Upload folder using huggingface_hub
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +1 -0
- GBI-16-2D.py +172 -0
- README.md +83 -0
- data/LR.20051204.41155.fits +0 -0
- data/LR.20051204.41651.fits +0 -0
- data/LR.20051204.43259.fits +0 -0
- data/LR.20051204.43899.fits +0 -0
- data/LR.20051204.46034.fits +0 -0
- data/LR.20051204.47387.fits +0 -0
- data/LR.20051204.49021.fits +0 -0
- data/LR.20051204.51257.fits +0 -0
- data/LR.20051204.53196.fits +0 -0
- data/LR.20051204.54066.fits +0 -0
- data/LR.20051204.56002.fits +0 -0
- data/LR.20051204.57105.fits +0 -0
- data/LR.20051204.57873.fits +0 -0
- data/LR.20060530.30214.fits +0 -0
- data/LR.20060530.32407.fits +0 -0
- data/LR.20060530.36483.fits +0 -0
- data/LR.20060530.43065.fits +0 -0
- data/LR.20060530.45164.fits +0 -0
- data/LR.20060530.46025.fits +0 -0
- data/LR.20060530.48970.fits +0 -0
- data/LR.20060530.50806.fits +0 -0
- data/LR.20060530.51656.fits +0 -0
- data/LR.20060531.46897.fits +0 -0
- data/LR.20060531.49568.fits +0 -0
- data/LR.20060531.50684.fits +0 -0
- data/LR.20060531.50878.fits +0 -0
- data/LR.20060725.29836.fits +0 -0
- data/LR.20060725.37294.fits +0 -0
- data/LR.20060725.42247.fits +0 -0
- data/LR.20060725.44412.fits +0 -0
- data/LR.20060725.46740.fits +0 -0
- data/LR.20060725.47513.fits +0 -0
- data/LR.20060725.49810.fits +0 -0
- data/LR.20060726.41842.fits +0 -0
- data/LR.20060726.48303.fits +0 -0
- data/LR.20060726.49184.fits +0 -0
- data/LR.20060921.21065.fits +0 -0
- data/LR.20060921.30235.fits +0 -0
- data/LR.20060921.30742.fits +0 -0
- data/LR.20060921.31853.fits +0 -0
- data/LR.20060921.33371.fits +0 -0
- data/LR.20060921.43710.fits +0 -0
- data/LR.20061121.19974.fits +0 -0
- data/LR.20061121.27414.fits +0 -0
- data/LR.20061121.49514.fits +0 -0
- data/LR.20070416.21338.fits +0 -0
- data/LR.20070416.24302.fits +0 -0
.gitattributes
CHANGED
@@ -56,3 +56,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
56 |
# Video files - compressed
|
57 |
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
58 |
*.webm filter=lfs diff=lfs merge=lfs -text
|
|
|
|
56 |
# Video files - compressed
|
57 |
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
58 |
*.webm filter=lfs diff=lfs merge=lfs -text
|
59 |
+
*.fits filter=lfs diff=lfs merge=lfs -text
|
GBI-16-2D.py
ADDED
@@ -0,0 +1,172 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import random
|
3 |
+
from glob import glob
|
4 |
+
import json
|
5 |
+
|
6 |
+
import numpy as np
|
7 |
+
from astropy.io import fits
|
8 |
+
from astropy.coordinates import Angle
|
9 |
+
from astropy import units as u
|
10 |
+
from fsspec.core import url_to_fs
|
11 |
+
|
12 |
+
from huggingface_hub import hf_hub_download
|
13 |
+
import datasets
|
14 |
+
from datasets import DownloadManager
|
15 |
+
|
16 |
+
from utils import read_lris
|
17 |
+
|
18 |
+
|
19 |
+
_DESCRIPTION = (
|
20 |
+
"""SBI-16-2D is a dataset which is part of the AstroCompress project. """
|
21 |
+
"""It contains data assembled from the Keck Telescope. """
|
22 |
+
"""<TODO>Describe data format</TODO>"""
|
23 |
+
)
|
24 |
+
|
25 |
+
_HOMEPAGE = "https://google.github.io/AstroCompress"
|
26 |
+
|
27 |
+
_LICENSE = "CC BY 4.0"
|
28 |
+
|
29 |
+
_URL = "https://huggingface.co/datasets/AstroCompress/GBI-16-2D/resolve/main/"
