File size: 39,715 Bytes
2fe7d85
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
2023-11-04 23:03:33,781	Ajay-Pandey_A5000	INFO	{'data': {'filter_length': 1024, 'hop_length': 320, 'max_wav_value': 32768.0, 'mel_fmax': None, 'mel_fmin': 0.0, 'n_mel_channels': 80, 'sampling_rate': 32000, 'win_length': 1024, 'training_files': './logs/Ajay-Pandey_A5000/filelist.txt'}, 'model': {'filter_channels': 768, 'gin_channels': 256, 'hidden_channels': 192, 'inter_channels': 192, 'kernel_size': 3, 'n_heads': 2, 'n_layers': 6, 'p_dropout': 0, 'resblock': '1', 'resblock_dilation_sizes': [[1, 3, 5], [1, 3, 5], [1, 3, 5]], 'resblock_kernel_sizes': [3, 7, 11], 'spk_embed_dim': 109, 'upsample_initial_channel': 512, 'upsample_kernel_sizes': [20, 16, 4, 4], 'upsample_rates': [10, 8, 2, 2], 'use_spectral_norm': False}, 'train': {'batch_size': 12, 'betas': [0.8, 0.99], 'c_kl': 1.0, 'c_mel': 45, 'epochs': 20000, 'eps': 1e-09, 'fp16_run': True, 'init_lr_ratio': 1, 'learning_rate': 0.0001, 'log_interval': 200, 'lr_decay': 0.999875, 'seed': 1234, 'segment_size': 12800, 'warmup_epochs': 0}, 'model_dir': './logs/Ajay-Pandey_A5000', 'experiment_dir': './logs/Ajay-Pandey_A5000', 'save_every_epoch': 50, 'name': 'Ajay-Pandey_A5000', 'total_epoch': 200, 'pretrainG': 'assets/pretrained_v2/f0G32k.pth', 'pretrainD': 'assets/pretrained_v2/f0D32k.pth', 'version': 'v2', 'gpus': '0', 'sample_rate': '32k', 'if_f0': 1, 'if_latest': 1, 'save_every_weights': '1', 'if_cache_data_in_gpu': 0}
2023-11-04 23:03:35,404	Ajay-Pandey_A5000	INFO	loaded pretrained assets/pretrained_v2/f0G32k.pth
2023-11-04 23:03:36,160	Ajay-Pandey_A5000	INFO	<All keys matched successfully>
2023-11-04 23:03:36,160	Ajay-Pandey_A5000	INFO	loaded pretrained assets/pretrained_v2/f0D32k.pth
2023-11-04 23:03:37,540	Ajay-Pandey_A5000	INFO	<All keys matched successfully>
2023-11-04 23:03:51,133	Ajay-Pandey_A5000	INFO	Train Epoch: 1 [0%]
2023-11-04 23:03:51,133	Ajay-Pandey_A5000	INFO	[0, 0.0001]
2023-11-04 23:03:51,133	Ajay-Pandey_A5000	INFO	loss_disc=3.786, loss_gen=3.702, loss_fm=9.033,loss_mel=22.719, loss_kl=7.950
2023-11-04 23:04:26,118	Ajay-Pandey_A5000	INFO	====> Epoch: 1 [2023-11-04 23:04:26] | (0:00:40.061292)
2023-11-04 23:04:57,455	Ajay-Pandey_A5000	INFO	Train Epoch: 2 [94%]
2023-11-04 23:04:57,456	Ajay-Pandey_A5000	INFO	[200, 9.99875e-05]
2023-11-04 23:04:57,456	Ajay-Pandey_A5000	INFO	loss_disc=3.820, loss_gen=3.609, loss_fm=9.561,loss_mel=18.932, loss_kl=2.134
2023-11-04 23:04:59,337	Ajay-Pandey_A5000	INFO	====> Epoch: 2 [2023-11-04 23:04:59] | (0:00:33.210196)
2023-11-04 23:05:31,848	Ajay-Pandey_A5000	INFO	====> Epoch: 3 [2023-11-04 23:05:31] | (0:00:32.502743)
2023-11-04 23:06:00,998	Ajay-Pandey_A5000	INFO	Train Epoch: 4 [88%]
2023-11-04 23:06:00,999	Ajay-Pandey_A5000	INFO	[400, 9.996250468730469e-05]
2023-11-04 23:06:00,999	Ajay-Pandey_A5000	INFO	loss_disc=3.974, loss_gen=3.343, loss_fm=8.949,loss_mel=18.701, loss_kl=2.241
2023-11-04 23:06:05,208	Ajay-Pandey_A5000	INFO	====> Epoch: 4 [2023-11-04 23:06:05] | (0:00:33.354582)
2023-11-04 23:06:37,735	Ajay-Pandey_A5000	INFO	====> Epoch: 5 [2023-11-04 23:06:37] | (0:00:32.518665)
2023-11-04 23:07:05,377	Ajay-Pandey_A5000	INFO	Train Epoch: 6 [83%]
2023-11-04 23:07:05,378	Ajay-Pandey_A5000	INFO	[600, 9.993751562304699e-05]
2023-11-04 23:07:05,378	Ajay-Pandey_A5000	INFO	loss_disc=3.856, loss_gen=3.533, loss_fm=8.789,loss_mel=18.011, loss_kl=1.711
2023-11-04 23:07:11,061	Ajay-Pandey_A5000	INFO	====> Epoch: 6 [2023-11-04 23:07:11] | (0:00:33.320310)
2023-11-04 23:07:43,886	Ajay-Pandey_A5000	INFO	====> Epoch: 7 [2023-11-04 23:07:43] | (0:00:32.816590)
2023-11-04 23:08:09,524	Ajay-Pandey_A5000	INFO	Train Epoch: 8 [77%]
2023-11-04 23:08:09,525	Ajay-Pandey_A5000	INFO	[800, 9.991253280566489e-05]
2023-11-04 23:08:09,525	Ajay-Pandey_A5000	INFO	loss_disc=3.789, loss_gen=3.638, loss_fm=9.821,loss_mel=17.689, loss_kl=2.160
2023-11-04 23:12:07,731	Ajay-Pandey_A5000	INFO	{'data': {'filter_length': 1024, 'hop_length': 320, 'max_wav_value': 32768.0, 'mel_fmax': None, 'mel_fmin': 0.0, 'n_mel_channels': 80, 'sampling_rate': 32000, 'win_length': 1024, 'training_files': './logs/Ajay-Pandey_A5000/filelist.txt'}, 'model': {'filter_channels': 768, 'gin_channels': 256, 'hidden_channels': 192, 'inter_channels': 192, 'kernel_size': 3, 'n_heads': 2, 'n_layers': 6, 'p_dropout': 0, 'resblock': '1', 'resblock_dilation_sizes': [[1, 3, 5], [1, 3, 5], [1, 3, 5]], 'resblock_kernel_sizes': [3, 7, 11], 'spk_embed_dim': 109, 'upsample_initial_channel': 512, 'upsample_kernel_sizes': [20, 16, 4, 4], 'upsample_rates': [10, 8, 2, 2], 'use_spectral_norm': False}, 'train': {'batch_size': 30, 'betas': [0.8, 0.99], 'c_kl': 1.0, 'c_mel': 45, 'epochs': 20000, 'eps': 1e-09, 'fp16_run': True, 'init_lr_ratio': 1, 'learning_rate': 0.0001, 'log_interval': 200, 'lr_decay': 0.999875, 'seed': 1234, 'segment_size': 12800, 'warmup_epochs': 0}, 'model_dir': './logs/Ajay-Pandey_A5000', 'experiment_dir': './logs/Ajay-Pandey_A5000', 'save_every_epoch': 50, 'name': 'Ajay-Pandey_A5000', 'total_epoch': 200, 'pretrainG': 'assets/pretrained_v2/f0G32k.pth', 'pretrainD': 'assets/pretrained_v2/f0D32k.pth', 'version': 'v2', 'gpus': '0', 'sample_rate': '32k', 'if_f0': 1, 'if_latest': 1, 'save_every_weights': '1', 'if_cache_data_in_gpu': 0}
2023-11-04 23:12:09,284	Ajay-Pandey_A5000	INFO	loaded pretrained assets/pretrained_v2/f0G32k.pth
2023-11-04 23:12:09,364	Ajay-Pandey_A5000	INFO	<All keys matched successfully>
