Datasets:
File size: 39,715 Bytes
2fe7d85 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 |
2023-11-04 23:03:33,781 Ajay-Pandey_A5000 INFO {'data': {'filter_length': 1024, 'hop_length': 320, 'max_wav_value': 32768.0, 'mel_fmax': None, 'mel_fmin': 0.0, 'n_mel_channels': 80, 'sampling_rate': 32000, 'win_length': 1024, 'training_files': './logs/Ajay-Pandey_A5000/filelist.txt'}, 'model': {'filter_channels': 768, 'gin_channels': 256, 'hidden_channels': 192, 'inter_channels': 192, 'kernel_size': 3, 'n_heads': 2, 'n_layers': 6, 'p_dropout': 0, 'resblock': '1', 'resblock_dilation_sizes': [[1, 3, 5], [1, 3, 5], [1, 3, 5]], 'resblock_kernel_sizes': [3, 7, 11], 'spk_embed_dim': 109, 'upsample_initial_channel': 512, 'upsample_kernel_sizes': [20, 16, 4, 4], 'upsample_rates': [10, 8, 2, 2], 'use_spectral_norm': False}, 'train': {'batch_size': 12, 'betas': [0.8, 0.99], 'c_kl': 1.0, 'c_mel': 45, 'epochs': 20000, 'eps': 1e-09, 'fp16_run': True, 'init_lr_ratio': 1, 'learning_rate': 0.0001, 'log_interval': 200, 'lr_decay': 0.999875, 'seed': 1234, 'segment_size': 12800, 'warmup_epochs': 0}, 'model_dir': './logs/Ajay-Pandey_A5000', 'experiment_dir': './logs/Ajay-Pandey_A5000', 'save_every_epoch': 50, 'name': 'Ajay-Pandey_A5000', 'total_epoch': 200, 'pretrainG': 'assets/pretrained_v2/f0G32k.pth', 'pretrainD': 'assets/pretrained_v2/f0D32k.pth', 'version': 'v2', 'gpus': '0', 'sample_rate': '32k', 'if_f0': 1, 'if_latest': 1, 'save_every_weights': '1', 'if_cache_data_in_gpu': 0}
2023-11-04 23:03:35,404 Ajay-Pandey_A5000 INFO loaded pretrained assets/pretrained_v2/f0G32k.pth
2023-11-04 23:03:36,160 Ajay-Pandey_A5000 INFO <All keys matched successfully>
2023-11-04 23:03:36,160 Ajay-Pandey_A5000 INFO loaded pretrained assets/pretrained_v2/f0D32k.pth
2023-11-04 23:03:37,540 Ajay-Pandey_A5000 INFO <All keys matched successfully>
2023-11-04 23:03:51,133 Ajay-Pandey_A5000 INFO Train Epoch: 1 [0%]
2023-11-04 23:03:51,133 Ajay-Pandey_A5000 INFO [0, 0.0001]
2023-11-04 23:03:51,133 Ajay-Pandey_A5000 INFO loss_disc=3.786, loss_gen=3.702, loss_fm=9.033,loss_mel=22.719, loss_kl=7.950
2023-11-04 23:04:26,118 Ajay-Pandey_A5000 INFO ====> Epoch: 1 [2023-11-04 23:04:26] | (0:00:40.061292)
2023-11-04 23:04:57,455 Ajay-Pandey_A5000 INFO Train Epoch: 2 [94%]
2023-11-04 23:04:57,456 Ajay-Pandey_A5000 INFO [200, 9.99875e-05]
2023-11-04 23:04:57,456 Ajay-Pandey_A5000 INFO loss_disc=3.820, loss_gen=3.609, loss_fm=9.561,loss_mel=18.932, loss_kl=2.134
2023-11-04 23:04:59,337 Ajay-Pandey_A5000 INFO ====> Epoch: 2 [2023-11-04 23:04:59] | (0:00:33.210196)
2023-11-04 23:05:31,848 Ajay-Pandey_A5000 INFO ====> Epoch: 3 [2023-11-04 23:05:31] | (0:00:32.502743)
2023-11-04 23:06:00,998 Ajay-Pandey_A5000 INFO Train Epoch: 4 [88%]
2023-11-04 23:06:00,999 Ajay-Pandey_A5000 INFO [400, 9.996250468730469e-05]
2023-11-04 23:06:00,999 Ajay-Pandey_A5000 INFO loss_disc=3.974, loss_gen=3.343, loss_fm=8.949,loss_mel=18.701, loss_kl=2.241
2023-11-04 23:06:05,208 Ajay-Pandey_A5000 INFO ====> Epoch: 4 [2023-11-04 23:06:05] | (0:00:33.354582)
2023-11-04 23:06:37,735 Ajay-Pandey_A5000 INFO ====> Epoch: 5 [2023-11-04 23:06:37] | (0:00:32.518665)
2023-11-04 23:07:05,377 Ajay-Pandey_A5000 INFO Train Epoch: 6 [83%]
2023-11-04 23:07:05,378 Ajay-Pandey_A5000 INFO [600, 9.993751562304699e-05]
2023-11-04 23:07:05,378 Ajay-Pandey_A5000 INFO loss_disc=3.856, loss_gen=3.533, loss_fm=8.789,loss_mel=18.011, loss_kl=1.711
2023-11-04 23:07:11,061 Ajay-Pandey_A5000 INFO ====> Epoch: 6 [2023-11-04 23:07:11] | (0:00:33.320310)
2023-11-04 23:07:43,886 Ajay-Pandey_A5000 INFO ====> Epoch: 7 [2023-11-04 23:07:43] | (0:00:32.816590)
2023-11-04 23:08:09,524 Ajay-Pandey_A5000 INFO Train Epoch: 8 [77%]
2023-11-04 23:08:09,525 Ajay-Pandey_A5000 INFO [800, 9.991253280566489e-05]
2023-11-04 23:08:09,525 Ajay-Pandey_A5000 INFO loss_disc=3.789, loss_gen=3.638, loss_fm=9.821,loss_mel=17.689, loss_kl=2.160
2023-11-04 23:12:07,731 Ajay-Pandey_A5000 INFO {'data': {'filter_length': 1024, 'hop_length': 320, 'max_wav_value': 32768.0, 'mel_fmax': None, 'mel_fmin': 0.0, 'n_mel_channels': 80, 'sampling_rate': 32000, 'win_length': 1024, 'training_files': './logs/Ajay-Pandey_A5000/filelist.txt'}, 'model': {'filter_channels': 768, 'gin_channels': 256, 'hidden_channels': 192, 'inter_channels': 192, 'kernel_size': 3, 'n_heads': 2, 'n_layers': 6, 'p_dropout': 0, 'resblock': '1', 'resblock_dilation_sizes': [[1, 3, 5], [1, 3, 5], [1, 3, 5]], 'resblock_kernel_sizes': [3, 7, 11], 'spk_embed_dim': 109, 'upsample_initial_channel': 512, 'upsample_kernel_sizes': [20, 16, 4, 4], 'upsample_rates': [10, 8, 2, 2], 'use_spectral_norm': False}, 'train': {'batch_size': 30, 'betas': [0.8, 0.99], 'c_kl': 1.0, 'c_mel': 45, 'epochs': 20000, 'eps': 1e-09, 'fp16_run': True, 'init_lr_ratio': 1, 'learning_rate': 0.0001, 'log_interval': 200, 'lr_decay': 0.999875, 'seed': 1234, 'segment_size': 12800, 'warmup_epochs': 0}, 'model_dir': './logs/Ajay-Pandey_A5000', 'experiment_dir': './logs/Ajay-Pandey_A5000', 'save_every_epoch': 50, 'name': 'Ajay-Pandey_A5000', 'total_epoch': 200, 'pretrainG': 'assets/pretrained_v2/f0G32k.pth', 'pretrainD': 'assets/pretrained_v2/f0D32k.pth', 'version': 'v2', 'gpus': '0', 'sample_rate': '32k', 'if_f0': 1, 'if_latest': 1, 'save_every_weights': '1', 'if_cache_data_in_gpu': 0}
2023-11-04 23:12:09,284 Ajay-Pandey_A5000 INFO loaded pretrained assets/pretrained_v2/f0G32k.pth
2023-11-04 23:12:09,364 Ajay-Pandey_A5000 INFO <All keys matched successfully>
