File size: 16,326 Bytes
2ea1065 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 |
"""
Copyright (c) 2023, salesforce.com, inc.
All rights reserved.
SPDX-License-Identifier: Apache License 2.0
For full license text, see the LICENSE file in the repo root or https://www.apache.org/licenses/LICENSE-2.0
"""
#!/usr/bin/env python3
#
import sys, os, pdb
import json
import shutil, errno
from tqdm import tqdm
import pandas as pd
from utils.constant import *
class PreProcessData(object):
"""docstring for PreProcessData"""
def __init__(self):
super(PreProcessData, self).__init__()
self.data_dir = "/path/to/where/the/raw/dataset/is"
self.save_dir = "/path/to/store/the/processed/dataset/" # e.g. ./data/processed/Knowledge-Grounded
def _load_json(self, path=None):
if path is None or not os.path.exists(path):
raise IOError('File does not exist: %s' % path)
# return None
with open(path) as df:
data = json.loads(df.read())
return data
def _load_txt(self, path=None, split_tok="\n"):
if path is None or not os.path.exists(path):
raise IOError('File does not exist: %s' % path)
with open(path) as df:
data = df.read().strip().split(split_tok)
return data
def _load_csv(self, path=None, sep="\t"):
if path is None or not os.path.exists(path):
raise IOError('File does not exist: %s' % path)
with open(path) as df:
data = pd.read_csv(df, sep=sep)
return data
def _load_jsonl(self, path=None):
if path is None or not os.path.exists(path):
raise IOError('File does not exist: %s' % path)
data = []
with open(path) as df:
for line in df.readlines():
data.append(json.loads(line))
return data
def _load_dir_json(self, dir_path=None):
if dir_path is None or not os.path.exists(dir_path): return None
total_data = [] # assume data is a list of dialogs
for filename in sorted(os.listdir(dir_path)):
if filename in ["schema.json"]: continue
if not filename.endswith(".json"): continue
file_path = os.path.join(dir_path, filename)
data = self._load_json(path=file_path)
if type(data) == list:
total_data.extend(data)
else:
total_data.append(data)
return total_data
def _load_dir_txt(self, dir_path=None, file_type="txt"):
if dir_path is None or not os.path.exists(dir_path): return None
total_data = [] # assume data is a list of dialogs
for filename in sorted(os.listdir(dir_path)):
if not filename.endswith(file_type): continue
file_path = os.path.join(dir_path, filename)
data = self._load_txt(path=file_path)
if type(data) == list:
total_data.extend(data)
else:
total_data.append(data)
return total_data
def _load_dir_tsv(self, dir_path=None, sep="\t"):
if dir_path is None or not os.path.exists(dir_path): return None
total_data = None
for filename in sorted(os.listdir(dir_path)):
file_path = os.path.join(dir_path, filename)
data = self._load_csv(path=file_path, sep=sep)
total_data = pd.concat([total_data, data], ignore_index=True)
return total_data
def _save_json(self, data, path):
with open(path, "w") as tf:
json.dump(data, tf, indent=4)
def init_dial(self, dial_idx=0, ori_dial_id=""):
dial = {
ORI_DIAL_ID: "",
DIAL_IDX: dial_idx,
ORI_DIAL_INFO: {},
LOG: [],
# EK_ORI: {
# TOD_EK:{},
# },
# EK: "",
PROMPT: [],
}
return dial
def init_turn(self, turn_id=0, dial_hist=[]):
turn = {
TURN_ID: int(turn_id),
USR_UTT: "",
SYS_UTT: "",
DIAL_HIST: " ".join(dial_hist),
ORI_USR_ANN: {},
ORI_SYS_ANN: {},
EK_ORI: {
TOD_EK:{},
},
EK: "",
}
return turn
def save_dial(self, data, data_name="", file_idx=0, mode="train"):
save_name = f"dialogues_{file_idx}.json"
folder_path = os.path.join(self.save_dir, data_name, mode)
if not os.path.exists(folder_path): os.makedirs(folder_path)
path = os.path.join(folder_path, save_name)
self._save_json(data, path)
def save_original_examples(self, examples, data_name):
"""
save 5 original data points just for reference and check
data would be a list of length 5, each entry is a dialog
in the form of dictionary
"""
path = os.path.join(self.save_dir, data_name, "original_examples.json")
self._save_json(examples, path)
print("original examples saved")
def save_converted_examples(self, data_name):
"""
extract the first 5 examples from the train set of the
already processed data, just for reference and check
"""
data = self._load_json(os.path.join(self.save_dir, data_name, "train/dialogues_1.json"))
examples = {key: data[key] for key in list(data.keys())[:5]}
self._save_json(examples, os.path.join(self.save_dir, data_name, "converted_examples.json"))
print("converted examples saved")
def dict_to_str(self, ek_ori):
"""
turn non-flat external knowledge into string
original format:
"metadata":{
domain: [
{
attr1: value1,
attr2: value2,
...
