Checking label assignment: Domain: Mathematics Categories: cs.IT math.IT Abstract: information embedding ie is the transmission of information within a host signal subject to a distor... Domain: Computer Science Categories: cs.CY Abstract: according to socioconstructivism approach collective situations are promoted to favor learning in cl... Domain: Physics Categories: physics.pop-ph physics.optics Abstract: a method is presented for generation of a subwavelength lambda longitudinally polarized beam which p... Domain: Chemistry Categories: nlin.PS Abstract: rolls in finite prandtl number rotating convection with freeslip top and bottom boundary conditions ... Domain: Statistics Categories: stat.ME stat.CO Abstract: in this paper we introduce a novel particle filter scheme for a class of partiallyobserved multivari... Domain: Biology Categories: q-bio.PE q-bio.CB quant-ph Abstract: this is a supplement to the paper arxivqbio containing the text of correspondence sent to nature in... Training with All Cluster tokenizer: Vocabulary size: 16005 Could not load pretrained weights from /gpfswork/rech/fmr/uft12cr/finetuneAli/Bert_Model. Starting with random weights. Error: Error while deserializing header: HeaderTooLarge Initialized model with vocabulary size: 16005 Batch 0: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 16003 Vocab size: 16005 Batch 100: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 16003 Vocab size: 16005 Batch 200: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 16003 Vocab size: 16005 Batch 300: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 16003 Vocab size: 16005 Batch 400: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 16003 Vocab size: 16005 Batch 500: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 16003 Vocab size: 16005 Batch 600: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 16003 Vocab size: 16005 Batch 700: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 16003 Vocab size: 16005 Batch 800: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 16003 Vocab size: 16005 Batch 900: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 16003 Vocab size: 16005 Epoch 1/3: Train Loss: 0.9143, Train Accuracy: 0.6955 Val Loss: 0.6986, Val Accuracy: 0.7743, Val F1: 0.7502 Batch 0: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 16003 Vocab size: 16005 Batch 100: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 16003 Vocab size: 16005 Batch 200: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 16003 Vocab size: 16005 Batch 300: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 16003 Vocab size: 16005 Batch 400: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 16003 Vocab size: 16005 Batch 500: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 16003 Vocab size: 16005 Batch 600: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 16003 Vocab size: 16005 Batch 700: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 16003 Vocab size: 16005 Batch 800: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 16003 Vocab size: 16005 Batch 900: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 16003 Vocab size: 16005 Epoch 2/3: Train Loss: 0.6277, Train Accuracy: 0.7987 Val Loss: 0.6150, Val Accuracy: 0.8002, Val F1: 0.7753 Batch 0: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 16003 Vocab size: 16005 Batch 100: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 16003 Vocab size: 16005 Batch 200: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 16003 Vocab size: 16005 Batch 300: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 16003 Vocab size: 16005 Batch 400: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 16003 Vocab size: 16005 Batch 500: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 16003 Vocab size: 16005 Batch 600: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 16003 Vocab size: 16005 Batch 700: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 16003 Vocab size: 16005 Batch 800: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 16003 Vocab size: 16005 Batch 900: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 16003 Vocab size: 16005 Epoch 3/3: Train Loss: 0.5085, Train Accuracy: 0.8373 Val Loss: 0.6998, Val Accuracy: 0.7784, Val F1: 0.7468 Test Results for All Cluster tokenizer: Accuracy: 0.7781 F1 Score: 0.7465 AUC-ROC: 0.8821 Training with Final tokenizer: Vocabulary size: 15047 Could not load pretrained weights from /gpfswork/rech/fmr/uft12cr/finetuneAli/Bert_Model. Starting with random weights. Error: Error while deserializing header: HeaderTooLarge Initialized model with vocabulary size: 15047 Batch 0: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 15046 Vocab size: 15047 Batch 100: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 15046 Vocab size: 15047 Batch 200: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 15046 Vocab size: 15047 Batch 300: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 15046 Vocab size: 15047 Batch 400: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 15046 Vocab size: 15047 Batch 500: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 15046 Vocab size: 15047 Batch 600: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 15046 Vocab size: 15047 Batch 700: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 15046 Vocab size: 15047 Batch 800: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 15046 Vocab size: 15047 Batch 900: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 15046 Vocab size: 15047 Epoch 1/3: Train Loss: 0.9914, Train Accuracy: 0.6629 Val Loss: 0.8531, Val Accuracy: 0.7224, Val F1: 0.6560 Batch 0: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 15046 Vocab size: 15047 Batch 