2023-11-04 23:12:09,364 Ajay-Pandey_A5000 INFO loaded pretrained assets/pretrained_v2/f0D32k.pth
2023-11-04 23:12:09,450 Ajay-Pandey_A5000 INFO <All keys matched successfully>
2023-11-04 23:12:20,748 Ajay-Pandey_A5000 INFO Train Epoch: 1 [0%]
2023-11-04 23:12:20,749 Ajay-Pandey_A5000 INFO [0, 0.0001]
2023-11-04 23:12:20,749 Ajay-Pandey_A5000 INFO loss_disc=3.720, loss_gen=3.597, loss_fm=9.126,loss_mel=22.488, loss_kl=8.173
2023-11-04 23:12:45,115 Ajay-Pandey_A5000 INFO ====> Epoch: 1 [2023-11-04 23:12:45] | (0:00:27.681448)
2023-11-04 23:13:08,674 Ajay-Pandey_A5000 INFO ====> Epoch: 2 [2023-11-04 23:13:08] | (0:00:23.550018)
2023-11-04 23:13:32,261 Ajay-Pandey_A5000 INFO ====> Epoch: 3 [2023-11-04 23:13:32] | (0:00:23.580945)
2023-11-04 23:13:56,107 Ajay-Pandey_A5000 INFO ====> Epoch: 4 [2023-11-04 23:13:56] | (0:00:23.840420)
2023-11-04 23:14:12,293 Ajay-Pandey_A5000 INFO Train Epoch: 5 [65%]
2023-11-04 23:14:12,294 Ajay-Pandey_A5000 INFO [200, 9.995000937421877e-05]
2023-11-04 23:14:12,294 Ajay-Pandey_A5000 INFO loss_disc=3.970, loss_gen=3.112, loss_fm=8.101,loss_mel=18.416, loss_kl=2.152
2023-11-04 23:14:20,289 Ajay-Pandey_A5000 INFO ====> Epoch: 5 [2023-11-04 23:14:20] | (0:00:24.175916)
2023-11-04 23:16:26,326 Ajay-Pandey_A5000 INFO {'data': {'filter_length': 1024, 'hop_length': 320, 'max_wav_value': 32768.0, 'mel_fmax': None, 'mel_fmin': 0.0, 'n_mel_channels': 80, 'sampling_rate': 32000, 'win_length': 1024, 'training_files': './logs/Ajay-Pandey_A5000/filelist.txt'}, 'model': {'filter_channels': 768, 'gin_channels': 256, 'hidden_channels': 192, 'inter_channels': 192, 'kernel_size': 3, 'n_heads': 2, 'n_layers': 6, 'p_dropout': 0, 'resblock': '1', 'resblock_dilation_sizes': [[1, 3, 5], [1, 3, 5], [1, 3, 5]], 'resblock_kernel_sizes': [3, 7, 11], 'spk_embed_dim': 109, 'upsample_initial_channel': 512, 'upsample_kernel_sizes': [20, 16, 4, 4], 'upsample_rates': [10, 8, 2, 2], 'use_spectral_norm': False}, 'train': {'batch_size': 40, 'betas': [0.8, 0.99], 'c_kl': 1.0, 'c_mel': 45, 'epochs': 20000, 'eps': 1e-09, 'fp16_run': True, 'init_lr_ratio': 1, 'learning_rate': 0.0001, 'log_interval': 200, 'lr_decay': 0.999875, 'seed': 1234, 'segment_size': 12800, 'warmup_epochs': 0}, 'model_dir': './logs/Ajay-Pandey_A5000', 'experiment_dir': './logs/Ajay-Pandey_A5000', 'save_every_epoch': 50, 'name': 'Ajay-Pandey_A5000', 'total_epoch': 200, 'pretrainG': 'assets/pretrained_v2/f0G32k.pth', 'pretrainD': 'assets/pretrained_v2/f0D32k.pth', 'version': 'v2', 'gpus': '0', 'sample_rate': '32k', 'if_f0': 1, 'if_latest': 1, 'save_every_weights': '1', 'if_cache_data_in_gpu': 0}
2023-11-04 23:16:27,875 Ajay-Pandey_A5000 INFO loaded pretrained assets/pretrained_v2/f0G32k.pth
2023-11-04 23:16:27,958 Ajay-Pandey_A5000 INFO <All keys matched successfully>
2023-11-04 23:16:27,959 Ajay-Pandey_A5000 INFO loaded pretrained assets/pretrained_v2/f0D32k.pth
2023-11-04 23:16:28,040 Ajay-Pandey_A5000 INFO <All keys matched successfully>
2023-11-04 23:16:41,049 Ajay-Pandey_A5000 INFO Train Epoch: 1 [0%]
2023-11-04 23:16:41,049 Ajay-Pandey_A5000 INFO [0, 0.0001]
2023-11-04 23:16:41,049 Ajay-Pandey_A5000 INFO loss_disc=3.787, loss_gen=3.568, loss_fm=8.879,loss_mel=22.452, loss_kl=8.227
2023-11-04 23:17:04,025 Ajay-Pandey_A5000 INFO ====> Epoch: 1 [2023-11-04 23:17:04] | (0:00:26.594052)
2023-11-04 23:17:26,515 Ajay-Pandey_A5000 INFO ====> Epoch: 2 [2023-11-04 23:17:26] | (0:00:22.481709)
2023-11-04 23:17:49,168 Ajay-Pandey_A5000 INFO ====> Epoch: 3 [2023-11-04 23:17:49] | (0:00:22.647142)
2023-11-04 23:18:11,948 Ajay-Pandey_A5000 INFO ====> Epoch: 4 [2023-11-04 23:18:11] | (0:00:22.774344)
2023-11-04 23:18:34,738 Ajay-Pandey_A5000 INFO ====> Epoch: 5 [2023-11-04 23:18:34] | (0:00:22.784068)
2023-11-04 23:18:57,490 Ajay-Pandey_A5000 INFO ====> Epoch: 6 [2023-11-04 23:18:57] | (0:00:22.745963)
2023-11-04 23:18:59,695 Ajay-Pandey_A5000 INFO Train Epoch: 7 [6%]
2023-11-04 23:18:59,696 Ajay-Pandey_A5000 INFO [200, 9.99250234335941e-05]
2023-11-04 23:18:59,696 Ajay-Pandey_A5000 INFO loss_disc=3.908, loss_gen=3.459, loss_fm=10.414,loss_mel=18.404, loss_kl=2.150
2023-11-04 23:19:20,564 Ajay-Pandey_A5000 INFO ====> Epoch: 7 [2023-11-04 23:19:20] | (0:00:23.068058)
2023-11-04 23:19:43,401 Ajay-Pandey_A5000 INFO ====> Epoch: 8 [2023-11-04 23:19:43] | (0:00:22.829126)
2023-11-04 23:20:06,335 Ajay-Pandey_A5000 INFO ====> Epoch: 9 [2023-11-04 23:20:06] | (0:00:22.928696)
2023-11-04 23:20:29,371 Ajay-Pandey_A5000 INFO ====> Epoch: 10 [2023-11-04 23:20:29] | (0:00:23.030083)
2023-11-04 23:20:52,260 Ajay-Pandey_A5000 INFO ====> Epoch: 11 [2023-11-04 23:20:52] | (0:00:22.883100)
2023-11-04 23:21:15,061 Ajay-Pandey_A5000 INFO ====> Epoch: 12 [2023-11-04 23:21:15] | (0:00:22.795453)
2023-11-04 23:21:18,675 Ajay-Pandey_A5000 INFO Train Epoch: 13 [12%]
2023-11-04 23:21:18,676 Ajay-Pandey_A5000 INFO [400, 9.98501030820433e-05]
2023-11-04 23:21:18,676 Ajay-Pandey_A5000 INFO loss_disc=4.196, loss_gen=3.239, loss_fm=9.372,loss_mel=19.249, loss_kl=1.871
2023-11-04 23:21:38,549 Ajay-Pandey_A5000 INFO ====> Epoch: 13 [2023-11-04 23:21:38] | (0:00:23.481934)
2023-11-04 23:22:01,457 Ajay-Pandey_A5000 INFO ====> Epoch: 14 [2023-11-04 23:22:01] | (0:00:22.899584)
2023-11-04 23:22:24,261 Ajay-Pandey_A5000 INFO ====> Epoch: 15 [2023-11-04 23:22:24] | (0:00:22.798218)
2023-11-04 23:22:47,142 Ajay-Pandey_A5000 INFO ====> Epoch: 16 [2023-11-04 23:22:47] | (0:00:22.875532)