|
30 |
+
|
31 |
+
_URLS = {
|
32 |
+
"tiny": {
|
33 |
+
"train": "./splits/tiny_train.jsonl",
|
34 |
+
"test": "./splits/tiny_test.jsonl",
|
35 |
+
},
|
36 |
+
"full": {
|
37 |
+
"train": "./splits/full_train.jsonl",
|
38 |
+
"test": "./splits/full_test.jsonl",
|
39 |
+
},
|
40 |
+
}
|
41 |
+
|
42 |
+
_REPO_ID = "AstroCompress/GBI-16-2D"
|
43 |
+
|
44 |
+
|
45 |
+
class GBI_16_2D(datasets.GeneratorBasedBuilder):
|
46 |
+
"""GBI-16-2D Dataset"""
|
47 |
+
|
48 |
+
VERSION = datasets.Version("1.0.1")
|
49 |
+
|
50 |
+
BUILDER_CONFIGS = [
|
51 |
+
datasets.BuilderConfig(
|
52 |
+
name="tiny",
|
53 |
+
version=VERSION,
|
54 |
+
description="A small subset of the data, to test downsteam workflows.",
|
55 |
+
),
|
56 |
+
datasets.BuilderConfig(
|
57 |
+
name="full",
|
58 |
+
version=VERSION,
|
59 |
+
description="The full dataset",
|
60 |
+
),
|
61 |
+
]
|
62 |
+
|
63 |
+
DEFAULT_CONFIG_NAME = "tiny"
|
64 |
+
|
65 |
+
def __init__(self, **kwargs):
|
66 |
+
super().__init__(version=self.VERSION, **kwargs)
|
67 |
+
|
68 |
+
def _info(self):
|
69 |
+
return datasets.DatasetInfo(
|
70 |
+
description=_DESCRIPTION,
|
71 |
+
features=datasets.Features(
|
72 |
+
{
|
73 |
+
"image": datasets.Image(decode=True, mode="I;16"),
|
74 |
+
"ra": datasets.Value("float64"),
|
75 |
+
"dec": datasets.Value("float64"),
|
76 |
+
"pixscale": datasets.Value("float64"),
|
77 |
+
"image_id": datasets.Value("string"),
|
78 |
+
"rotation_angle": datasets.Value("float64"),
|
79 |
+
"dim_1": datasets.Value("int64"),
|
80 |
+
"dim_2": datasets.Value("int64"),
|
81 |
+
"exposure_time": datasets.Value("float64"),
|
82 |
+
}
|
83 |
+
),
|
84 |
+
supervised_keys=None,
|
85 |
+
homepage=_HOMEPAGE,
|
86 |
+
license=_LICENSE,
|
87 |
+
citation="TBD",
|
88 |
+
)
|
89 |
+
|
90 |
+
def _split_generators(self, dl_manager: DownloadManager):
|
91 |
+
|
92 |
+
ret = []
|
93 |
+
base_path = dl_manager._base_path
|
94 |
+
locally_run = not base_path.startswith(datasets.config.HF_ENDPOINT)
|
95 |
+
_, path = url_to_fs(base_path)
|
96 |
+
|
97 |
+
for split in ["train", "test"]:
|
98 |
+
if locally_run:
|
99 |
+
split_file_location = os.path.normpath(
|
100 |
+
os.path.join(path, _URLS[self.config.name][split])
|
101 |
+
)
|
102 |
+
split_file = dl_manager.download_and_extract(split_file_location)
|
103 |
+
else:
|
104 |
+
split_file = hf_hub_download(
|
105 |
+
repo_id=_REPO_ID,
|
106 |
+
filename=_URLS[self.config.name][split],
|
107 |
+
repo_type="dataset",
|
108 |
+
)
|
109 |
+
with open(split_file, encoding="utf-8") as f:
|
110 |
+
data_filenames = []
|
111 |
+
data_metadata = []
|
112 |
+
for line in f:
|
113 |
+
item = json.loads(line)
|
114 |
+
data_filenames.append(item["image"])
|
115 |
+
data_metadata.append(
|
116 |
+
{
|
117 |
+
"ra": item["ra"],
|
118 |
+
"dec": item["dec"],
|
119 |
+
"pixscale": item["pixscale"],
|
120 |
+
"image_id": item["image_id"],
|
121 |
+
"rotation_angle": item["rotation_angle"],
|
122 |
+
"dim_1": item["dim_1"],
|
123 |
+
"dim_2": item["dim_2"],
|
124 |
+
"exposure_time": item["exposure_time"],
|
125 |
+
}
|
126 |
+
)
|
127 |
+
if locally_run:
|
128 |
+
data_urls = [
|
129 |
+
os.path.normpath(os.path.join(path, data_filename))
|
130 |
+
for data_filename in data_filenames