2023-11-04 23:12:09,364	Ajay-Pandey_A5000	INFO	loaded pretrained assets/pretrained_v2/f0D32k.pth
2023-11-04 23:12:09,450	Ajay-Pandey_A5000	INFO	<All keys matched successfully>
2023-11-04 23:12:20,748	Ajay-Pandey_A5000	INFO	Train Epoch: 1 [0%]
2023-11-04 23:12:20,749	Ajay-Pandey_A5000	INFO	[0, 0.0001]
2023-11-04 23:12:20,749	Ajay-Pandey_A5000	INFO	loss_disc=3.720, loss_gen=3.597, loss_fm=9.126,loss_mel=22.488, loss_kl=8.173
2023-11-04 23:12:45,115	Ajay-Pandey_A5000	INFO	====> Epoch: 1 [2023-11-04 23:12:45] | (0:00:27.681448)
2023-11-04 23:13:08,674	Ajay-Pandey_A5000	INFO	====> Epoch: 2 [2023-11-04 23:13:08] | (0:00:23.550018)
2023-11-04 23:13:32,261	Ajay-Pandey_A5000	INFO	====> Epoch: 3 [2023-11-04 23:13:32] | (0:00:23.580945)
2023-11-04 23:13:56,107	Ajay-Pandey_A5000	INFO	====> Epoch: 4 [2023-11-04 23:13:56] | (0:00:23.840420)
2023-11-04 23:14:12,293	Ajay-Pandey_A5000	INFO	Train Epoch: 5 [65%]
2023-11-04 23:14:12,294	Ajay-Pandey_A5000	INFO	[200, 9.995000937421877e-05]
2023-11-04 23:14:12,294	Ajay-Pandey_A5000	INFO	loss_disc=3.970, loss_gen=3.112, loss_fm=8.101,loss_mel=18.416, loss_kl=2.152
2023-11-04 23:14:20,289	Ajay-Pandey_A5000	INFO	====> Epoch: 5 [2023-11-04 23:14:20] | (0:00:24.175916)
2023-11-04 23:16:26,326	Ajay-Pandey_A5000	INFO	{'data': {'filter_length': 1024, 'hop_length': 320, 'max_wav_value': 32768.0, 'mel_fmax': None, 'mel_fmin': 0.0, 'n_mel_channels': 80, 'sampling_rate': 32000, 'win_length': 1024, 'training_files': './logs/Ajay-Pandey_A5000/filelist.txt'}, 'model': {'filter_channels': 768, 'gin_channels': 256, 'hidden_channels': 192, 'inter_channels': 192, 'kernel_size': 3, 'n_heads': 2, 'n_layers': 6, 'p_dropout': 0, 'resblock': '1', 'resblock_dilation_sizes': [[1, 3, 5], [1, 3, 5], [1, 3, 5]], 'resblock_kernel_sizes': [3, 7, 11], 'spk_embed_dim': 109, 'upsample_initial_channel': 512, 'upsample_kernel_sizes': [20, 16, 4, 4], 'upsample_rates': [10, 8, 2, 2], 'use_spectral_norm': False}, 'train': {'batch_size': 40, 'betas': [0.8, 0.99], 'c_kl': 1.0, 'c_mel': 45, 'epochs': 20000, 'eps': 1e-09, 'fp16_run': True, 'init_lr_ratio': 1, 'learning_rate': 0.0001, 'log_interval': 200, 'lr_decay': 0.999875, 'seed': 1234, 'segment_size': 12800, 'warmup_epochs': 0}, 'model_dir': './logs/Ajay-Pandey_A5000', 'experiment_dir': './logs/Ajay-Pandey_A5000', 'save_every_epoch': 50, 'name': 'Ajay-Pandey_A5000', 'total_epoch': 200, 'pretrainG': 'assets/pretrained_v2/f0G32k.pth', 'pretrainD': 'assets/pretrained_v2/f0D32k.pth', 'version': 'v2', 'gpus': '0', 'sample_rate': '32k', 'if_f0': 1, 'if_latest': 1, 'save_every_weights': '1', 'if_cache_data_in_gpu': 0}
2023-11-04 23:16:27,875	Ajay-Pandey_A5000	INFO	loaded pretrained assets/pretrained_v2/f0G32k.pth
2023-11-04 23:16:27,958	Ajay-Pandey_A5000	INFO	<All keys matched successfully>
2023-11-04 23:16:27,959	Ajay-Pandey_A5000	INFO	loaded pretrained assets/pretrained_v2/f0D32k.pth
2023-11-04 23:16:28,040	Ajay-Pandey_A5000	INFO	<All keys matched successfully>
2023-11-04 23:16:41,049	Ajay-Pandey_A5000	INFO	Train Epoch: 1 [0%]
2023-11-04 23:16:41,049	Ajay-Pandey_A5000	INFO	[0, 0.0001]
2023-11-04 23:16:41,049	Ajay-Pandey_A5000	INFO	loss_disc=3.787, loss_gen=3.568, loss_fm=8.879,loss_mel=22.452, loss_kl=8.227
2023-11-04 23:17:04,025	Ajay-Pandey_A5000	INFO	====> Epoch: 1 [2023-11-04 23:17:04] | (0:00:26.594052)
2023-11-04 23:17:26,515	Ajay-Pandey_A5000	INFO	====> Epoch: 2 [2023-11-04 23:17:26] | (0:00:22.481709)
2023-11-04 23:17:49,168	Ajay-Pandey_A5000	INFO	====> Epoch: 3 [2023-11-04 23:17:49] | (0:00:22.647142)
2023-11-04 23:18:11,948	Ajay-Pandey_A5000	INFO	====> Epoch: 4 [2023-11-04 23:18:11] | (0:00:22.774344)
2023-11-04 23:18:34,738	Ajay-Pandey_A5000	INFO	====> Epoch: 5 [2023-11-04 23:18:34] | (0:00:22.784068)
2023-11-04 23:18:57,490	Ajay-Pandey_A5000	INFO	====> Epoch: 6 [2023-11-04 23:18:57] | (0:00:22.745963)
2023-11-04 23:18:59,695	Ajay-Pandey_A5000	INFO	Train Epoch: 7 [6%]
2023-11-04 23:18:59,696	Ajay-Pandey_A5000	INFO	[200, 9.99250234335941e-05]
2023-11-04 23:18:59,696	Ajay-Pandey_A5000	INFO	loss_disc=3.908, loss_gen=3.459, loss_fm=10.414,loss_mel=18.404, loss_kl=2.150
2023-11-04 23:19:20,564	Ajay-Pandey_A5000	INFO	====> Epoch: 7 [2023-11-04 23:19:20] | (0:00:23.068058)
2023-11-04 23:19:43,401	Ajay-Pandey_A5000	INFO	====> Epoch: 8 [2023-11-04 23:19:43] | (0:00:22.829126)
2023-11-04 23:20:06,335	Ajay-Pandey_A5000	INFO	====> Epoch: 9 [2023-11-04 23:20:06] | (0:00:22.928696)
2023-11-04 23:20:29,371	Ajay-Pandey_A5000	INFO	====> Epoch: 10 [2023-11-04 23:20:29] | (0:00:23.030083)
2023-11-04 23:20:52,260	Ajay-Pandey_A5000	INFO	====> Epoch: 11 [2023-11-04 23:20:52] | (0:00:22.883100)
2023-11-04 23:21:15,061	Ajay-Pandey_A5000	INFO	====> Epoch: 12 [2023-11-04 23:21:15] | (0:00:22.795453)
2023-11-04 23:21:18,675	Ajay-Pandey_A5000	INFO	Train Epoch: 13 [12%]
2023-11-04 23:21:18,676	Ajay-Pandey_A5000	INFO	[400, 9.98501030820433e-05]
2023-11-04 23:21:18,676	Ajay-Pandey_A5000	INFO	loss_disc=4.196, loss_gen=3.239, loss_fm=9.372,loss_mel=19.249, loss_kl=1.871
2023-11-04 23:21:38,549	Ajay-Pandey_A5000	INFO	====> Epoch: 13 [2023-11-04 23:21:38] | (0:00:23.481934)
2023-11-04 23:22:01,457	Ajay-Pandey_A5000	INFO	====> Epoch: 14 [2023-11-04 23:22:01] | (0:00:22.899584)
2023-11-04 23:22:24,261	Ajay-Pandey_A5000	INFO	====> Epoch: 15 [2023-11-04 23:22:24] | (0:00:22.798218)
2023-11-04 23:22:47,142	Ajay-Pandey_A5000	INFO	====> Epoch: 16 [2023-11-04 23:22:47] | (0:00:22.875532)