2023-11-04 23:23:10,001 Ajay-Pandey_A5000 INFO ====> Epoch: 17 [2023-11-04 23:23:10] | (0:00:22.853215)
2023-11-04 23:23:32,863 Ajay-Pandey_A5000 INFO ====> Epoch: 18 [2023-11-04 23:23:32] | (0:00:22.856476)
2023-11-04 23:23:37,878 Ajay-Pandey_A5000 INFO Train Epoch: 19 [18%]
2023-11-04 23:23:37,879 Ajay-Pandey_A5000 INFO [600, 9.977523890319963e-05]
2023-11-04 23:23:37,879 Ajay-Pandey_A5000 INFO loss_disc=3.847, loss_gen=3.483, loss_fm=8.952,loss_mel=17.905, loss_kl=1.825
2023-11-04 23:23:56,174 Ajay-Pandey_A5000 INFO ====> Epoch: 19 [2023-11-04 23:23:56] | (0:00:23.305072)
2023-11-04 23:24:18,982 Ajay-Pandey_A5000 INFO ====> Epoch: 20 [2023-11-04 23:24:18] | (0:00:22.799062)
2023-11-04 23:24:41,919 Ajay-Pandey_A5000 INFO ====> Epoch: 21 [2023-11-04 23:24:41] | (0:00:22.931149)
2023-11-04 23:25:04,674 Ajay-Pandey_A5000 INFO ====> Epoch: 22 [2023-11-04 23:25:04] | (0:00:22.749894)
2023-11-04 23:25:27,566 Ajay-Pandey_A5000 INFO ====> Epoch: 23 [2023-11-04 23:25:27] | (0:00:22.886374)
2023-11-04 23:25:50,558 Ajay-Pandey_A5000 INFO ====> Epoch: 24 [2023-11-04 23:25:50] | (0:00:22.985400)
2023-11-04 23:25:57,065 Ajay-Pandey_A5000 INFO Train Epoch: 25 [24%]
2023-11-04 23:25:57,066 Ajay-Pandey_A5000 INFO [800, 9.970043085494672e-05]
2023-11-04 23:25:57,066 Ajay-Pandey_A5000 INFO loss_disc=3.664, loss_gen=3.644, loss_fm=10.307,loss_mel=18.468, loss_kl=1.708
2023-11-04 23:26:13,771 Ajay-Pandey_A5000 INFO ====> Epoch: 25 [2023-11-04 23:26:13] | (0:00:23.206968)
2023-11-04 23:26:36,600 Ajay-Pandey_A5000 INFO ====> Epoch: 26 [2023-11-04 23:26:36] | (0:00:22.821236)
2023-11-04 23:26:59,382 Ajay-Pandey_A5000 INFO ====> Epoch: 27 [2023-11-04 23:26:59] | (0:00:22.775678)
2023-11-04 23:27:22,267 Ajay-Pandey_A5000 INFO ====> Epoch: 28 [2023-11-04 23:27:22] | (0:00:22.879335)
2023-11-04 23:27:45,140 Ajay-Pandey_A5000 INFO ====> Epoch: 29 [2023-11-04 23:27:45] | (0:00:22.867398)
2023-11-04 23:28:07,974 Ajay-Pandey_A5000 INFO ====> Epoch: 30 [2023-11-04 23:28:07] | (0:00:22.828433)
2023-11-04 23:28:15,882 Ajay-Pandey_A5000 INFO Train Epoch: 31 [30%]
2023-11-04 23:28:15,883 Ajay-Pandey_A5000 INFO [1000, 9.962567889519979e-05]
2023-11-04 23:28:15,883 Ajay-Pandey_A5000 INFO loss_disc=3.766, loss_gen=3.401, loss_fm=9.894,loss_mel=18.234, loss_kl=1.669
2023-11-04 23:28:31,296 Ajay-Pandey_A5000 INFO ====> Epoch: 31 [2023-11-04 23:28:31] | (0:00:23.315520)
2023-11-04 23:28:54,124 Ajay-Pandey_A5000 INFO ====> Epoch: 32 [2023-11-04 23:28:54] | (0:00:22.819762)
2023-11-04 23:29:16,985 Ajay-Pandey_A5000 INFO ====> Epoch: 33 [2023-11-04 23:29:16] | (0:00:22.855596)
2023-11-04 23:29:39,862 Ajay-Pandey_A5000 INFO ====> Epoch: 34 [2023-11-04 23:29:39] | (0:00:22.870549)
2023-11-04 23:30:02,775 Ajay-Pandey_A5000 INFO ====> Epoch: 35 [2023-11-04 23:30:02] | (0:00:22.907229)
2023-11-04 23:30:25,656 Ajay-Pandey_A5000 INFO ====> Epoch: 36 [2023-11-04 23:30:25] | (0:00:22.875968)
2023-11-04 23:30:34,895 Ajay-Pandey_A5000 INFO Train Epoch: 37 [36%]
2023-11-04 23:30:34,896 Ajay-Pandey_A5000 INFO [1200, 9.95509829819056e-05]
2023-11-04 23:30:34,896 Ajay-Pandey_A5000 INFO loss_disc=3.914, loss_gen=3.415, loss_fm=9.049,loss_mel=17.777, loss_kl=1.364
2023-11-04 23:30:48,827 Ajay-Pandey_A5000 INFO ====> Epoch: 37 [2023-11-04 23:30:48] | (0:00:23.164846)
2023-11-04 23:31:11,714 Ajay-Pandey_A5000 INFO ====> Epoch: 38 [2023-11-04 23:31:11] | (0:00:22.877787)
2023-11-04 23:31:34,565 Ajay-Pandey_A5000 INFO ====> Epoch: 39 [2023-11-04 23:31:34] | (0:00:22.845310)
2023-11-04 23:31:57,306 Ajay-Pandey_A5000 INFO ====> Epoch: 40 [2023-11-04 23:31:57] | (0:00:22.735213)
2023-11-04 23:32:20,139 Ajay-Pandey_A5000 INFO ====> Epoch: 41 [2023-11-04 23:32:20] | (0:00:22.827448)
2023-11-04 23:32:42,955 Ajay-Pandey_A5000 INFO ====> Epoch: 42 [2023-11-04 23:32:42] | (0:00:22.810259)
2023-11-04 23:32:53,310 Ajay-Pandey_A5000 INFO Train Epoch: 43 [42%]
2023-11-04 23:32:53,310 Ajay-Pandey_A5000 INFO [1400, 9.947634307304244e-05]
2023-11-04 23:32:53,311 Ajay-Pandey_A5000 INFO loss_disc=3.551, loss_gen=3.382, loss_fm=10.165,loss_mel=17.604, loss_kl=1.555
2023-11-04 23:33:06,199 Ajay-Pandey_A5000 INFO ====> Epoch: 43 [2023-11-04 23:33:06] | (0:00:23.238296)
2023-11-04 23:33:29,125 Ajay-Pandey_A5000 INFO ====> Epoch: 44 [2023-11-04 23:33:29] | (0:00:22.917144)
2023-11-04 23:33:51,943 Ajay-Pandey_A5000 INFO ====> Epoch: 45 [2023-11-04 23:33:51] | (0:00:22.811708)
2023-11-04 23:34:14,782 Ajay-Pandey_A5000 INFO ====> Epoch: 46 [2023-11-04 23:34:14] | (0:00:22.833785)
2023-11-04 23:34:37,563 Ajay-Pandey_A5000 INFO ====> Epoch: 47 [2023-11-04 23:34:37] | (0:00:22.775156)
2023-11-04 23:35:00,455 Ajay-Pandey_A5000 INFO ====> Epoch: 48 [2023-11-04 23:35:00] | (0:00:22.886509)
2023-11-04 23:35:12,395 Ajay-Pandey_A5000 INFO Train Epoch: 49 [48%]
2023-11-04 23:35:12,395 Ajay-Pandey_A5000 INFO [1600, 9.940175912662009e-05]
2023-11-04 23:35:12,395 Ajay-Pandey_A5000 INFO loss_disc=4.002, loss_gen=3.420, loss_fm=8.967,loss_mel=17.586, loss_kl=1.421
2023-11-04 23:35:23,643 Ajay-Pandey_A5000 INFO ====> Epoch: 49 [2023-11-04 23:35:23] | (0:00:23.181479)
2023-11-04 23:35:46,518 Ajay-Pandey_A5000 INFO Saving model and optimizer state at epoch 50 to ./logs/Ajay-Pandey_A5000/G_2333333.pth
2023-11-04 23:35:54,289 Ajay-Pandey_A5000 INFO Saving model and optimizer state at epoch 50 to ./logs/Ajay-Pandey_A5000/D_2333333.pth
2023-11-04 23:36:08,327 Ajay-Pandey_A5000 INFO saving ckpt Ajay-Pandey_A5000_e50:Success.