|
131 |
+
]
|
132 |
+
data_files = [
|
133 |
+
dl_manager.download(data_url) for data_url in data_urls
|
134 |
+
]
|
135 |
+
else:
|
136 |
+
data_urls = data_filenames
|
137 |
+
data_files = [
|
138 |
+
hf_hub_download(
|
139 |
+
repo_id=_REPO_ID, filename=data_url, repo_type="dataset"
|
140 |
+
)
|
141 |
+
for data_url in data_urls
|
142 |
+
]
|
143 |
+
ret.append(
|
144 |
+
datasets.SplitGenerator(
|
145 |
+
name=(
|
146 |
+
datasets.Split.TRAIN
|
147 |
+
if split == "train"
|
148 |
+
else datasets.Split.TEST
|
149 |
+
),
|
150 |
+
gen_kwargs={
|
151 |
+
"filepaths": data_files,
|
152 |
+
"split_file": split_file,
|
153 |
+
"split": split,
|
154 |
+
"data_metadata": data_metadata,
|
155 |
+
},
|
156 |
+
),
|
157 |
+
)
|
158 |
+
return ret
|
159 |
+
|
160 |
+
def _generate_examples(self, filepaths, split_file, split, data_metadata):
|
161 |
+
"""Generate GBI-16-2D examples"""
|
162 |
+
|
163 |
+
for idx, (filepath, item) in enumerate(zip(filepaths, data_metadata)):
|
164 |
+
task_instance_key = f"{self.config.name}-{split}-{idx}"
|
165 |
+
with fits.open(filepath, memmap=False) as hdul:
|
166 |
+
if len(hdul) > 1:
|
167 |
+
# multiextension ... paste together the amplifiers
|
168 |
+
data, _ = read_lris(filepath)
|
169 |
+
else:
|
170 |
+
data = hdul[0].data
|
171 |
+
image_data = data[:, :]
|
172 |
+
yield task_instance_key, {**{"image": image_data}, **item}
|
README.md
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: cc-by-4.0
|
3 |
+
pretty_name: Ground-based Imaging data
|
4 |
+
tags:
|
5 |
+
- astronomy
|
6 |
+
- compression
|
7 |
+
- images
|
8 |
+
---
|
9 |
+
|
10 |
+
# GBI-16-2D Dataset
|
11 |
+
|
12 |
+
SGBI-16-2D is a dataset which is part of the AstroCompress project. It contains data assembled from the Keck Telescope. <TODO>Describe data format</TODO>
|
13 |
+
|
14 |
+
# Usage
|
15 |
+
|
16 |
+
You first need to install the `datasets` and `astropy` packages:
|
17 |
+
|
18 |
+
```bash
|
19 |
+
pip install datasets astropy
|
20 |
+
```
|
21 |
+
|
22 |
+
There are two datasets: `tiny` and `full`, each with `train` and `test` splits. The `tiny` dataset has 2 2D images in the `train` and 1 in the `test`. The `full` dataset contains all the images in the `data/` directory.
|
23 |
+
|
24 |
+
## Local Use (RECOMMENDED)
|
25 |
+
|
26 |
+
You can clone this repo and use directly without connecting to hf:
|
27 |
+
|
28 |
+
```bash
|
29 |
+
git clone https://huggingface.co/datasets/AstroCompress/GBI-16-2D
|
30 |
+
```
|
31 |
+
|
32 |
+
```bash
|
33 |
+
git lfs pull
|
34 |
+
```
|
35 |
+
|
36 |
+
Then `cd SBI-16-3D` and start python like:
|
37 |
+
|
38 |
+
```python
|
39 |
+
from datasets import load_dataset
|
40 |
+
dataset = load_dataset("./GBI-16-2D.py", "tiny", data_dir="./data/", writer_batch_size=1, trust_remote_code=True)
|
41 |
+
ds = dataset.with_format("np")
|
42 |
+
```
|
43 |
+
|
44 |
+
Now you should be able to use the `ds` variable like:
|
45 |
+
|
46 |
+
```python
|
47 |
+
ds["test"][0]["image"].shape # -> (TBD)
|
48 |
+
```
|
49 |
+
|
50 |
+
Note of course that it will take a long time to download and convert the images in the local cache for the `full` dataset. Afterward, the usage should be quick as the files are memory-mapped from disk.