2023-11-04 23:23:10,001	Ajay-Pandey_A5000	INFO	====> Epoch: 17 [2023-11-04 23:23:10] | (0:00:22.853215)
2023-11-04 23:23:32,863	Ajay-Pandey_A5000	INFO	====> Epoch: 18 [2023-11-04 23:23:32] | (0:00:22.856476)
2023-11-04 23:23:37,878	Ajay-Pandey_A5000	INFO	Train Epoch: 19 [18%]
2023-11-04 23:23:37,879	Ajay-Pandey_A5000	INFO	[600, 9.977523890319963e-05]
2023-11-04 23:23:37,879	Ajay-Pandey_A5000	INFO	loss_disc=3.847, loss_gen=3.483, loss_fm=8.952,loss_mel=17.905, loss_kl=1.825
2023-11-04 23:23:56,174	Ajay-Pandey_A5000	INFO	====> Epoch: 19 [2023-11-04 23:23:56] | (0:00:23.305072)
2023-11-04 23:24:18,982	Ajay-Pandey_A5000	INFO	====> Epoch: 20 [2023-11-04 23:24:18] | (0:00:22.799062)
2023-11-04 23:24:41,919	Ajay-Pandey_A5000	INFO	====> Epoch: 21 [2023-11-04 23:24:41] | (0:00:22.931149)
2023-11-04 23:25:04,674	Ajay-Pandey_A5000	INFO	====> Epoch: 22 [2023-11-04 23:25:04] | (0:00:22.749894)
2023-11-04 23:25:27,566	Ajay-Pandey_A5000	INFO	====> Epoch: 23 [2023-11-04 23:25:27] | (0:00:22.886374)
2023-11-04 23:25:50,558	Ajay-Pandey_A5000	INFO	====> Epoch: 24 [2023-11-04 23:25:50] | (0:00:22.985400)
2023-11-04 23:25:57,065	Ajay-Pandey_A5000	INFO	Train Epoch: 25 [24%]
2023-11-04 23:25:57,066	Ajay-Pandey_A5000	INFO	[800, 9.970043085494672e-05]
2023-11-04 23:25:57,066	Ajay-Pandey_A5000	INFO	loss_disc=3.664, loss_gen=3.644, loss_fm=10.307,loss_mel=18.468, loss_kl=1.708
2023-11-04 23:26:13,771	Ajay-Pandey_A5000	INFO	====> Epoch: 25 [2023-11-04 23:26:13] | (0:00:23.206968)
2023-11-04 23:26:36,600	Ajay-Pandey_A5000	INFO	====> Epoch: 26 [2023-11-04 23:26:36] | (0:00:22.821236)
2023-11-04 23:26:59,382	Ajay-Pandey_A5000	INFO	====> Epoch: 27 [2023-11-04 23:26:59] | (0:00:22.775678)
2023-11-04 23:27:22,267	Ajay-Pandey_A5000	INFO	====> Epoch: 28 [2023-11-04 23:27:22] | (0:00:22.879335)
2023-11-04 23:27:45,140	Ajay-Pandey_A5000	INFO	====> Epoch: 29 [2023-11-04 23:27:45] | (0:00:22.867398)
2023-11-04 23:28:07,974	Ajay-Pandey_A5000	INFO	====> Epoch: 30 [2023-11-04 23:28:07] | (0:00:22.828433)
2023-11-04 23:28:15,882	Ajay-Pandey_A5000	INFO	Train Epoch: 31 [30%]
2023-11-04 23:28:15,883	Ajay-Pandey_A5000	INFO	[1000, 9.962567889519979e-05]
2023-11-04 23:28:15,883	Ajay-Pandey_A5000	INFO	loss_disc=3.766, loss_gen=3.401, loss_fm=9.894,loss_mel=18.234, loss_kl=1.669
2023-11-04 23:28:31,296	Ajay-Pandey_A5000	INFO	====> Epoch: 31 [2023-11-04 23:28:31] | (0:00:23.315520)
2023-11-04 23:28:54,124	Ajay-Pandey_A5000	INFO	====> Epoch: 32 [2023-11-04 23:28:54] | (0:00:22.819762)
2023-11-04 23:29:16,985	Ajay-Pandey_A5000	INFO	====> Epoch: 33 [2023-11-04 23:29:16] | (0:00:22.855596)
2023-11-04 23:29:39,862	Ajay-Pandey_A5000	INFO	====> Epoch: 34 [2023-11-04 23:29:39] | (0:00:22.870549)
2023-11-04 23:30:02,775	Ajay-Pandey_A5000	INFO	====> Epoch: 35 [2023-11-04 23:30:02] | (0:00:22.907229)
2023-11-04 23:30:25,656	Ajay-Pandey_A5000	INFO	====> Epoch: 36 [2023-11-04 23:30:25] | (0:00:22.875968)
2023-11-04 23:30:34,895	Ajay-Pandey_A5000	INFO	Train Epoch: 37 [36%]
2023-11-04 23:30:34,896	Ajay-Pandey_A5000	INFO	[1200, 9.95509829819056e-05]
2023-11-04 23:30:34,896	Ajay-Pandey_A5000	INFO	loss_disc=3.914, loss_gen=3.415, loss_fm=9.049,loss_mel=17.777, loss_kl=1.364
2023-11-04 23:30:48,827	Ajay-Pandey_A5000	INFO	====> Epoch: 37 [2023-11-04 23:30:48] | (0:00:23.164846)
2023-11-04 23:31:11,714	Ajay-Pandey_A5000	INFO	====> Epoch: 38 [2023-11-04 23:31:11] | (0:00:22.877787)
2023-11-04 23:31:34,565	Ajay-Pandey_A5000	INFO	====> Epoch: 39 [2023-11-04 23:31:34] | (0:00:22.845310)
2023-11-04 23:31:57,306	Ajay-Pandey_A5000	INFO	====> Epoch: 40 [2023-11-04 23:31:57] | (0:00:22.735213)
2023-11-04 23:32:20,139	Ajay-Pandey_A5000	INFO	====> Epoch: 41 [2023-11-04 23:32:20] | (0:00:22.827448)
2023-11-04 23:32:42,955	Ajay-Pandey_A5000	INFO	====> Epoch: 42 [2023-11-04 23:32:42] | (0:00:22.810259)
2023-11-04 23:32:53,310	Ajay-Pandey_A5000	INFO	Train Epoch: 43 [42%]
2023-11-04 23:32:53,310	Ajay-Pandey_A5000	INFO	[1400, 9.947634307304244e-05]
2023-11-04 23:32:53,311	Ajay-Pandey_A5000	INFO	loss_disc=3.551, loss_gen=3.382, loss_fm=10.165,loss_mel=17.604, loss_kl=1.555
2023-11-04 23:33:06,199	Ajay-Pandey_A5000	INFO	====> Epoch: 43 [2023-11-04 23:33:06] | (0:00:23.238296)
2023-11-04 23:33:29,125	Ajay-Pandey_A5000	INFO	====> Epoch: 44 [2023-11-04 23:33:29] | (0:00:22.917144)
2023-11-04 23:33:51,943	Ajay-Pandey_A5000	INFO	====> Epoch: 45 [2023-11-04 23:33:51] | (0:00:22.811708)
2023-11-04 23:34:14,782	Ajay-Pandey_A5000	INFO	====> Epoch: 46 [2023-11-04 23:34:14] | (0:00:22.833785)
2023-11-04 23:34:37,563	Ajay-Pandey_A5000	INFO	====> Epoch: 47 [2023-11-04 23:34:37] | (0:00:22.775156)
2023-11-04 23:35:00,455	Ajay-Pandey_A5000	INFO	====> Epoch: 48 [2023-11-04 23:35:00] | (0:00:22.886509)
2023-11-04 23:35:12,395	Ajay-Pandey_A5000	INFO	Train Epoch: 49 [48%]
2023-11-04 23:35:12,395	Ajay-Pandey_A5000	INFO	[1600, 9.940175912662009e-05]
2023-11-04 23:35:12,395	Ajay-Pandey_A5000	INFO	loss_disc=4.002, loss_gen=3.420, loss_fm=8.967,loss_mel=17.586, loss_kl=1.421
2023-11-04 23:35:23,643	Ajay-Pandey_A5000	INFO	====> Epoch: 49 [2023-11-04 23:35:23] | (0:00:23.181479)
2023-11-04 23:35:46,518	Ajay-Pandey_A5000	INFO	Saving model and optimizer state at epoch 50 to ./logs/Ajay-Pandey_A5000/G_2333333.pth
2023-11-04 23:35:54,289	Ajay-Pandey_A5000	INFO	Saving model and optimizer state at epoch 50 to ./logs/Ajay-Pandey_A5000/D_2333333.pth
2023-11-04 23:36:08,327	Ajay-Pandey_A5000	INFO	saving ckpt Ajay-Pandey_A5000_e50:Success.