2023-11-04 23:36:08,328 Ajay-Pandey_A5000 INFO ====> Epoch: 50 [2023-11-04 23:36:08] | (0:00:44.677081)
2023-11-04 23:36:30,891 Ajay-Pandey_A5000 INFO ====> Epoch: 51 [2023-11-04 23:36:30] | (0:00:22.556344)
2023-11-04 23:36:53,682 Ajay-Pandey_A5000 INFO ====> Epoch: 52 [2023-11-04 23:36:53] | (0:00:22.785830)
2023-11-04 23:37:16,469 Ajay-Pandey_A5000 INFO ====> Epoch: 53 [2023-11-04 23:37:16] | (0:00:22.780890)
2023-11-04 23:37:39,326 Ajay-Pandey_A5000 INFO ====> Epoch: 54 [2023-11-04 23:37:39] | (0:00:22.851538)
2023-11-04 23:37:52,632 Ajay-Pandey_A5000 INFO Train Epoch: 55 [55%]
2023-11-04 23:37:52,632 Ajay-Pandey_A5000 INFO [1800, 9.932723110067987e-05]
2023-11-04 23:37:52,633 Ajay-Pandey_A5000 INFO loss_disc=3.990, loss_gen=3.381, loss_fm=7.908,loss_mel=17.080, loss_kl=1.191
2023-11-04 23:38:02,523 Ajay-Pandey_A5000 INFO ====> Epoch: 55 [2023-11-04 23:38:02] | (0:00:23.191485)
2023-11-04 23:38:25,395 Ajay-Pandey_A5000 INFO ====> Epoch: 56 [2023-11-04 23:38:25] | (0:00:22.863796)
2023-11-04 23:38:48,203 Ajay-Pandey_A5000 INFO ====> Epoch: 57 [2023-11-04 23:38:48] | (0:00:22.802246)
2023-11-04 23:39:11,007 Ajay-Pandey_A5000 INFO ====> Epoch: 58 [2023-11-04 23:39:11] | (0:00:22.797809)
2023-11-04 23:39:33,902 Ajay-Pandey_A5000 INFO ====> Epoch: 59 [2023-11-04 23:39:33] | (0:00:22.889679)
2023-11-04 23:39:56,833 Ajay-Pandey_A5000 INFO ====> Epoch: 60 [2023-11-04 23:39:56] | (0:00:22.925816)
2023-11-04 23:40:11,324 Ajay-Pandey_A5000 INFO Train Epoch: 61 [61%]
2023-11-04 23:40:11,325 Ajay-Pandey_A5000 INFO [2000, 9.92527589532945e-05]
2023-11-04 23:40:11,325 Ajay-Pandey_A5000 INFO loss_disc=3.861, loss_gen=3.293, loss_fm=9.002,loss_mel=17.121, loss_kl=1.345
2023-11-04 23:40:20,063 Ajay-Pandey_A5000 INFO ====> Epoch: 61 [2023-11-04 23:40:20] | (0:00:23.224424)
2023-11-04 23:40:42,906 Ajay-Pandey_A5000 INFO ====> Epoch: 62 [2023-11-04 23:40:42] | (0:00:22.833550)
2023-11-04 23:41:05,760 Ajay-Pandey_A5000 INFO ====> Epoch: 63 [2023-11-04 23:41:05] | (0:00:22.848346)
2023-11-04 23:41:28,638 Ajay-Pandey_A5000 INFO ====> Epoch: 64 [2023-11-04 23:41:28] | (0:00:22.872720)
2023-11-04 23:41:51,417 Ajay-Pandey_A5000 INFO ====> Epoch: 65 [2023-11-04 23:41:51] | (0:00:22.772879)
2023-11-04 23:42:14,328 Ajay-Pandey_A5000 INFO ====> Epoch: 66 [2023-11-04 23:42:14] | (0:00:22.905213)
2023-11-04 23:42:30,321 Ajay-Pandey_A5000 INFO Train Epoch: 67 [67%]
2023-11-04 23:42:30,322 Ajay-Pandey_A5000 INFO [2200, 9.917834264256819e-05]
2023-11-04 23:42:30,322 Ajay-Pandey_A5000 INFO loss_disc=3.742, loss_gen=3.538, loss_fm=9.423,loss_mel=16.953, loss_kl=1.432
2023-11-04 23:42:37,547 Ajay-Pandey_A5000 INFO ====> Epoch: 67 [2023-11-04 23:42:37] | (0:00:23.214058)
2023-11-04 23:43:00,401 Ajay-Pandey_A5000 INFO ====> Epoch: 68 [2023-11-04 23:43:00] | (0:00:22.845379)
2023-11-04 23:43:23,233 Ajay-Pandey_A5000 INFO ====> Epoch: 69 [2023-11-04 23:43:23] | (0:00:22.826638)
2023-11-04 23:43:46,043 Ajay-Pandey_A5000 INFO ====> Epoch: 70 [2023-11-04 23:43:46] | (0:00:22.804358)
2023-11-04 23:44:08,894 Ajay-Pandey_A5000 INFO ====> Epoch: 71 [2023-11-04 23:44:08] | (0:00:22.844825)
2023-11-04 23:44:31,601 Ajay-Pandey_A5000 INFO ====> Epoch: 72 [2023-11-04 23:44:31] | (0:00:22.701248)
2023-11-04 23:44:48,997 Ajay-Pandey_A5000 INFO Train Epoch: 73 [73%]
2023-11-04 23:44:48,997 Ajay-Pandey_A5000 INFO [2400, 9.910398212663652e-05]
2023-11-04 23:44:48,998 Ajay-Pandey_A5000 INFO loss_disc=3.772, loss_gen=3.597, loss_fm=9.290,loss_mel=16.905, loss_kl=1.505
2023-11-04 23:44:54,966 Ajay-Pandey_A5000 INFO ====> Epoch: 73 [2023-11-04 23:44:54] | (0:00:23.359444)
2023-11-04 23:45:17,823 Ajay-Pandey_A5000 INFO ====> Epoch: 74 [2023-11-04 23:45:17] | (0:00:22.849027)
2023-11-04 23:45:40,662 Ajay-Pandey_A5000 INFO ====> Epoch: 75 [2023-11-04 23:45:40] | (0:00:22.833663)
2023-11-04 23:46:03,576 Ajay-Pandey_A5000 INFO ====> Epoch: 76 [2023-11-04 23:46:03] | (0:00:22.908137)
