 30522
|
623 |
+
Batch 700:
|
624 |
+
input_ids shape: torch.Size([16, 256])
|
625 |
+
attention_mask shape: torch.Size([16, 256])
|
626 |
+
labels shape: torch.Size([16])
|
627 |
+
input_ids max value: 29536
|
628 |
+
Vocab size: 30522
|
629 |
+
Batch 800:
|
630 |
+
input_ids shape: torch.Size([16, 256])
|
631 |
+
attention_mask shape: torch.Size([16, 256])
|
632 |
+
labels shape: torch.Size([16])
|
633 |
+
input_ids max value: 29536
|
634 |
+
Vocab size: 30522
|
635 |
+
Batch 900:
|
636 |
+
input_ids shape: torch.Size([16, 256])
|
637 |
+
attention_mask shape: torch.Size([16, 256])
|
638 |
+
labels shape: torch.Size([16])
|
639 |
+
input_ids max value: 29566
|
640 |
+
Vocab size: 30522
|
641 |
+
Epoch 3/3:
|
642 |
+
Val Accuracy: 0.8160, Val F1: 0.7785
|
643 |
+
|
644 |
+
Test Results for General tokenizer:
|
645 |
+
Accuracy: 0.8160
|
646 |
+
F1 Score: 0.7785
|
647 |
+
AUC-ROC: 0.8630
|
648 |
+
|
649 |
+
Summary of Results:
|
650 |
+
|
651 |
+
All Cluster Tokenizer:
|
652 |
+
Accuracy: 0.8084
|
653 |
+
F1 Score: 0.7874
|
654 |
+
AUC-ROC: 0.8421
|
655 |
+
|
656 |
+
Final Tokenizer:
|
657 |
+
Accuracy: 0.7661
|
658 |
+
F1 Score: 0.7441
|
659 |
+
AUC-ROC: 0.8256
|
660 |
+
|
661 |
+
General Tokenizer:
|
662 |
+
Accuracy: 0.8160
|
663 |
+
F1 Score: 0.7785
|
664 |
+
AUC-ROC: 0.8630
|
665 |
+
|
666 |
+
Class distribution in training set:
|
667 |
+
Class Biology: 439 samples
|
668 |
+
Class Chemistry: 454 samples
|
669 |
+
Class Computer Science: 1358 samples
|
670 |
+
Class Mathematics: 9480 samples
|
671 |
+
Class Physics: 2733 samples
|
672 |
+
Class Statistics: 200 samples
|