2023-11-04 23:36:08,328	Ajay-Pandey_A5000	INFO	====> Epoch: 50 [2023-11-04 23:36:08] | (0:00:44.677081)
2023-11-04 23:36:30,891	Ajay-Pandey_A5000	INFO	====> Epoch: 51 [2023-11-04 23:36:30] | (0:00:22.556344)
2023-11-04 23:36:53,682	Ajay-Pandey_A5000	INFO	====> Epoch: 52 [2023-11-04 23:36:53] | (0:00:22.785830)
2023-11-04 23:37:16,469	Ajay-Pandey_A5000	INFO	====> Epoch: 53 [2023-11-04 23:37:16] | (0:00:22.780890)
2023-11-04 23:37:39,326	Ajay-Pandey_A5000	INFO	====> Epoch: 54 [2023-11-04 23:37:39] | (0:00:22.851538)
2023-11-04 23:37:52,632	Ajay-Pandey_A5000	INFO	Train Epoch: 55 [55%]
2023-11-04 23:37:52,632	Ajay-Pandey_A5000	INFO	[1800, 9.932723110067987e-05]
2023-11-04 23:37:52,633	Ajay-Pandey_A5000	INFO	loss_disc=3.990, loss_gen=3.381, loss_fm=7.908,loss_mel=17.080, loss_kl=1.191
2023-11-04 23:38:02,523	Ajay-Pandey_A5000	INFO	====> Epoch: 55 [2023-11-04 23:38:02] | (0:00:23.191485)
2023-11-04 23:38:25,395	Ajay-Pandey_A5000	INFO	====> Epoch: 56 [2023-11-04 23:38:25] | (0:00:22.863796)
2023-11-04 23:38:48,203	Ajay-Pandey_A5000	INFO	====> Epoch: 57 [2023-11-04 23:38:48] | (0:00:22.802246)
2023-11-04 23:39:11,007	Ajay-Pandey_A5000	INFO	====> Epoch: 58 [2023-11-04 23:39:11] | (0:00:22.797809)
2023-11-04 23:39:33,902	Ajay-Pandey_A5000	INFO	====> Epoch: 59 [2023-11-04 23:39:33] | (0:00:22.889679)
2023-11-04 23:39:56,833	Ajay-Pandey_A5000	INFO	====> Epoch: 60 [2023-11-04 23:39:56] | (0:00:22.925816)
2023-11-04 23:40:11,324	Ajay-Pandey_A5000	INFO	Train Epoch: 61 [61%]
2023-11-04 23:40:11,325	Ajay-Pandey_A5000	INFO	[2000, 9.92527589532945e-05]
2023-11-04 23:40:11,325	Ajay-Pandey_A5000	INFO	loss_disc=3.861, loss_gen=3.293, loss_fm=9.002,loss_mel=17.121, loss_kl=1.345
2023-11-04 23:40:20,063	Ajay-Pandey_A5000	INFO	====> Epoch: 61 [2023-11-04 23:40:20] | (0:00:23.224424)
2023-11-04 23:40:42,906	Ajay-Pandey_A5000	INFO	====> Epoch: 62 [2023-11-04 23:40:42] | (0:00:22.833550)
2023-11-04 23:41:05,760	Ajay-Pandey_A5000	INFO	====> Epoch: 63 [2023-11-04 23:41:05] | (0:00:22.848346)
2023-11-04 23:41:28,638	Ajay-Pandey_A5000	INFO	====> Epoch: 64 [2023-11-04 23:41:28] | (0:00:22.872720)
2023-11-04 23:41:51,417	Ajay-Pandey_A5000	INFO	====> Epoch: 65 [2023-11-04 23:41:51] | (0:00:22.772879)
2023-11-04 23:42:14,328	Ajay-Pandey_A5000	INFO	====> Epoch: 66 [2023-11-04 23:42:14] | (0:00:22.905213)
2023-11-04 23:42:30,321	Ajay-Pandey_A5000	INFO	Train Epoch: 67 [67%]
2023-11-04 23:42:30,322	Ajay-Pandey_A5000	INFO	[2200, 9.917834264256819e-05]
2023-11-04 23:42:30,322	Ajay-Pandey_A5000	INFO	loss_disc=3.742, loss_gen=3.538, loss_fm=9.423,loss_mel=16.953, loss_kl=1.432
2023-11-04 23:42:37,547	Ajay-Pandey_A5000	INFO	====> Epoch: 67 [2023-11-04 23:42:37] | (0:00:23.214058)
2023-11-04 23:43:00,401	Ajay-Pandey_A5000	INFO	====> Epoch: 68 [2023-11-04 23:43:00] | (0:00:22.845379)
2023-11-04 23:43:23,233	Ajay-Pandey_A5000	INFO	====> Epoch: 69 [2023-11-04 23:43:23] | (0:00:22.826638)
2023-11-04 23:43:46,043	Ajay-Pandey_A5000	INFO	====> Epoch: 70 [2023-11-04 23:43:46] | (0:00:22.804358)
2023-11-04 23:44:08,894	Ajay-Pandey_A5000	INFO	====> Epoch: 71 [2023-11-04 23:44:08] | (0:00:22.844825)
2023-11-04 23:44:31,601	Ajay-Pandey_A5000	INFO	====> Epoch: 72 [2023-11-04 23:44:31] | (0:00:22.701248)
2023-11-04 23:44:48,997	Ajay-Pandey_A5000	INFO	Train Epoch: 73 [73%]
2023-11-04 23:44:48,997	Ajay-Pandey_A5000	INFO	[2400, 9.910398212663652e-05]
2023-11-04 23:44:48,998	Ajay-Pandey_A5000	INFO	loss_disc=3.772, loss_gen=3.597, loss_fm=9.290,loss_mel=16.905, loss_kl=1.505
2023-11-04 23:44:54,966	Ajay-Pandey_A5000	INFO	====> Epoch: 73 [2023-11-04 23:44:54] | (0:00:23.359444)
2023-11-04 23:45:17,823	Ajay-Pandey_A5000	INFO	====> Epoch: 74 [2023-11-04 23:45:17] | (0:00:22.849027)
2023-11-04 23:45:40,662	Ajay-Pandey_A5000	INFO	====> Epoch: 75 [2023-11-04 23:45:40] | (0:00:22.833663)
2023-11-04 23:46:03,576	Ajay-Pandey_A5000	INFO	====> Epoch: 76 [2023-11-04 23:46:03] | (0:00:22.908137)