2023-11-04 23:46:26,414 Ajay-Pandey_A5000 INFO ====> Epoch: 77 [2023-11-04 23:46:26] | (0:00:22.832327)
2023-11-04 23:46:49,371 Ajay-Pandey_A5000 INFO ====> Epoch: 78 [2023-11-04 23:46:49] | (0:00:22.951218)
2023-11-04 23:47:08,220 Ajay-Pandey_A5000 INFO Train Epoch: 79 [79%]
2023-11-04 23:47:08,221 Ajay-Pandey_A5000 INFO [2600, 9.902967736366644e-05]
2023-11-04 23:47:08,221 Ajay-Pandey_A5000 INFO loss_disc=3.728, loss_gen=3.433, loss_fm=9.332,loss_mel=16.881, loss_kl=1.462
2023-11-04 23:47:12,626 Ajay-Pandey_A5000 INFO ====> Epoch: 79 [2023-11-04 23:47:12] | (0:00:23.248989)
2023-11-04 23:47:35,395 Ajay-Pandey_A5000 INFO ====> Epoch: 80 [2023-11-04 23:47:35] | (0:00:22.761023)
2023-11-04 23:47:58,245 Ajay-Pandey_A5000 INFO ====> Epoch: 81 [2023-11-04 23:47:58] | (0:00:22.844138)
2023-11-04 23:48:21,225 Ajay-Pandey_A5000 INFO ====> Epoch: 82 [2023-11-04 23:48:21] | (0:00:22.973984)
2023-11-04 23:48:44,088 Ajay-Pandey_A5000 INFO ====> Epoch: 83 [2023-11-04 23:48:44] | (0:00:22.857614)
2023-11-04 23:49:07,015 Ajay-Pandey_A5000 INFO ====> Epoch: 84 [2023-11-04 23:49:07] | (0:00:22.920629)
2023-11-04 23:49:27,119 Ajay-Pandey_A5000 INFO Train Epoch: 85 [85%]
2023-11-04 23:49:27,120 Ajay-Pandey_A5000 INFO [2800, 9.895542831185631e-05]
2023-11-04 23:49:27,120 Ajay-Pandey_A5000 INFO loss_disc=3.842, loss_gen=3.359, loss_fm=9.221,loss_mel=17.573, loss_kl=1.393
2023-11-04 23:49:30,616 Ajay-Pandey_A5000 INFO ====> Epoch: 85 [2023-11-04 23:49:30] | (0:00:23.596089)
2023-11-04 23:49:53,373 Ajay-Pandey_A5000 INFO ====> Epoch: 86 [2023-11-04 23:49:53] | (0:00:22.747797)
2023-11-04 23:50:16,257 Ajay-Pandey_A5000 INFO ====> Epoch: 87 [2023-11-04 23:50:16] | (0:00:22.878182)
2023-11-04 23:50:39,075 Ajay-Pandey_A5000 INFO ====> Epoch: 88 [2023-11-04 23:50:39] | (0:00:22.812529)
2023-11-04 23:51:01,998 Ajay-Pandey_A5000 INFO ====> Epoch: 89 [2023-11-04 23:51:01] | (0:00:22.916868)
2023-11-04 23:51:24,829 Ajay-Pandey_A5000 INFO ====> Epoch: 90 [2023-11-04 23:51:24] | (0:00:22.825034)
2023-11-04 23:51:46,450 Ajay-Pandey_A5000 INFO Train Epoch: 91 [91%]
2023-11-04 23:51:46,450 Ajay-Pandey_A5000 INFO [3000, 9.888123492943583e-05]
2023-11-04 23:51:46,451 Ajay-Pandey_A5000 INFO loss_disc=3.574, loss_gen=3.599, loss_fm=9.447,loss_mel=17.070, loss_kl=1.431
2023-11-04 23:51:48,113 Ajay-Pandey_A5000 INFO ====> Epoch: 91 [2023-11-04 23:51:48] | (0:00:23.279052)
2023-11-04 23:52:10,930 Ajay-Pandey_A5000 INFO ====> Epoch: 92 [2023-11-04 23:52:10] | (0:00:22.808739)
2023-11-04 23:52:33,944 Ajay-Pandey_A5000 INFO ====> Epoch: 93 [2023-11-04 23:52:33] | (0:00:23.008121)
2023-11-04 23:52:56,801 Ajay-Pandey_A5000 INFO ====> Epoch: 94 [2023-11-04 23:52:56] | (0:00:22.851592)
2023-11-04 23:53:19,731 Ajay-Pandey_A5000 INFO ====> Epoch: 95 [2023-11-04 23:53:19] | (0:00:22.924260)
2023-11-04 23:53:42,729 Ajay-Pandey_A5000 INFO ====> Epoch: 96 [2023-11-04 23:53:42] | (0:00:22.992440)
2023-11-04 23:54:05,560 Ajay-Pandey_A5000 INFO Train Epoch: 97 [97%]
2023-11-04 23:54:05,561 Ajay-Pandey_A5000 INFO [3200, 9.880709717466598e-05]
2023-11-04 23:54:05,561 Ajay-Pandey_A5000 INFO loss_disc=3.808, loss_gen=3.522, loss_fm=8.647,loss_mel=16.730, loss_kl=1.142
2023-11-04 23:54:05,860 Ajay-Pandey_A5000 INFO ====> Epoch: 97 [2023-11-04 23:54:05] | (0:00:23.125019)
2023-11-04 23:54:28,721 Ajay-Pandey_A5000 INFO ====> Epoch: 98 [2023-11-04 23:54:28] | (0:00:22.853465)
2023-11-04 23:54:51,611 Ajay-Pandey_A5000 INFO ====> Epoch: 99 [2023-11-04 23:54:51] | (0:00:22.884853)
2023-11-04 23:55:14,416 Ajay-Pandey_A5000 INFO Saving model and optimizer state at epoch 100 to ./logs/Ajay-Pandey_A5000/G_2333333.pth
2023-11-04 23:55:20,808 Ajay-Pandey_A5000 INFO Saving model and optimizer state at epoch 100 to ./logs/Ajay-Pandey_A5000/D_2333333.pth
2023-11-04 23:55:35,499 Ajay-Pandey_A5000 INFO saving ckpt Ajay-Pandey_A5000_e100:Success.
