Datasets:
File size: 7,193 Bytes
4b8ca92 89922d6 4b8ca92 89922d6 4b8ca92 89922d6 4b8ca92 89922d6 4b8ca92 89922d6 4b8ca92 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 |
# coding=utf-8
"""Mintaka: A Complex, Natural, and Multilingual Dataset for End-to-End Question Answering"""
import json
import datasets
logger = datasets.logging.get_logger(__name__)
_DESCRIPTION = """\
Mintaka is a complex, natural, and multilingual dataset designed for experimenting with end-to-end
question-answering models. Mintaka is composed of 20,000 question-answer pairs collected in English,
annotated with Wikidata entities, and translated into Arabic, French, German, Hindi, Italian,
Japanese, Portuguese, and Spanish for a total of 180,000 samples.
Mintaka includes 8 types of complex questions, including superlative, intersection, and multi-hop questions,
which were naturally elicited from crowd workers.
"""
_CITATION = """\
@inproceedings{sen-etal-2022-mintaka,
title = "Mintaka: A Complex, Natural, and Multilingual Dataset for End-to-End Question Answering",
author = "Sen, Priyanka and Aji, Alham Fikri and Saffari, Amir",
booktitle = "Proceedings of the 29th International Conference on Computational Linguistics",
month = oct,
year = "2022",
address = "Gyeongju, Republic of Korea",
publisher = "International Committee on Computational Linguistics",
url = "https://aclanthology.org/2022.coling-1.138",
pages = "1604--1619"
}
"""
_LICENSE = """\
Copyright Amazon.com Inc. or its affiliates.
Attribution 4.0 International
"""
_TRAIN_URL = "https://raw.githubusercontent.com/amazon-science/mintaka/main/data/mintaka_train.json"
_DEV_URL = "https://raw.githubusercontent.com/amazon-science/mintaka/main/data/mintaka_dev.json"
_TEST_URL = "https://raw.githubusercontent.com/amazon-science/mintaka/main/data/mintaka_test.json"
_LANGUAGES = ['en', 'ar', 'de', 'ja', 'hi', 'pt', 'es', 'it', 'fr']
_ALL = "all"
class Mintaka(datasets.GeneratorBasedBuilder):
"""Mintaka: A Complex, Natural, and Multilingual Dataset for End-to-End Question Answering"""
BUILDER_CONFIGS = [
datasets.BuilderConfig(
name = name,
version = datasets.Version("1.0.0"),
description = f"Mintaka: A Complex, Natural, and Multilingual Dataset for End-to-End Question Answering for {name}",
) for name in _LANGUAGES
]
BUILDER_CONFIGS.append(datasets.BuilderConfig(
name = _ALL,
version = datasets.Version("1.0.0"),
description = f"Mintaka: A Complex, Natural, and Multilingual Dataset for End-to-End Question Answering",
))
DEFAULT_CONFIG_NAME = 'en'
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"id": datasets.Value("string"),
"lang": datasets.Value("string"),
"question": datasets.Value("string"),
"answerText": datasets.Value("string"),
"category": datasets.Value("string"),
"complexityType": datasets.Value("string"),
"questionEntity": [{
"name": datasets.Value("string"),
"entityType": datasets.Value("string"),
"label": datasets.Value("string"),
"mention": datasets.Value("string"),
"span": [datasets.Value("int32")],
}],
"answerEntity": [{
"name": datasets.Value("string"),
"label": datasets.Value("string"),
}]
},
),
supervised_keys=None,
citation=_CITATION,
license=_LICENSE,
)
def _split_generators(self, dl_manager):
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"file": dl_manager.download_and_extract(_TRAIN_URL),
"lang": self.config.name,
}
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"file": dl_manager.download_and_extract(_DEV_URL),
"lang": self.config.name,
}
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"file": dl_manager.download_and_extract(_TEST_URL),
"lang": self.config.name,
}
),
]
def _generate_examples(self, file, lang):
if lang == _ALL:
langs = _LANGUAGES
else:
langs = [lang]
key_ = 0
logger.info("⏳ Generating examples from = %s", ", ".join(lang))
with open(file, encoding='utf-8') as json_file:
data = json.load(json_file)
for lang in langs:
for sample in data:
questionEntity = [
{
"name": str(qe["name"]),
"entityType": qe["entityType"],
"label": qe["label"] if "label" in qe else "",
# span only applies for English question
"mention": qe["mention"] if lang == "en" else None,
"span": qe["span"] if lang == "en" else [],
} for qe in sample["questionEntity"]
]
answers = []
if sample['answer']["answerType"] == "entity" and sample['answer']['answer'] is not None:
answers = sample['answer']['answer']
elif sample['answer']["answerType"] == "numerical" and "supportingEnt" in sample["answer"]:
answers = sample['answer']['supportingEnt']
# helper to get language for the corresponding language
def get_label(labels, lang):
if lang in labels:
return labels[lang]
if 'en' in labels:
return labels['en']
return None
answerEntity = [
{
"name": str(ae["name"]),
"label": get_label(ae["label"], lang),
} for ae in answers
]
yield key_, {
"id": sample["id"],
"lang": lang,
"question": sample["question"] if lang == 'en' else sample['translations'][lang],
"answerText": sample["answer"]["mention"],
"category": sample["category"],
"complexityType": sample["complexityType"],
"questionEntity": questionEntity,
"answerEntity": answerEntity,
}
key_ += 1
|