2023-11-04 23:46:26,414	Ajay-Pandey_A5000	INFO	====> Epoch: 77 [2023-11-04 23:46:26] | (0:00:22.832327)
2023-11-04 23:46:49,371	Ajay-Pandey_A5000	INFO	====> Epoch: 78 [2023-11-04 23:46:49] | (0:00:22.951218)
2023-11-04 23:47:08,220	Ajay-Pandey_A5000	INFO	Train Epoch: 79 [79%]
2023-11-04 23:47:08,221	Ajay-Pandey_A5000	INFO	[2600, 9.902967736366644e-05]
2023-11-04 23:47:08,221	Ajay-Pandey_A5000	INFO	loss_disc=3.728, loss_gen=3.433, loss_fm=9.332,loss_mel=16.881, loss_kl=1.462
2023-11-04 23:47:12,626	Ajay-Pandey_A5000	INFO	====> Epoch: 79 [2023-11-04 23:47:12] | (0:00:23.248989)
2023-11-04 23:47:35,395	Ajay-Pandey_A5000	INFO	====> Epoch: 80 [2023-11-04 23:47:35] | (0:00:22.761023)
2023-11-04 23:47:58,245	Ajay-Pandey_A5000	INFO	====> Epoch: 81 [2023-11-04 23:47:58] | (0:00:22.844138)
2023-11-04 23:48:21,225	Ajay-Pandey_A5000	INFO	====> Epoch: 82 [2023-11-04 23:48:21] | (0:00:22.973984)
2023-11-04 23:48:44,088	Ajay-Pandey_A5000	INFO	====> Epoch: 83 [2023-11-04 23:48:44] | (0:00:22.857614)
2023-11-04 23:49:07,015	Ajay-Pandey_A5000	INFO	====> Epoch: 84 [2023-11-04 23:49:07] | (0:00:22.920629)
2023-11-04 23:49:27,119	Ajay-Pandey_A5000	INFO	Train Epoch: 85 [85%]
2023-11-04 23:49:27,120	Ajay-Pandey_A5000	INFO	[2800, 9.895542831185631e-05]
2023-11-04 23:49:27,120	Ajay-Pandey_A5000	INFO	loss_disc=3.842, loss_gen=3.359, loss_fm=9.221,loss_mel=17.573, loss_kl=1.393
2023-11-04 23:49:30,616	Ajay-Pandey_A5000	INFO	====> Epoch: 85 [2023-11-04 23:49:30] | (0:00:23.596089)
2023-11-04 23:49:53,373	Ajay-Pandey_A5000	INFO	====> Epoch: 86 [2023-11-04 23:49:53] | (0:00:22.747797)
2023-11-04 23:50:16,257	Ajay-Pandey_A5000	INFO	====> Epoch: 87 [2023-11-04 23:50:16] | (0:00:22.878182)
2023-11-04 23:50:39,075	Ajay-Pandey_A5000	INFO	====> Epoch: 88 [2023-11-04 23:50:39] | (0:00:22.812529)
2023-11-04 23:51:01,998	Ajay-Pandey_A5000	INFO	====> Epoch: 89 [2023-11-04 23:51:01] | (0:00:22.916868)
2023-11-04 23:51:24,829	Ajay-Pandey_A5000	INFO	====> Epoch: 90 [2023-11-04 23:51:24] | (0:00:22.825034)
2023-11-04 23:51:46,450	Ajay-Pandey_A5000	INFO	Train Epoch: 91 [91%]
2023-11-04 23:51:46,450	Ajay-Pandey_A5000	INFO	[3000, 9.888123492943583e-05]
2023-11-04 23:51:46,451	Ajay-Pandey_A5000	INFO	loss_disc=3.574, loss_gen=3.599, loss_fm=9.447,loss_mel=17.070, loss_kl=1.431
2023-11-04 23:51:48,113	Ajay-Pandey_A5000	INFO	====> Epoch: 91 [2023-11-04 23:51:48] | (0:00:23.279052)
2023-11-04 23:52:10,930	Ajay-Pandey_A5000	INFO	====> Epoch: 92 [2023-11-04 23:52:10] | (0:00:22.808739)
2023-11-04 23:52:33,944	Ajay-Pandey_A5000	INFO	====> Epoch: 93 [2023-11-04 23:52:33] | (0:00:23.008121)
2023-11-04 23:52:56,801	Ajay-Pandey_A5000	INFO	====> Epoch: 94 [2023-11-04 23:52:56] | (0:00:22.851592)
2023-11-04 23:53:19,731	Ajay-Pandey_A5000	INFO	====> Epoch: 95 [2023-11-04 23:53:19] | (0:00:22.924260)
2023-11-04 23:53:42,729	Ajay-Pandey_A5000	INFO	====> Epoch: 96 [2023-11-04 23:53:42] | (0:00:22.992440)
2023-11-04 23:54:05,560	Ajay-Pandey_A5000	INFO	Train Epoch: 97 [97%]
2023-11-04 23:54:05,561	Ajay-Pandey_A5000	INFO	[3200, 9.880709717466598e-05]
2023-11-04 23:54:05,561	Ajay-Pandey_A5000	INFO	loss_disc=3.808, loss_gen=3.522, loss_fm=8.647,loss_mel=16.730, loss_kl=1.142
2023-11-04 23:54:05,860	Ajay-Pandey_A5000	INFO	====> Epoch: 97 [2023-11-04 23:54:05] | (0:00:23.125019)
2023-11-04 23:54:28,721	Ajay-Pandey_A5000	INFO	====> Epoch: 98 [2023-11-04 23:54:28] | (0:00:22.853465)
2023-11-04 23:54:51,611	Ajay-Pandey_A5000	INFO	====> Epoch: 99 [2023-11-04 23:54:51] | (0:00:22.884853)
2023-11-04 23:55:14,416	Ajay-Pandey_A5000	INFO	Saving model and optimizer state at epoch 100 to ./logs/Ajay-Pandey_A5000/G_2333333.pth
2023-11-04 23:55:20,808	Ajay-Pandey_A5000	INFO	Saving model and optimizer state at epoch 100 to ./logs/Ajay-Pandey_A5000/D_2333333.pth
2023-11-04 23:55:35,499	Ajay-Pandey_A5000	INFO	saving ckpt Ajay-Pandey_A5000_e100:Success.