2023-11-04 23:55:35,500 Ajay-Pandey_A5000 INFO ====> Epoch: 100 [2023-11-04 23:55:35] | (0:00:43.882735)
2023-11-04 23:55:58,095 Ajay-Pandey_A5000 INFO ====> Epoch: 101 [2023-11-04 23:55:58] | (0:00:22.589119)
2023-11-04 23:56:20,824 Ajay-Pandey_A5000 INFO ====> Epoch: 102 [2023-11-04 23:56:20] | (0:00:22.723262)
2023-11-04 23:56:43,624 Ajay-Pandey_A5000 INFO ====> Epoch: 103 [2023-11-04 23:56:43] | (0:00:22.794056)
2023-11-04 23:56:45,316 Ajay-Pandey_A5000 INFO Train Epoch: 104 [3%]
2023-11-04 23:56:45,317 Ajay-Pandey_A5000 INFO [3400, 9.872067337896332e-05]
2023-11-04 23:56:45,317 Ajay-Pandey_A5000 INFO loss_disc=3.751, loss_gen=3.625, loss_fm=9.873,loss_mel=17.249, loss_kl=1.298
2023-11-04 23:57:06,953 Ajay-Pandey_A5000 INFO ====> Epoch: 104 [2023-11-04 23:57:06] | (0:00:23.323054)
2023-11-04 23:57:29,742 Ajay-Pandey_A5000 INFO ====> Epoch: 105 [2023-11-04 23:57:29] | (0:00:22.781252)
2023-11-04 23:57:52,588 Ajay-Pandey_A5000 INFO ====> Epoch: 106 [2023-11-04 23:57:52] | (0:00:22.840464)
2023-11-04 23:58:15,447 Ajay-Pandey_A5000 INFO ====> Epoch: 107 [2023-11-04 23:58:15] | (0:00:22.853200)
2023-11-04 23:58:38,349 Ajay-Pandey_A5000 INFO ====> Epoch: 108 [2023-11-04 23:58:38] | (0:00:22.897473)
2023-11-04 23:59:01,232 Ajay-Pandey_A5000 INFO ====> Epoch: 109 [2023-11-04 23:59:01] | (0:00:22.877168)
2023-11-04 23:59:04,274 Ajay-Pandey_A5000 INFO Train Epoch: 110 [9%]
2023-11-04 23:59:04,275 Ajay-Pandey_A5000 INFO [3600, 9.864665600773098e-05]
2023-11-04 23:59:04,275 Ajay-Pandey_A5000 INFO loss_disc=3.775, loss_gen=3.594, loss_fm=9.781,loss_mel=17.109, loss_kl=1.578
2023-11-04 23:59:24,422 Ajay-Pandey_A5000 INFO ====> Epoch: 110 [2023-11-04 23:59:24] | (0:00:23.184575)
2023-11-04 23:59:47,308 Ajay-Pandey_A5000 INFO ====> Epoch: 111 [2023-11-04 23:59:47] | (0:00:22.878125)
2023-11-05 00:00:10,145 Ajay-Pandey_A5000 INFO ====> Epoch: 112 [2023-11-05 00:00:10] | (0:00:22.830921)
2023-11-05 00:00:33,022 Ajay-Pandey_A5000 INFO ====> Epoch: 113 [2023-11-05 00:00:33] | (0:00:22.871466)
2023-11-05 00:00:55,740 Ajay-Pandey_A5000 INFO ====> Epoch: 114 [2023-11-05 00:00:55] | (0:00:22.712193)
2023-11-05 00:01:18,700 Ajay-Pandey_A5000 INFO ====> Epoch: 115 [2023-11-05 00:01:18] | (0:00:22.954302)
2023-11-05 00:01:23,078 Ajay-Pandey_A5000 INFO Train Epoch: 116 [15%]
2023-11-05 00:01:23,078 Ajay-Pandey_A5000 INFO [3800, 9.857269413218213e-05]
2023-11-05 00:01:23,078 Ajay-Pandey_A5000 INFO loss_disc=3.433, loss_gen=3.899, loss_fm=10.853,loss_mel=16.731, loss_kl=0.885
2023-11-05 00:01:41,958 Ajay-Pandey_A5000 INFO ====> Epoch: 116 [2023-11-05 00:01:41] | (0:00:23.252840)
2023-11-05 00:02:04,783 Ajay-Pandey_A5000 INFO ====> Epoch: 117 [2023-11-05 00:02:04] | (0:00:22.817342)
2023-11-05 00:02:27,584 Ajay-Pandey_A5000 INFO ====> Epoch: 118 [2023-11-05 00:02:27] | (0:00:22.795033)
2023-11-05 00:02:50,455 Ajay-Pandey_A5000 INFO ====> Epoch: 119 [2023-11-05 00:02:50] | (0:00:22.864770)
2023-11-05 00:03:13,303 Ajay-Pandey_A5000 INFO ====> Epoch: 120 [2023-11-05 00:03:13] | (0:00:22.843084)
2023-11-05 00:03:36,114 Ajay-Pandey_A5000 INFO ====> Epoch: 121 [2023-11-05 00:03:36] | (0:00:22.805537)
2023-11-05 00:03:41,737 Ajay-Pandey_A5000 INFO Train Epoch: 122 [21%]
2023-11-05 00:03:41,738 Ajay-Pandey_A5000 INFO [4000, 9.8498787710708e-05]
2023-11-05 00:03:41,738 Ajay-Pandey_A5000 INFO loss_disc=3.377, loss_gen=3.758, loss_fm=10.679,loss_mel=16.919, loss_kl=0.794
2023-11-05 00:03:59,480 Ajay-Pandey_A5000 INFO ====> Epoch: 122 [2023-11-05 00:03:59] | (0:00:23.358988)
2023-11-05 00:04:22,244 Ajay-Pandey_A5000 INFO ====> Epoch: 123 [2023-11-05 00:04:22] | (0:00:22.756945)
2023-11-05 00:04:45,300 Ajay-Pandey_A5000 INFO ====> Epoch: 124 [2023-11-05 00:04:45] | (0:00:23.050051)
2023-11-05 00:05:08,178 Ajay-Pandey_A5000 INFO ====> Epoch: 125 [2023-11-05 00:05:08] | (0:00:22.872352)
2023-11-05 00:05:30,974 Ajay-Pandey_A5000 INFO ====> Epoch: 126 [2023-11-05 00:05:30] | (0:00:22.790803)
2023-11-05 00:05:53,781 Ajay-Pandey_A5000 INFO ====> Epoch: 127 [2023-11-05 00:05:53] | (0:00:22.800674)
2023-11-05 00:06:00,780 Ajay-Pandey_A5000 INFO Train Epoch: 128 [27%]
2023-11-05 00:06:00,781 Ajay-Pandey_A5000 INFO [4200, 9.842493670173108e-05]
2023-11-05 00:06:00,781 Ajay-Pandey_A5000 INFO loss_disc=3.827, loss_gen=3.574, loss_fm=8.813,loss_mel=17.144, loss_kl=1.167
2023-11-05 00:06:16,965 Ajay-Pandey_A5000 INFO ====> Epoch: 128 [2023-11-05 00:06:16] | (0:00:23.178656)
2023-11-05 00:06:39,716 Ajay-Pandey_A5000 INFO ====> Epoch: 129 [2023-11-05 00:06:39] | (0:00:22.742354)
2023-11-05 00:07:02,496 Ajay-Pandey_A5000 INFO ====> Epoch: 130 [2023-11-05 00:07:02] | (0:00:22.774633)
2023-11-05 00:07:25,331 Ajay-Pandey_A5000 INFO ====> Epoch: 131 [2023-11-05 00:07:25] | (0:00:22.829231)
2023-11-05 00:07:48,131 Ajay-Pandey_A5000 INFO ====> Epoch: 132 [2023-11-05 00:07:48] | (0:00:22.794170)
2023-11-05 00:08:11,026 Ajay-Pandey_A5000 INFO ====> Epoch: 133 [2023-11-05 00:08:11] | (0:00:22.888139)
2023-11-05 00:08:19,508 Ajay-Pandey_A5000 INFO Train Epoch: 134 [33%]
2023-11-05 00:08:19,509 Ajay-Pandey_A5000 INFO [4400, 9.835114106370493e-05]
2023-11-05 00:08:19,509 Ajay-Pandey_A5000 INFO loss_disc=3.761, loss_gen=3.783, loss_fm=9.872,loss_mel=17.287, loss_kl=1.321
2023-11-05 00:08:34,329 Ajay-Pandey_A5000 INFO ====> Epoch: 134 [2023-11-05 00:08:34] | (0:00:23.297607)