100: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 15046 Vocab size: 15047 Batch 200: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 15046 Vocab size: 15047 Batch 300: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 15046 Vocab size: 15047 Batch 400: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 15046 Vocab size: 15047 Batch 500: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 15046 Vocab size: 15047 Batch 600: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 15046 Vocab size: 15047 Batch 700: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 15046 Vocab size: 15047 Batch 800: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 15046 Vocab size: 15047 Batch 900: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 15046 Vocab size: 15047 Epoch 2/3: Train Loss: 0.7899, Train Accuracy: 0.7359 Val Loss: 0.7491, Val Accuracy: 0.7516, Val F1: 0.7260 Batch 0: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 15046 Vocab size: 15047 Batch 100: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 15046 Vocab size: 15047 Batch 200: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 15046 Vocab size: 15047 Batch 300: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 15046 Vocab size: 15047 Batch 400: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 15046 Vocab size: 15047 Batch 500: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 15046 Vocab size: 15047 Batch 600: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 15046 Vocab size: 15047 Batch 700: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 15046 Vocab size: 15047 Batch 800: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 15046 Vocab size: 15047 Batch 900: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 15046 Vocab size: 15047 Epoch 3/3: Train Loss: 0.6774, Train Accuracy: 0.7784 Val Loss: 0.7340, Val Accuracy: 0.7557, Val F1: 0.7386 Test Results for Final tokenizer: Accuracy: 0.7560 F1 Score: 0.7388 AUC-ROC: 0.8423 Training with General tokenizer: Vocabulary size: 16000 Could not load pretrained weights from /gpfswork/rech/fmr/uft12cr/finetuneAli/Bert_Model. Starting with random weights. Error: Error while deserializing header: HeaderTooLarge Initialized model with vocabulary size: 16000 Batch 0: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 15945 Vocab size: 16000 Batch 100: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 15973 Vocab size: 16000 Batch 200: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 15973 Vocab size: 16000 Batch 300: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 15984 Vocab size: 16000 Batch 400: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 15973 Vocab size: 16000 Batch 500: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 15973 Vocab size: 16000 Batch 600: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 15985 Vocab size: 16000 Batch 700: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 15985 Vocab size: 16000 Batch 800: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 15973 Vocab size: 16000 Batch 900: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 15901 Vocab size: 16000 Epoch 1/3: Train Loss: 0.8970, Train Accuracy: 0.7058 Val Loss: 0.7586, Val Accuracy: 0.7604, Val F1: 0.6892 Batch 0: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 15873 Vocab size: 16000 Batch 100: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 15950 Vocab size: 16000 Batch 200: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 15985 Vocab size: 16000 Batch 300: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 15973 Vocab size: 16000 Batch 400: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 15985 Vocab size: 16000 Batch 500: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 15992 Vocab size: 16000 Batch 600: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 15928 Vocab size: 16000 Batch 700: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 15980 Vocab size: 16000 Batch 800: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 15973 Vocab size: 16000 Batch 900: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 15973 Vocab size: 16000 Epoch 2/3: Train Loss: 0.6461, Train Accuracy: 0.7883 Val Loss: 0.5972, Val Accuracy: 0.8024, Val F1: 0.7585 Batch 0: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 15973 Vocab size: 16000 Batch 100: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 15871 Vocab size: 16000 Batch 200: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 15985 Vocab size: 16000 Batch 300: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 15973 Vocab size: 16000 Batch 400: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 15987 Vocab size: 16000 Batch 500: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 15973 Vocab size: 16000 Batch 600: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 15973 Vocab size: 16000 Batch 700: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 15973 Vocab size: 16000 Batch 800: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 15973 Vocab size: 16000 Batch 900: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 15956 Vocab size: 16000 Epoch 3/3: Train Loss: 0.5426, Train Accuracy: 0.8275 Val Loss: 0.5413, Val Accuracy: 0.8275, Val F1: 0.7986 Test Results for General tokenizer: Accuracy: 0.8281 F1 Score: 0.7992 AUC-ROC: 0.8504 Summary of Results: All Cluster Tokenizer: Accuracy: 0.7781 F1 Score: 0.7465 AUC-ROC: 0.8821 Final Tokenizer: Accuracy: 0.7560 F1 Score: 0.7388 AUC-ROC: 0.8423 General Tokenizer: Accuracy: 0.8281 F1 Score: 0.7992 AUC-ROC: 0.8504 Class distribution in training set: Class Biology: 439 samples Class Chemistry: 454 samples Class Computer Science: 1358 samples Class Mathematics: 9480 samples Class Physics: 2733 samples Class Statistics: 200 samples