2023-11-04 23:55:35,500	Ajay-Pandey_A5000	INFO	====> Epoch: 100 [2023-11-04 23:55:35] | (0:00:43.882735)
2023-11-04 23:55:58,095	Ajay-Pandey_A5000	INFO	====> Epoch: 101 [2023-11-04 23:55:58] | (0:00:22.589119)
2023-11-04 23:56:20,824	Ajay-Pandey_A5000	INFO	====> Epoch: 102 [2023-11-04 23:56:20] | (0:00:22.723262)
2023-11-04 23:56:43,624	Ajay-Pandey_A5000	INFO	====> Epoch: 103 [2023-11-04 23:56:43] | (0:00:22.794056)
2023-11-04 23:56:45,316	Ajay-Pandey_A5000	INFO	Train Epoch: 104 [3%]
2023-11-04 23:56:45,317	Ajay-Pandey_A5000	INFO	[3400, 9.872067337896332e-05]
2023-11-04 23:56:45,317	Ajay-Pandey_A5000	INFO	loss_disc=3.751, loss_gen=3.625, loss_fm=9.873,loss_mel=17.249, loss_kl=1.298
2023-11-04 23:57:06,953	Ajay-Pandey_A5000	INFO	====> Epoch: 104 [2023-11-04 23:57:06] | (0:00:23.323054)
2023-11-04 23:57:29,742	Ajay-Pandey_A5000	INFO	====> Epoch: 105 [2023-11-04 23:57:29] | (0:00:22.781252)
2023-11-04 23:57:52,588	Ajay-Pandey_A5000	INFO	====> Epoch: 106 [2023-11-04 23:57:52] | (0:00:22.840464)
2023-11-04 23:58:15,447	Ajay-Pandey_A5000	INFO	====> Epoch: 107 [2023-11-04 23:58:15] | (0:00:22.853200)
2023-11-04 23:58:38,349	Ajay-Pandey_A5000	INFO	====> Epoch: 108 [2023-11-04 23:58:38] | (0:00:22.897473)
2023-11-04 23:59:01,232	Ajay-Pandey_A5000	INFO	====> Epoch: 109 [2023-11-04 23:59:01] | (0:00:22.877168)
2023-11-04 23:59:04,274	Ajay-Pandey_A5000	INFO	Train Epoch: 110 [9%]
2023-11-04 23:59:04,275	Ajay-Pandey_A5000	INFO	[3600, 9.864665600773098e-05]
2023-11-04 23:59:04,275	Ajay-Pandey_A5000	INFO	loss_disc=3.775, loss_gen=3.594, loss_fm=9.781,loss_mel=17.109, loss_kl=1.578
2023-11-04 23:59:24,422	Ajay-Pandey_A5000	INFO	====> Epoch: 110 [2023-11-04 23:59:24] | (0:00:23.184575)
2023-11-04 23:59:47,308	Ajay-Pandey_A5000	INFO	====> Epoch: 111 [2023-11-04 23:59:47] | (0:00:22.878125)
2023-11-05 00:00:10,145	Ajay-Pandey_A5000	INFO	====> Epoch: 112 [2023-11-05 00:00:10] | (0:00:22.830921)
2023-11-05 00:00:33,022	Ajay-Pandey_A5000	INFO	====> Epoch: 113 [2023-11-05 00:00:33] | (0:00:22.871466)
2023-11-05 00:00:55,740	Ajay-Pandey_A5000	INFO	====> Epoch: 114 [2023-11-05 00:00:55] | (0:00:22.712193)
2023-11-05 00:01:18,700	Ajay-Pandey_A5000	INFO	====> Epoch: 115 [2023-11-05 00:01:18] | (0:00:22.954302)
2023-11-05 00:01:23,078	Ajay-Pandey_A5000	INFO	Train Epoch: 116 [15%]
2023-11-05 00:01:23,078	Ajay-Pandey_A5000	INFO	[3800, 9.857269413218213e-05]
2023-11-05 00:01:23,078	Ajay-Pandey_A5000	INFO	loss_disc=3.433, loss_gen=3.899, loss_fm=10.853,loss_mel=16.731, loss_kl=0.885
2023-11-05 00:01:41,958	Ajay-Pandey_A5000	INFO	====> Epoch: 116 [2023-11-05 00:01:41] | (0:00:23.252840)
2023-11-05 00:02:04,783	Ajay-Pandey_A5000	INFO	====> Epoch: 117 [2023-11-05 00:02:04] | (0:00:22.817342)
2023-11-05 00:02:27,584	Ajay-Pandey_A5000	INFO	====> Epoch: 118 [2023-11-05 00:02:27] | (0:00:22.795033)
2023-11-05 00:02:50,455	Ajay-Pandey_A5000	INFO	====> Epoch: 119 [2023-11-05 00:02:50] | (0:00:22.864770)
2023-11-05 00:03:13,303	Ajay-Pandey_A5000	INFO	====> Epoch: 120 [2023-11-05 00:03:13] | (0:00:22.843084)
2023-11-05 00:03:36,114	Ajay-Pandey_A5000	INFO	====> Epoch: 121 [2023-11-05 00:03:36] | (0:00:22.805537)
2023-11-05 00:03:41,737	Ajay-Pandey_A5000	INFO	Train Epoch: 122 [21%]
2023-11-05 00:03:41,738	Ajay-Pandey_A5000	INFO	[4000, 9.8498787710708e-05]
2023-11-05 00:03:41,738	Ajay-Pandey_A5000	INFO	loss_disc=3.377, loss_gen=3.758, loss_fm=10.679,loss_mel=16.919, loss_kl=0.794
2023-11-05 00:03:59,480	Ajay-Pandey_A5000	INFO	====> Epoch: 122 [2023-11-05 00:03:59] | (0:00:23.358988)
2023-11-05 00:04:22,244	Ajay-Pandey_A5000	INFO	====> Epoch: 123 [2023-11-05 00:04:22] | (0:00:22.756945)
2023-11-05 00:04:45,300	Ajay-Pandey_A5000	INFO	====> Epoch: 124 [2023-11-05 00:04:45] | (0:00:23.050051)
2023-11-05 00:05:08,178	Ajay-Pandey_A5000	INFO	====> Epoch: 125 [2023-11-05 00:05:08] | (0:00:22.872352)
2023-11-05 00:05:30,974	Ajay-Pandey_A5000	INFO	====> Epoch: 126 [2023-11-05 00:05:30] | (0:00:22.790803)
2023-11-05 00:05:53,781	Ajay-Pandey_A5000	INFO	====> Epoch: 127 [2023-11-05 00:05:53] | (0:00:22.800674)
2023-11-05 00:06:00,780	Ajay-Pandey_A5000	INFO	Train Epoch: 128 [27%]
2023-11-05 00:06:00,781	Ajay-Pandey_A5000	INFO	[4200, 9.842493670173108e-05]
2023-11-05 00:06:00,781	Ajay-Pandey_A5000	INFO	loss_disc=3.827, loss_gen=3.574, loss_fm=8.813,loss_mel=17.144, loss_kl=1.167
2023-11-05 00:06:16,965	Ajay-Pandey_A5000	INFO	====> Epoch: 128 [2023-11-05 00:06:16] | (0:00:23.178656)
2023-11-05 00:06:39,716	Ajay-Pandey_A5000	INFO	====> Epoch: 129 [2023-11-05 00:06:39] | (0:00:22.742354)
2023-11-05 00:07:02,496	Ajay-Pandey_A5000	INFO	====> Epoch: 130 [2023-11-05 00:07:02] | (0:00:22.774633)
2023-11-05 00:07:25,331	Ajay-Pandey_A5000	INFO	====> Epoch: 131 [2023-11-05 00:07:25] | (0:00:22.829231)
2023-11-05 00:07:48,131	Ajay-Pandey_A5000	INFO	====> Epoch: 132 [2023-11-05 00:07:48] | (0:00:22.794170)
2023-11-05 00:08:11,026	Ajay-Pandey_A5000	INFO	====> Epoch: 133 [2023-11-05 00:08:11] | (0:00:22.888139)
2023-11-05 00:08:19,508	Ajay-Pandey_A5000	INFO	Train Epoch: 134 [33%]
2023-11-05 00:08:19,509	Ajay-Pandey_A5000	INFO	[4400, 9.835114106370493e-05]
2023-11-05 00:08:19,509	Ajay-Pandey_A5000	INFO	loss_disc=3.761, loss_gen=3.783, loss_fm=9.872,loss_mel=17.287, loss_kl=1.321
2023-11-05 00:08:34,329	Ajay-Pandey_A5000	INFO	====> Epoch: 134 [2023-11-05 00:08:34] | (0:00:23.297607)