},
...
]
}
output format:
( metadata : ( domain : ( attr1 : value1 | attr2 : value2 | ... ) | ( ... ) | ... ))
"""
ek = str(ek_ori).replace("'"," ").replace(", "," | ")
ek = ek.replace("{","(").replace("}",")").replace("[","(").replace("]",")")
ek = ek.replace(" ", " ")
return ek
def wow(self):
"""
Speakers: Apprentice (always starts a turn), Wizard (ends a turn)
turn-level EK only
checked facts:
"""
data_name = "wizard_of_wikipedia"
for mode in ["train", "val", "test"]:
if mode == "train": filename = "train.json"
elif mode == "val": filename = "valid_topic_split.json"
else: filename = "test_topic_split.json"
data = self._load_json(os.path.join(self.data_dir, data_name, filename))
new_data, file_idx = {}, 1
for dial_idx, dial in tqdm(enumerate(data)):
new_dial = self.init_dial(dial_idx=dial_idx+1)
new_dial_id = f"{data_name}--{mode}--{dial_idx+1}"
new_dial[ORI_DIAL_INFO]["chosen_topic"] = dial["chosen_topic"]
new_dial[ORI_DIAL_INFO]["persona"] = dial["persona"]
new_dial[ORI_DIAL_INFO]["wizard_eval"] = dial["wizard_eval"]
new_dial[ORI_DIAL_INFO]["chosen_topic_passage"] = dial["chosen_topic_passage"]
turn_idx, dial_hist = 1, []
new_turn = self.init_turn(turn_id=turn_idx)
for turn in (dial["dialog"]):
if turn["speaker"].split("_")[-1] == "Apprentice":
new_turn = self.init_turn(turn_id=turn_idx)
new_turn[DIAL_HIST] = " ".join(dial_hist)
for key_ in turn:
if key_ == "text":
new_turn[USR_UTT] = turn["text"]
else:
new_turn[ORI_USR_ANN][key_] = turn[key_]
dial_hist.append(f"<{SPEAKER1.upper()}> " + new_turn[USR_UTT])
elif turn["speaker"].split("_")[-1] == "Wizard":
for key_ in turn:
if key_ == "text":
new_turn[SYS_UTT] = turn["text"]
else:
new_turn[ORI_SYS_ANN][key_] = turn[key_]
dial_hist.append(f"<{SPEAKER2.upper()}> " + new_turn[SYS_UTT])
if not turn["checked_passage"]:
turn["checked_passage"] = {"none": dial["chosen_topic"]}
if not turn["checked_sentence"]:
turn["checked_sentence"] = {"no_passages_used": "no_passages_used"}
if len(turn["checked_passage"]) == 2 and "no_passages_used" in turn["checked_passage"]:
# for case turn["checked_passage"] = {'chosen_topic_0_Aquarium': 'Aquarium', 'no_passages_used': 'no_passages_used'}
del turn["checked_passage"]["no_passages_used"]
# if len(turn["checked_passage"].values()) != 1 or len(turn["checked_sentence"].values()) != 1: pdb.set_trace()
title = list(turn["checked_passage"].values())[0]
sent = list(turn["checked_sentence"].values())[0]
new_turn[EK_ORI][TOD_EK][title] = sent
new_turn[EK] = self.dict_to_str(new_turn[EK_ORI][TOD_EK])
new_dial[LOG].append(new_turn)
turn_idx += 1
else:
print(turn["speaker"])
raise ValueError("Unknown speaker")
if not new_turn[SYS_UTT]:
new_dial[LOG].append(new_turn)
new_data[new_dial_id] = new_dial
if new_dial[DIAL_IDX] % 10000 == 0:
self.save_dial(new_data, data_name=data_name, file_idx=file_idx, mode=mode)
new_data = {} # reset
file_idx += 1
if new_data: self.save_dial(new_data, data_name=data_name, file_idx=file_idx, mode=mode)
if mode == "train": self.save_original_examples(data[:5], data_name)
print(f"finishing processing {dial_idx+1} dialogs for {mode} set ...")