2023-11-05 00:08:57,153 Ajay-Pandey_A5000 INFO ====> Epoch: 135 [2023-11-05 00:08:57] | (0:00:22.816208)
2023-11-05 00:09:20,085 Ajay-Pandey_A5000 INFO ====> Epoch: 136 [2023-11-05 00:09:20] | (0:00:22.925884)
2023-11-05 00:09:42,813 Ajay-Pandey_A5000 INFO ====> Epoch: 137 [2023-11-05 00:09:42] | (0:00:22.722310)
2023-11-05 00:10:05,722 Ajay-Pandey_A5000 INFO ====> Epoch: 138 [2023-11-05 00:10:05] | (0:00:22.902471)
2023-11-05 00:10:28,511 Ajay-Pandey_A5000 INFO ====> Epoch: 139 [2023-11-05 00:10:28] | (0:00:22.782845)
2023-11-05 00:10:38,180 Ajay-Pandey_A5000 INFO Train Epoch: 140 [39%]
2023-11-05 00:10:38,181 Ajay-Pandey_A5000 INFO [4600, 9.827740075511432e-05]
2023-11-05 00:10:38,181 Ajay-Pandey_A5000 INFO loss_disc=3.695, loss_gen=3.762, loss_fm=10.210,loss_mel=16.900, loss_kl=1.238
2023-11-05 00:10:51,520 Ajay-Pandey_A5000 INFO ====> Epoch: 140 [2023-11-05 00:10:51] | (0:00:23.003916)
2023-11-05 00:11:14,330 Ajay-Pandey_A5000 INFO ====> Epoch: 141 [2023-11-05 00:11:14] | (0:00:22.801615)
2023-11-05 00:11:37,164 Ajay-Pandey_A5000 INFO ====> Epoch: 142 [2023-11-05 00:11:37] | (0:00:22.828460)
2023-11-05 00:11:59,979 Ajay-Pandey_A5000 INFO ====> Epoch: 143 [2023-11-05 00:11:59] | (0:00:22.809321)
2023-11-05 00:12:22,894 Ajay-Pandey_A5000 INFO ====> Epoch: 144 [2023-11-05 00:12:22] | (0:00:22.909194)
2023-11-05 00:12:45,715 Ajay-Pandey_A5000 INFO ====> Epoch: 145 [2023-11-05 00:12:45] | (0:00:22.815629)
2023-11-05 00:12:56,822 Ajay-Pandey_A5000 INFO Train Epoch: 146 [45%]
2023-11-05 00:12:56,823 Ajay-Pandey_A5000 INFO [4800, 9.820371573447515e-05]
2023-11-05 00:12:56,823 Ajay-Pandey_A5000 INFO loss_disc=3.812, loss_gen=3.661, loss_fm=9.248,loss_mel=16.898, loss_kl=1.329
2023-11-05 00:13:09,097 Ajay-Pandey_A5000 INFO ====> Epoch: 146 [2023-11-05 00:13:09] | (0:00:23.376005)
2023-11-05 00:13:31,931 Ajay-Pandey_A5000 INFO ====> Epoch: 147 [2023-11-05 00:13:31] | (0:00:22.825565)
2023-11-05 00:13:54,649 Ajay-Pandey_A5000 INFO ====> Epoch: 148 [2023-11-05 00:13:54] | (0:00:22.712815)
2023-11-05 00:14:17,545 Ajay-Pandey_A5000 INFO ====> Epoch: 149 [2023-11-05 00:14:17] | (0:00:22.890707)
2023-11-05 00:14:40,373 Ajay-Pandey_A5000 INFO Saving model and optimizer state at epoch 150 to ./logs/Ajay-Pandey_A5000/G_2333333.pth
2023-11-05 00:14:46,769 Ajay-Pandey_A5000 INFO Saving model and optimizer state at epoch 150 to ./logs/Ajay-Pandey_A5000/D_2333333.pth
2023-11-05 00:15:02,580 Ajay-Pandey_A5000 INFO saving ckpt Ajay-Pandey_A5000_e150:Success.
2023-11-05 00:15:02,580 Ajay-Pandey_A5000 INFO ====> Epoch: 150 [2023-11-05 00:15:02] | (0:00:45.029921)
2023-11-05 00:15:25,183 Ajay-Pandey_A5000 INFO ====> Epoch: 151 [2023-11-05 00:15:25] | (0:00:22.595876)
2023-11-05 00:15:37,702 Ajay-Pandey_A5000 INFO Train Epoch: 152 [52%]
2023-11-05 00:15:37,703 Ajay-Pandey_A5000 INFO [5000, 9.813008596033443e-05]
2023-11-05 00:15:37,703 Ajay-Pandey_A5000 INFO loss_disc=3.733, loss_gen=3.267, loss_fm=9.690,loss_mel=16.781, loss_kl=1.101
2023-11-05 00:15:48,162 Ajay-Pandey_A5000 INFO ====> Epoch: 152 [2023-11-05 00:15:48] | (0:00:22.974181)
2023-11-05 00:16:10,943 Ajay-Pandey_A5000 INFO ====> Epoch: 153 [2023-11-05 00:16:10] | (0:00:22.772547)
2023-11-05 00:16:33,746 Ajay-Pandey_A5000 INFO ====> Epoch: 154 [2023-11-05 00:16:33] | (0:00:22.797435)
2023-11-05 00:16:56,542 Ajay-Pandey_A5000 INFO ====> Epoch: 155 [2023-11-05 00:16:56] | (0:00:22.789698)
2023-11-05 00:17:19,343 Ajay-Pandey_A5000 INFO ====> Epoch: 156 [2023-11-05 00:17:19] | (0:00:22.795960)
2023-11-05 00:17:42,282 Ajay-Pandey_A5000 INFO ====> Epoch: 157 [2023-11-05 00:17:42] | (0:00:22.932891)
2023-11-05 00:17:56,269 Ajay-Pandey_A5000 INFO Train Epoch: 158 [58%]
2023-11-05 00:17:56,270 Ajay-Pandey_A5000 INFO [5200, 9.80565113912702e-05]
2023-11-05 00:17:56,270 Ajay-Pandey_A5000 INFO loss_disc=3.740, loss_gen=3.503, loss_fm=9.680,loss_mel=16.616, loss_kl=1.178
2023-11-05 00:18:06,131 Ajay-Pandey_A5000 INFO ====> Epoch: 158 [2023-11-05 00:18:06] | (0:00:23.843256)
2023-11-05 00:18:28,965 Ajay-Pandey_A5000 INFO ====> Epoch: 159 [2023-11-05 00:18:28] | (0:00:22.826470)
2023-11-05 00:18:51,794 Ajay-Pandey_A5000 INFO ====> Epoch: 160 [2023-11-05 00:18:51] | (0:00:22.823250)
2023-11-05 00:19:14,536 Ajay-Pandey_A5000 INFO ====> Epoch: 161 [2023-11-05 00:19:14] | (0:00:22.736406)
2023-11-05 00:19:37,409 Ajay-Pandey_A5000 INFO ====> Epoch: 162 [2023-11-05 00:19:37] | (0:00:22.867276)
2023-11-05 00:20:00,200 Ajay-Pandey_A5000 INFO ====> Epoch: 163 [2023-11-05 00:20:00] | (0:00:22.785334)
2023-11-05 00:20:15,493 Ajay-Pandey_A5000 INFO Train Epoch: 164 [64%]
2023-11-05 00:20:15,494 Ajay-Pandey_A5000 INFO [5400, 9.798299198589162e-05]
2023-11-05 00:20:15,494 Ajay-Pandey_A5000 INFO loss_disc=3.691, loss_gen=3.500, loss_fm=10.249,loss_mel=16.866, loss_kl=1.159
2023-11-05 00:20:23,669 Ajay-Pandey_A5000 INFO ====> Epoch: 164 [2023-11-05 00:20:23] | (0:00:23.463470)
2023-11-05 00:20:46,482 Ajay-Pandey_A5000 INFO ====> Epoch: 165 [2023-11-05 00:20:46] | (0:00:22.805375)
2023-11-05 00:21:09,226 Ajay-Pandey_A5000 INFO ====> Epoch: 166 [2023-11-05 00:21:09] | (0:00:22.739365)
2023-11-05 00:21:32,088 Ajay-Pandey_A5000 INFO ====> Epoch: 167 [2023-11-05 00:21:32] | (0:00:22.856104)
2023-11-05 00:21:54,852 Ajay-Pandey_A5000 INFO ====> Epoch: 168 [2023-11-05 00:21:54] | (0:00:22.758063)