2023-11-05 00:08:57,153	Ajay-Pandey_A5000	INFO	====> Epoch: 135 [2023-11-05 00:08:57] | (0:00:22.816208)
2023-11-05 00:09:20,085	Ajay-Pandey_A5000	INFO	====> Epoch: 136 [2023-11-05 00:09:20] | (0:00:22.925884)
2023-11-05 00:09:42,813	Ajay-Pandey_A5000	INFO	====> Epoch: 137 [2023-11-05 00:09:42] | (0:00:22.722310)
2023-11-05 00:10:05,722	Ajay-Pandey_A5000	INFO	====> Epoch: 138 [2023-11-05 00:10:05] | (0:00:22.902471)
2023-11-05 00:10:28,511	Ajay-Pandey_A5000	INFO	====> Epoch: 139 [2023-11-05 00:10:28] | (0:00:22.782845)
2023-11-05 00:10:38,180	Ajay-Pandey_A5000	INFO	Train Epoch: 140 [39%]
2023-11-05 00:10:38,181	Ajay-Pandey_A5000	INFO	[4600, 9.827740075511432e-05]
2023-11-05 00:10:38,181	Ajay-Pandey_A5000	INFO	loss_disc=3.695, loss_gen=3.762, loss_fm=10.210,loss_mel=16.900, loss_kl=1.238
2023-11-05 00:10:51,520	Ajay-Pandey_A5000	INFO	====> Epoch: 140 [2023-11-05 00:10:51] | (0:00:23.003916)
2023-11-05 00:11:14,330	Ajay-Pandey_A5000	INFO	====> Epoch: 141 [2023-11-05 00:11:14] | (0:00:22.801615)
2023-11-05 00:11:37,164	Ajay-Pandey_A5000	INFO	====> Epoch: 142 [2023-11-05 00:11:37] | (0:00:22.828460)
2023-11-05 00:11:59,979	Ajay-Pandey_A5000	INFO	====> Epoch: 143 [2023-11-05 00:11:59] | (0:00:22.809321)
2023-11-05 00:12:22,894	Ajay-Pandey_A5000	INFO	====> Epoch: 144 [2023-11-05 00:12:22] | (0:00:22.909194)
2023-11-05 00:12:45,715	Ajay-Pandey_A5000	INFO	====> Epoch: 145 [2023-11-05 00:12:45] | (0:00:22.815629)
2023-11-05 00:12:56,822	Ajay-Pandey_A5000	INFO	Train Epoch: 146 [45%]
2023-11-05 00:12:56,823	Ajay-Pandey_A5000	INFO	[4800, 9.820371573447515e-05]
2023-11-05 00:12:56,823	Ajay-Pandey_A5000	INFO	loss_disc=3.812, loss_gen=3.661, loss_fm=9.248,loss_mel=16.898, loss_kl=1.329
2023-11-05 00:13:09,097	Ajay-Pandey_A5000	INFO	====> Epoch: 146 [2023-11-05 00:13:09] | (0:00:23.376005)
2023-11-05 00:13:31,931	Ajay-Pandey_A5000	INFO	====> Epoch: 147 [2023-11-05 00:13:31] | (0:00:22.825565)
2023-11-05 00:13:54,649	Ajay-Pandey_A5000	INFO	====> Epoch: 148 [2023-11-05 00:13:54] | (0:00:22.712815)
2023-11-05 00:14:17,545	Ajay-Pandey_A5000	INFO	====> Epoch: 149 [2023-11-05 00:14:17] | (0:00:22.890707)
2023-11-05 00:14:40,373	Ajay-Pandey_A5000	INFO	Saving model and optimizer state at epoch 150 to ./logs/Ajay-Pandey_A5000/G_2333333.pth
2023-11-05 00:14:46,769	Ajay-Pandey_A5000	INFO	Saving model and optimizer state at epoch 150 to ./logs/Ajay-Pandey_A5000/D_2333333.pth
2023-11-05 00:15:02,580	Ajay-Pandey_A5000	INFO	saving ckpt Ajay-Pandey_A5000_e150:Success.
2023-11-05 00:15:02,580	Ajay-Pandey_A5000	INFO	====> Epoch: 150 [2023-11-05 00:15:02] | (0:00:45.029921)
2023-11-05 00:15:25,183	Ajay-Pandey_A5000	INFO	====> Epoch: 151 [2023-11-05 00:15:25] | (0:00:22.595876)
2023-11-05 00:15:37,702	Ajay-Pandey_A5000	INFO	Train Epoch: 152 [52%]
2023-11-05 00:15:37,703	Ajay-Pandey_A5000	INFO	[5000, 9.813008596033443e-05]
2023-11-05 00:15:37,703	Ajay-Pandey_A5000	INFO	loss_disc=3.733, loss_gen=3.267, loss_fm=9.690,loss_mel=16.781, loss_kl=1.101
2023-11-05 00:15:48,162	Ajay-Pandey_A5000	INFO	====> Epoch: 152 [2023-11-05 00:15:48] | (0:00:22.974181)
2023-11-05 00:16:10,943	Ajay-Pandey_A5000	INFO	====> Epoch: 153 [2023-11-05 00:16:10] | (0:00:22.772547)
2023-11-05 00:16:33,746	Ajay-Pandey_A5000	INFO	====> Epoch: 154 [2023-11-05 00:16:33] | (0:00:22.797435)
2023-11-05 00:16:56,542	Ajay-Pandey_A5000	INFO	====> Epoch: 155 [2023-11-05 00:16:56] | (0:00:22.789698)
2023-11-05 00:17:19,343	Ajay-Pandey_A5000	INFO	====> Epoch: 156 [2023-11-05 00:17:19] | (0:00:22.795960)
2023-11-05 00:17:42,282	Ajay-Pandey_A5000	INFO	====> Epoch: 157 [2023-11-05 00:17:42] | (0:00:22.932891)
2023-11-05 00:17:56,269	Ajay-Pandey_A5000	INFO	Train Epoch: 158 [58%]
2023-11-05 00:17:56,270	Ajay-Pandey_A5000	INFO	[5200, 9.80565113912702e-05]
2023-11-05 00:17:56,270	Ajay-Pandey_A5000	INFO	loss_disc=3.740, loss_gen=3.503, loss_fm=9.680,loss_mel=16.616, loss_kl=1.178
2023-11-05 00:18:06,131	Ajay-Pandey_A5000	INFO	====> Epoch: 158 [2023-11-05 00:18:06] | (0:00:23.843256)
2023-11-05 00:18:28,965	Ajay-Pandey_A5000	INFO	====> Epoch: 159 [2023-11-05 00:18:28] | (0:00:22.826470)
2023-11-05 00:18:51,794	Ajay-Pandey_A5000	INFO	====> Epoch: 160 [2023-11-05 00:18:51] | (0:00:22.823250)
2023-11-05 00:19:14,536	Ajay-Pandey_A5000	INFO	====> Epoch: 161 [2023-11-05 00:19:14] | (0:00:22.736406)
2023-11-05 00:19:37,409	Ajay-Pandey_A5000	INFO	====> Epoch: 162 [2023-11-05 00:19:37] | (0:00:22.867276)
2023-11-05 00:20:00,200	Ajay-Pandey_A5000	INFO	====> Epoch: 163 [2023-11-05 00:20:00] | (0:00:22.785334)
2023-11-05 00:20:15,493	Ajay-Pandey_A5000	INFO	Train Epoch: 164 [64%]
2023-11-05 00:20:15,494	Ajay-Pandey_A5000	INFO	[5400, 9.798299198589162e-05]
2023-11-05 00:20:15,494	Ajay-Pandey_A5000	INFO	loss_disc=3.691, loss_gen=3.500, loss_fm=10.249,loss_mel=16.866, loss_kl=1.159
2023-11-05 00:20:23,669	Ajay-Pandey_A5000	INFO	====> Epoch: 164 [2023-11-05 00:20:23] | (0:00:23.463470)
2023-11-05 00:20:46,482	Ajay-Pandey_A5000	INFO	====> Epoch: 165 [2023-11-05 00:20:46] | (0:00:22.805375)
2023-11-05 00:21:09,226	Ajay-Pandey_A5000	INFO	====> Epoch: 166 [2023-11-05 00:21:09] | (0:00:22.739365)
2023-11-05 00:21:32,088	Ajay-Pandey_A5000	INFO	====> Epoch: 167 [2023-11-05 00:21:32] | (0:00:22.856104)
2023-11-05 00:21:54,852	Ajay-Pandey_A5000	INFO	====> Epoch: 168 [2023-11-05 00:21:54] | (0:00:22.758063)
