Datasets:
File size: 5,215 Bytes
403931e b065544 403931e f2486c2 49cc4ce 403931e 49cc4ce 403931e 5c3b980 403931e 56dc206 403931e 49cc4ce 403931e 49cc4ce 403931e b065544 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 |
---
annotations_creators:
- machine-generated
language:
- ar
- es
- fr
- de
- hi
- it
- ja
- nl
- pt
language_creators:
- found
license_details: https://huggingface.co/datasets/AmazonScience/xtr-wiki_qa/blob/main/LICENSE.md
multilinguality:
- multilingual
- translation
pretty_name: xtr-wiki_qa
size_categories:
- 100K<n<1M
source_datasets:
- extended|wiki_qa
tags:
- as2
- answer sentence selection
- text retrieval
- question answering
task_categories:
- question-answering
- text-retrieval
task_ids:
- open-domain-qa
license: cdla-permissive-2.0
---
# Xtr-WikiQA
## Table of Contents
- [Dataset Card Creation Guide](#dataset-card-creation-guide)
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Source Data](#source-data)
- [Additional Information](#additional-information)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [Amazon Science](https://www.amazon.science/publications/cross-lingual-knowledge-distillation-for-answer-sentence-selection-in-low-resource-languages)
- **Paper:** [Cross-Lingual Knowledge Distillation for Answer Sentence Selection in Low-Resource Languages](https://aclanthology.org/2023.findings-acl.885/)
- **Point of Contact:** [Yoshitomo Matsubara]([email protected])
### Dataset Summary
***Xtr-WikiQA*** is an Answer Sentence Selection (AS2) dataset in 9 non-English languages, proposed in our paper accepted at ACL 2023 (Findings): [**Cross-Lingual Knowledge Distillation for Answer Sentence Selection in Low-Resource Languages**](https://aclanthology.org/2023.findings-acl.885/).
This dataset is based on an English AS2 dataset, WikiQA ([Original](https://msropendata.com/datasets/21032bb1-88bd-4656-9570-3172ae1757f0), [Hugging Face](https://huggingface.co/datasets/wiki_qa)).
For translations, we used [Amazon Translate](https://aws.amazon.com/translate/).
### Languages
- Arabic (ar)
- Spanish (es)
- French (fr)
- German (de)
- Hindi (hi)
- Italian (it)
- Japanese (ja)
- Dutch (nl)
- Portuguese (pt)
File location: [`tsv/`](https://huggingface.co/datasets/AmazonScience/xtr-wiki_qa/tree/main/tsv)
## Dataset Structure
### Data Instances
This is an example instance from the Arabic training split of Xtr-WikiQA dataset.
```
{
"QuestionID": "Q1",
"Question": "ููู ุชุชุดูู ุงููููู ุงูุฌููุฏูุฉุ",
"DocumentID": "D1",
"DocumentTitle": "ููู ุฌููุฏู",
"SentenceID": "D1-0",
"Sentence": "ููู ุฌููุฏู ู
ุบู
ูุฑ ุฌุฒุฆููุง ุนูู ููุฑ ุจูุฑูุชู ู
ูุฑููู ุงูุฌููุฏู.",
"Label": 0
}
```
All the translated instances in tsv files are listed in the same order of the original (native) instances in the WikiQA dataset.
For example, the 2nd instance in [`tsv/ar-train.tsv`](https://huggingface.co/datasets/AmazonScience/xtr-wiki_qa/blob/main/tsv/ar-train.tsv) (Arabic-translated from English)
corresponds to the 2nd instance in [`WikiQA-train.tsv`](https://msropendata.com/datasets/21032bb1-88bd-4656-9570-3172ae1757f0) (English).
### Data Fields
Each instance (a QA pair) consists of the following fields:
- `QuestionID`: Question ID (str)
- `Question`: Question to be answered (str)
- `DocumentID`: Document ID (str)
- `DocumentTitle`: Document title (str)
- `SentenceID`: Answer sentence in the document (str)
- `Sentence`: Answer sentence in the document (str)
- `Label`: Label that indicates the answer sentence correctly answers the question (int, 1: correct, 0: incorrect)
### Data Splits
| | | **#Questions** | | | | **#Sentences** | |
|-------------------|------------:|---------------:|---------:|---|----------:|---------------:|---------:|
| | **train** | **dev** | **test** | | **train** | **dev** | **test** |
| **Each language** | 873 | 126 | 243 | | 8,671 | 1,130 | 2,351 |
See [our paper](#citation-information) for more details about the statistics of the datasets.
## Dataset Creation
### Source Data
The source of Xtr-WikiQA dataset is [WikiQA](https://msropendata.com/datasets/21032bb1-88bd-4656-9570-3172ae1757f0).
## Additional Information
### Licensing Information
[CDLA-Permissive-2.0](LICENSE.md)
### Citation Information
```bibtex
@inproceedings{gupta2023cross-lingual,
title={{Cross-Lingual Knowledge Distillation for Answer Sentence Selection in Low-Resource Languages}},
author={Gupta, Shivanshu and Matsubara, Yoshitomo and Chadha, Ankit and Moschitti, Alessandro},
booktitle={Findings of the Association for Computational Linguistics: ACL 2023},
pages={14078--14092},
year={2023}
}
```
### Contributions
- [Shivanshu Gupta](https://huggingface.co/shivanshu)
- [Yoshitomo Matsubara](https://huggingface.co/yoshitomo-matsubara)
- Ankit Chadha
- Alessandro Moschitti |