2023-11-05 00:22:17,618 Ajay-Pandey_A5000 INFO ====> Epoch: 169 [2023-11-05 00:22:17] | (0:00:22.760144)
2023-11-05 00:22:34,404 Ajay-Pandey_A5000 INFO Train Epoch: 170 [70%]
2023-11-05 00:22:34,404 Ajay-Pandey_A5000 INFO [5600, 9.790952770283884e-05]
2023-11-05 00:22:34,404 Ajay-Pandey_A5000 INFO loss_disc=3.531, loss_gen=3.599, loss_fm=10.300,loss_mel=16.736, loss_kl=0.791
2023-11-05 00:22:40,759 Ajay-Pandey_A5000 INFO ====> Epoch: 170 [2023-11-05 00:22:40] | (0:00:23.136333)
2023-11-05 00:23:03,558 Ajay-Pandey_A5000 INFO ====> Epoch: 171 [2023-11-05 00:23:03] | (0:00:22.790795)
2023-11-05 00:23:26,469 Ajay-Pandey_A5000 INFO ====> Epoch: 172 [2023-11-05 00:23:26] | (0:00:22.905419)
2023-11-05 00:23:49,340 Ajay-Pandey_A5000 INFO ====> Epoch: 173 [2023-11-05 00:23:49] | (0:00:22.865242)
2023-11-05 00:24:12,164 Ajay-Pandey_A5000 INFO ====> Epoch: 174 [2023-11-05 00:24:12] | (0:00:22.818543)
2023-11-05 00:24:35,013 Ajay-Pandey_A5000 INFO ====> Epoch: 175 [2023-11-05 00:24:35] | (0:00:22.843645)
2023-11-05 00:24:53,146 Ajay-Pandey_A5000 INFO Train Epoch: 176 [76%]
2023-11-05 00:24:53,146 Ajay-Pandey_A5000 INFO [5800, 9.783611850078301e-05]
2023-11-05 00:24:53,147 Ajay-Pandey_A5000 INFO loss_disc=3.529, loss_gen=3.749, loss_fm=9.505,loss_mel=16.022, loss_kl=0.548
2023-11-05 00:24:58,174 Ajay-Pandey_A5000 INFO ====> Epoch: 176 [2023-11-05 00:24:58] | (0:00:23.155080)
2023-11-05 00:25:20,998 Ajay-Pandey_A5000 INFO ====> Epoch: 177 [2023-11-05 00:25:20] | (0:00:22.815831)
2023-11-05 00:25:43,764 Ajay-Pandey_A5000 INFO ====> Epoch: 178 [2023-11-05 00:25:43] | (0:00:22.761218)
2023-11-05 00:26:06,489 Ajay-Pandey_A5000 INFO ====> Epoch: 179 [2023-11-05 00:26:06] | (0:00:22.719080)
2023-11-05 00:26:29,206 Ajay-Pandey_A5000 INFO ====> Epoch: 180 [2023-11-05 00:26:29] | (0:00:22.712014)
2023-11-05 00:26:52,072 Ajay-Pandey_A5000 INFO ====> Epoch: 181 [2023-11-05 00:26:52] | (0:00:22.860395)
2023-11-05 00:27:11,478 Ajay-Pandey_A5000 INFO Train Epoch: 182 [82%]
2023-11-05 00:27:11,479 Ajay-Pandey_A5000 INFO [6000, 9.776276433842631e-05]
2023-11-05 00:27:11,479 Ajay-Pandey_A5000 INFO loss_disc=3.678, loss_gen=3.582, loss_fm=9.247,loss_mel=16.496, loss_kl=1.117
2023-11-05 00:27:15,210 Ajay-Pandey_A5000 INFO ====> Epoch: 182 [2023-11-05 00:27:15] | (0:00:23.132259)
2023-11-05 00:27:38,132 Ajay-Pandey_A5000 INFO ====> Epoch: 183 [2023-11-05 00:27:38] | (0:00:22.914165)
2023-11-05 00:28:00,840 Ajay-Pandey_A5000 INFO ====> Epoch: 184 [2023-11-05 00:28:00] | (0:00:22.701643)
2023-11-05 00:28:23,670 Ajay-Pandey_A5000 INFO ====> Epoch: 185 [2023-11-05 00:28:23] | (0:00:22.825025)
2023-11-05 00:28:46,427 Ajay-Pandey_A5000 INFO ====> Epoch: 186 [2023-11-05 00:28:46] | (0:00:22.750885)
2023-11-05 00:29:09,293 Ajay-Pandey_A5000 INFO ====> Epoch: 187 [2023-11-05 00:29:09] | (0:00:22.861411)
2023-11-05 00:29:30,105 Ajay-Pandey_A5000 INFO Train Epoch: 188 [88%]
2023-11-05 00:29:30,106 Ajay-Pandey_A5000 INFO [6200, 9.768946517450186e-05]
2023-11-05 00:29:30,106 Ajay-Pandey_A5000 INFO loss_disc=3.434, loss_gen=3.577, loss_fm=9.818,loss_mel=16.039, loss_kl=0.532
2023-11-05 00:29:32,570 Ajay-Pandey_A5000 INFO ====> Epoch: 188 [2023-11-05 00:29:32] | (0:00:23.270988)
2023-11-05 00:29:55,470 Ajay-Pandey_A5000 INFO ====> Epoch: 189 [2023-11-05 00:29:55] | (0:00:22.891330)
2023-11-05 00:30:18,283 Ajay-Pandey_A5000 INFO ====> Epoch: 190 [2023-11-05 00:30:18] | (0:00:22.807743)
2023-11-05 00:30:41,106 Ajay-Pandey_A5000 INFO ====> Epoch: 191 [2023-11-05 00:30:41] | (0:00:22.818090)
2023-11-05 00:31:03,981 Ajay-Pandey_A5000 INFO ====> Epoch: 192 [2023-11-05 00:31:03] | (0:00:22.869071)
2023-11-05 00:31:26,890 Ajay-Pandey_A5000 INFO ====> Epoch: 193 [2023-11-05 00:31:26] | (0:00:22.902973)
2023-11-05 00:31:48,994 Ajay-Pandey_A5000 INFO Train Epoch: 194 [94%]
2023-11-05 00:31:48,995 Ajay-Pandey_A5000 INFO [6400, 9.761622096777372e-05]
2023-11-05 00:31:48,995 Ajay-Pandey_A5000 INFO loss_disc=3.477, loss_gen=3.934, loss_fm=10.371,loss_mel=16.356, loss_kl=0.678
2023-11-05 00:31:49,985 Ajay-Pandey_A5000 INFO ====> Epoch: 194 [2023-11-05 00:31:49] | (0:00:23.089119)
2023-11-05 00:32:12,849 Ajay-Pandey_A5000 INFO ====> Epoch: 195 [2023-11-05 00:32:12] | (0:00:22.856533)
2023-11-05 00:32:35,603 Ajay-Pandey_A5000 INFO ====> Epoch: 196 [2023-11-05 00:32:35] | (0:00:22.748233)
2023-11-05 00:32:58,412 Ajay-Pandey_A5000 INFO ====> Epoch: 197 [2023-11-05 00:32:58] | (0:00:22.803447)
2023-11-05 00:33:21,206 Ajay-Pandey_A5000 INFO ====> Epoch: 198 [2023-11-05 00:33:21] | (0:00:22.788428)
2023-11-05 00:33:43,982 Ajay-Pandey_A5000 INFO ====> Epoch: 199 [2023-11-05 00:33:43] | (0:00:22.770707)
2023-11-05 00:34:06,894 Ajay-Pandey_A5000 INFO Saving model and optimizer state at epoch 200 to ./logs/Ajay-Pandey_A5000/G_2333333.pth
2023-11-05 00:34:14,598 Ajay-Pandey_A5000 INFO Saving model and optimizer state at epoch 200 to ./logs/Ajay-Pandey_A5000/D_2333333.pth
2023-11-05 00:34:29,437 Ajay-Pandey_A5000 INFO saving ckpt Ajay-Pandey_A5000_e200:Success.
2023-11-05 00:34:29,437 Ajay-Pandey_A5000 INFO ====> Epoch: 200 [2023-11-05 00:34:29] | (0:00:45.450064)
2023-11-05 00:34:29,437 Ajay-Pandey_A5000 INFO Training is done. The program is closed.
2023-11-05 00:34:30,493 Ajay-Pandey_A5000 INFO saving final ckpt:Success.
|