2023-11-05 00:22:17,618	Ajay-Pandey_A5000	INFO	====> Epoch: 169 [2023-11-05 00:22:17] | (0:00:22.760144)
2023-11-05 00:22:34,404	Ajay-Pandey_A5000	INFO	Train Epoch: 170 [70%]
2023-11-05 00:22:34,404	Ajay-Pandey_A5000	INFO	[5600, 9.790952770283884e-05]
2023-11-05 00:22:34,404	Ajay-Pandey_A5000	INFO	loss_disc=3.531, loss_gen=3.599, loss_fm=10.300,loss_mel=16.736, loss_kl=0.791
2023-11-05 00:22:40,759	Ajay-Pandey_A5000	INFO	====> Epoch: 170 [2023-11-05 00:22:40] | (0:00:23.136333)
2023-11-05 00:23:03,558	Ajay-Pandey_A5000	INFO	====> Epoch: 171 [2023-11-05 00:23:03] | (0:00:22.790795)
2023-11-05 00:23:26,469	Ajay-Pandey_A5000	INFO	====> Epoch: 172 [2023-11-05 00:23:26] | (0:00:22.905419)
2023-11-05 00:23:49,340	Ajay-Pandey_A5000	INFO	====> Epoch: 173 [2023-11-05 00:23:49] | (0:00:22.865242)
2023-11-05 00:24:12,164	Ajay-Pandey_A5000	INFO	====> Epoch: 174 [2023-11-05 00:24:12] | (0:00:22.818543)
2023-11-05 00:24:35,013	Ajay-Pandey_A5000	INFO	====> Epoch: 175 [2023-11-05 00:24:35] | (0:00:22.843645)
2023-11-05 00:24:53,146	Ajay-Pandey_A5000	INFO	Train Epoch: 176 [76%]
2023-11-05 00:24:53,146	Ajay-Pandey_A5000	INFO	[5800, 9.783611850078301e-05]
2023-11-05 00:24:53,147	Ajay-Pandey_A5000	INFO	loss_disc=3.529, loss_gen=3.749, loss_fm=9.505,loss_mel=16.022, loss_kl=0.548
2023-11-05 00:24:58,174	Ajay-Pandey_A5000	INFO	====> Epoch: 176 [2023-11-05 00:24:58] | (0:00:23.155080)
2023-11-05 00:25:20,998	Ajay-Pandey_A5000	INFO	====> Epoch: 177 [2023-11-05 00:25:20] | (0:00:22.815831)
2023-11-05 00:25:43,764	Ajay-Pandey_A5000	INFO	====> Epoch: 178 [2023-11-05 00:25:43] | (0:00:22.761218)
2023-11-05 00:26:06,489	Ajay-Pandey_A5000	INFO	====> Epoch: 179 [2023-11-05 00:26:06] | (0:00:22.719080)
2023-11-05 00:26:29,206	Ajay-Pandey_A5000	INFO	====> Epoch: 180 [2023-11-05 00:26:29] | (0:00:22.712014)
2023-11-05 00:26:52,072	Ajay-Pandey_A5000	INFO	====> Epoch: 181 [2023-11-05 00:26:52] | (0:00:22.860395)
2023-11-05 00:27:11,478	Ajay-Pandey_A5000	INFO	Train Epoch: 182 [82%]
2023-11-05 00:27:11,479	Ajay-Pandey_A5000	INFO	[6000, 9.776276433842631e-05]
2023-11-05 00:27:11,479	Ajay-Pandey_A5000	INFO	loss_disc=3.678, loss_gen=3.582, loss_fm=9.247,loss_mel=16.496, loss_kl=1.117
2023-11-05 00:27:15,210	Ajay-Pandey_A5000	INFO	====> Epoch: 182 [2023-11-05 00:27:15] | (0:00:23.132259)
2023-11-05 00:27:38,132	Ajay-Pandey_A5000	INFO	====> Epoch: 183 [2023-11-05 00:27:38] | (0:00:22.914165)
2023-11-05 00:28:00,840	Ajay-Pandey_A5000	INFO	====> Epoch: 184 [2023-11-05 00:28:00] | (0:00:22.701643)
2023-11-05 00:28:23,670	Ajay-Pandey_A5000	INFO	====> Epoch: 185 [2023-11-05 00:28:23] | (0:00:22.825025)
2023-11-05 00:28:46,427	Ajay-Pandey_A5000	INFO	====> Epoch: 186 [2023-11-05 00:28:46] | (0:00:22.750885)
2023-11-05 00:29:09,293	Ajay-Pandey_A5000	INFO	====> Epoch: 187 [2023-11-05 00:29:09] | (0:00:22.861411)
2023-11-05 00:29:30,105	Ajay-Pandey_A5000	INFO	Train Epoch: 188 [88%]
2023-11-05 00:29:30,106	Ajay-Pandey_A5000	INFO	[6200, 9.768946517450186e-05]
2023-11-05 00:29:30,106	Ajay-Pandey_A5000	INFO	loss_disc=3.434, loss_gen=3.577, loss_fm=9.818,loss_mel=16.039, loss_kl=0.532
2023-11-05 00:29:32,570	Ajay-Pandey_A5000	INFO	====> Epoch: 188 [2023-11-05 00:29:32] | (0:00:23.270988)
2023-11-05 00:29:55,470	Ajay-Pandey_A5000	INFO	====> Epoch: 189 [2023-11-05 00:29:55] | (0:00:22.891330)
2023-11-05 00:30:18,283	Ajay-Pandey_A5000	INFO	====> Epoch: 190 [2023-11-05 00:30:18] | (0:00:22.807743)
2023-11-05 00:30:41,106	Ajay-Pandey_A5000	INFO	====> Epoch: 191 [2023-11-05 00:30:41] | (0:00:22.818090)
2023-11-05 00:31:03,981	Ajay-Pandey_A5000	INFO	====> Epoch: 192 [2023-11-05 00:31:03] | (0:00:22.869071)
2023-11-05 00:31:26,890	Ajay-Pandey_A5000	INFO	====> Epoch: 193 [2023-11-05 00:31:26] | (0:00:22.902973)
2023-11-05 00:31:48,994	Ajay-Pandey_A5000	INFO	Train Epoch: 194 [94%]
2023-11-05 00:31:48,995	Ajay-Pandey_A5000	INFO	[6400, 9.761622096777372e-05]
2023-11-05 00:31:48,995	Ajay-Pandey_A5000	INFO	loss_disc=3.477, loss_gen=3.934, loss_fm=10.371,loss_mel=16.356, loss_kl=0.678
2023-11-05 00:31:49,985	Ajay-Pandey_A5000	INFO	====> Epoch: 194 [2023-11-05 00:31:49] | (0:00:23.089119)
2023-11-05 00:32:12,849	Ajay-Pandey_A5000	INFO	====> Epoch: 195 [2023-11-05 00:32:12] | (0:00:22.856533)
2023-11-05 00:32:35,603	Ajay-Pandey_A5000	INFO	====> Epoch: 196 [2023-11-05 00:32:35] | (0:00:22.748233)
2023-11-05 00:32:58,412	Ajay-Pandey_A5000	INFO	====> Epoch: 197 [2023-11-05 00:32:58] | (0:00:22.803447)
2023-11-05 00:33:21,206	Ajay-Pandey_A5000	INFO	====> Epoch: 198 [2023-11-05 00:33:21] | (0:00:22.788428)
2023-11-05 00:33:43,982	Ajay-Pandey_A5000	INFO	====> Epoch: 199 [2023-11-05 00:33:43] | (0:00:22.770707)
2023-11-05 00:34:06,894	Ajay-Pandey_A5000	INFO	Saving model and optimizer state at epoch 200 to ./logs/Ajay-Pandey_A5000/G_2333333.pth
2023-11-05 00:34:14,598	Ajay-Pandey_A5000	INFO	Saving model and optimizer state at epoch 200 to ./logs/Ajay-Pandey_A5000/D_2333333.pth
2023-11-05 00:34:29,437	Ajay-Pandey_A5000	INFO	saving ckpt Ajay-Pandey_A5000_e200:Success.
2023-11-05 00:34:29,437	Ajay-Pandey_A5000	INFO	====> Epoch: 200 [2023-11-05 00:34:29] | (0:00:45.450064)
2023-11-05 00:34:29,437	Ajay-Pandey_A5000	INFO	Training is done. The program is closed.
2023-11-05 00:34:30,493	Ajay-Pandey_A5000	INFO	saving final ckpt:Success.