|
51 |
+
|
52 |
+
|
53 |
+
## Use from Huggingface Directly
|
54 |
+
|
55 |
+
This method may only be an option when trying to access the "tiny" version of the dataset.
|
56 |
+
|
57 |
+
To directly use from this data from Huggingface, you'll want to log in on the command line before starting python:
|
58 |
+
|
59 |
+
```bash
|
60 |
+
huggingface-cli login
|
61 |
+
```
|
62 |
+
|
63 |
+
or
|
64 |
+
|
65 |
+
```
|
66 |
+
import huggingface_hub
|
67 |
+
huggingface_hub.login(token=token)
|
68 |
+
```
|
69 |
+
|
70 |
+
Then in your python script:
|
71 |
+
|
72 |
+
```python
|
73 |
+
from datasets import load_dataset
|
74 |
+
dataset = load_dataset("AstroCompress/GBI-16-2D", "tiny", writer_batch_size=1, trust_remote_code=True)
|
75 |
+
ds = dataset.with_format("np")
|
76 |
+
```
|
77 |
+
|
78 |
+
|
79 |
+
## Demo Colab Notebook
|
80 |
+
We provide a demo collab notebook to get started on using the dataset [here](https://colab.research.google.com/drive/1SuFBPZiYZg9LH4pqypc_v8Sp99lShJqZ?usp=sharing).
|
81 |
+
|
82 |
+
## Utils scripts
|
83 |
+
Note that utils scripts such as `eval_baselines.py` must be run from the parent directory of `utils`, i.e. `python utils/eval_baselines.py`.
|
data/LR.20051204.41155.fits
ADDED
|
data/LR.20051204.41651.fits
ADDED
|
data/LR.20051204.43259.fits
ADDED
|
data/LR.20051204.43899.fits
ADDED
|
data/LR.20051204.46034.fits
ADDED
|
data/LR.20051204.47387.fits
ADDED
|
data/LR.20051204.49021.fits
ADDED
|
data/LR.20051204.51257.fits
ADDED
|
data/LR.20051204.53196.fits
ADDED
|
data/LR.20051204.54066.fits
ADDED
|
data/LR.20051204.56002.fits
ADDED
|
data/LR.20051204.57105.fits
ADDED
|
data/LR.20051204.57873.fits
ADDED
|
data/LR.20060530.30214.fits
ADDED
|
data/LR.20060530.32407.fits
ADDED
|
data/LR.20060530.36483.fits
ADDED
|
data/LR.20060530.43065.fits
ADDED
|
data/LR.20060530.45164.fits
ADDED
|
data/LR.20060530.46025.fits
ADDED
|
data/LR.20060530.48970.fits
ADDED
|
data/LR.20060530.50806.fits
ADDED
|
data/LR.20060530.51656.fits
ADDED
|
data/LR.20060531.46897.fits
ADDED
|
data/LR.20060531.49568.fits
ADDED
|
data/LR.20060531.50684.fits
ADDED
|
data/LR.20060531.50878.fits
ADDED
|
data/LR.20060725.29836.fits
ADDED
|
data/LR.20060725.37294.fits
ADDED
|
data/LR.20060725.42247.fits
ADDED
|
data/LR.20060725.44412.fits
ADDED
|
data/LR.20060725.46740.fits
ADDED
|
data/LR.20060725.47513.fits
ADDED
|
data/LR.20060725.49810.fits
ADDED
|
data/LR.20060726.41842.fits
ADDED
|
data/LR.20060726.48303.fits
ADDED
|
data/LR.20060726.49184.fits
ADDED
|
data/LR.20060921.21065.fits
ADDED
|
data/LR.20060921.30235.fits
ADDED
|
data/LR.20060921.30742.fits
ADDED
|
data/LR.20060921.31853.fits
ADDED
|
data/LR.20060921.33371.fits
ADDED
|
data/LR.20060921.43710.fits
ADDED
|
data/LR.20061121.19974.fits
ADDED
|
data/LR.20061121.27414.fits
ADDED
|
data/LR.20061121.49514.fits
ADDED
|
data/LR.20070416.21338.fits
ADDED
|
data/LR.20070416.24302.fits
ADDED
|