self.save_converted_examples(data_name)
print("*"*10, f"finishing processing dataset {data_name}", "*"*10)
def woi(self):
"""
actions:
Apprentice => Wizard
Wizard => SearchAgent
SearchAgent => Wizard
Wizard => Apprentice
"""
data_name = "wizard_of_internet"
for mode in ["test", "train"]:
data = self._load_jsonl(os.path.join(self.data_dir, data_name, f"{mode}.jsonl"))
data = {k:v for dial in data for k,v in dial.items()}
new_data, file_idx, dial_idx = {}, 1, 1
for dial_id, dial in tqdm(data.items()):
# new_dial = dial
new_dial = self.init_dial(dial_idx=dial_idx)
new_dial_id = f"{data_name}--{mode}--{dial_idx}"
new_dial[ORI_DIAL_ID] = dial_id
new_dial[ORI_DIAL_INFO]["apprentice_persona"] = dial["apprentice_persona"]
new_dial[ORI_DIAL_INFO]["start_timestamp"] = dial["start_timestamp"]
turn_idx, dial_hist = 1, []
new_turn = self.init_turn(turn_id=turn_idx)
for turn in dial["dialog_history"]:
if turn["action"] == "Apprentice => Wizard":
new_turn = self.init_turn(turn_id=turn_idx)
new_turn[DIAL_HIST] = " ".join(dial_hist)
new_turn[USR_UTT] = turn["text"]
new_turn[ORI_USR_ANN]["timestamp"] = turn["timestamp"]
dial_hist.append(f"<{SPEAKER1.upper()}> " + new_turn[USR_UTT])
elif turn["action"] == "Wizard => SearchAgent":
if "query" not in new_turn[ORI_SYS_ANN]:
new_turn[ORI_SYS_ANN]["query"] = []
new_turn[ORI_SYS_ANN]["query"].append({
"query": turn["text"],
"query_result": "",
"timestamp_query": turn["timestamp"],
})
elif turn["action"] == "SearchAgent => Wizard":
# checked, each query corresponds to one query result
# if new_turn[ORI_SYS_ANN]["query"][-1]["query_result"]: pdb.set_trace()
new_turn[ORI_SYS_ANN]["query"][-1]["query_result"] = turn["context"]
elif turn["action"] == "Wizard => Apprentice":
new_turn[SYS_UTT] = turn["text"]
for doc_id, doc in enumerate(turn["context"]["selected_contents"][1:]):
for sent_id, choose in enumerate(doc):
if choose:
title = turn["context"]["contents"][doc_id]["title"]
sent = turn["context"]["contents"][doc_id]["content"][sent_id]
if title not in new_turn[EK_ORI][TOD_EK]:
new_turn[EK_ORI][TOD_EK][title] = []
new_turn[EK_ORI][TOD_EK][title].append(sent)
new_turn[EK] = self.dict_to_str(new_turn[EK_ORI][TOD_EK])
new_turn[ORI_SYS_ANN]["context"] = turn["context"]
new_turn[ORI_SYS_ANN]["timestamp"] = turn["timestamp"]
dial_hist.append(f"<{SPEAKER2.upper()}> " + new_turn[SYS_UTT])
new_dial[LOG].append(new_turn)
turn_idx += 1
else:
# checked, no such turns
print(turn["action"])
raise ValueError("The fifth case")
if not new_turn[SYS_UTT]:
new_dial[LOG].append(new_turn)
# new_dial[EK_ORI][TOD_EK]["apprentice_persona"] = dial["apprentice_persona"]
# new_dial[EK] = self.dict_to_str(new_dial[EK_ORI][TOD_EK])
new_data[new_dial_id] = new_dial
if dial_idx % 10000 == 0:
self.save_dial(new_data, data_name=data_name, file_idx=file_idx, mode=mode)
new_data = {} # reset
file_idx += 1
dial_idx += 1
if new_data: self.save_dial(new_data, data_name=data_name, file_idx=file_idx, mode=mode)
if mode == "train": self.save_original_examples({k:data[k] for k in list(data.keys())[:5]}, data_name)
print(f"finishing processing {dial_idx-1} dialogs for {mode} set ...")
self.save_converted_examples(data_name)
print("*"*10, f"finishing processing dataset {data_name}", "*"*10)
def run_all(self):
self.wow()
self.woi()
def copy_example(self):
source_dir = self.save_dir
for target_dir in [ "/home/qkun/projs/TOD-Project/Datasets/Knowledge-Grounded_PROCESSED/", "/home/qkun/projs/DialogStudio-Release/knowledge-grounded-dialogues/"]:
# target_dir = "/home/qkun/projs/TOD-Project/Datasets/Knowledge-Grounded_PROCESSED/"
file_list = ["converted_examples.json", "original_examples.json", "readme.txt", "LICENSE"]
for dir_name in sorted(os.listdir(source_dir)):
if os.path.isfile(os.path.join(source_dir, dir_name)): continue
if not os.path.exists(os.path.join(target_dir, dir_name)): os.makedirs(os.path.join(target_dir, dir_name))
for filename in file_list:
source_path = os.path.join(source_dir, dir_name, filename)
target_path = os.path.join(target_dir, dir_name, filename)
if not os.path.exists(source_path): continue
shutil.copy(source_path, target_path)
def main():
preprocess = PreProcessData()
preprocess.run_all()
preprocess.copy_example()
if __name__ == '__main__':
main()
|