File size: 6,656 Bytes
45f037d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import pathlib
import textwrap

import google.generativeai as genai

from IPython.display import display
from IPython.display import Markdown

import PIL.Image
import time
import os

import random
import numpy as np
def seed_everything(seed):
    random.seed(seed)
    np.random.seed(seed)
    os.environ['PYTHONHASHSEED'] = str(seed)
    # torch.manual_seed(seed)
    # torch.cuda.manual_seed(seed)
    # torch.backends.cudnn.deterministic = True
    # env.seed(seed)
seed_everything(1)

levels = [3,4,5]
in_context_example_num = 0 # 0, 1, 2, 4, 8

GOOGLE_API_KEY='YOUR-API-KEY'
genai.configure(api_key=GOOGLE_API_KEY)
model = genai.GenerativeModel('gemini-pro-vision')
if in_context_example_num > 0:
    output_path = "output/output_img_%d/"%(in_context_example_num)
    input_backup_path = "input/input_backup_img_%d/"%(in_context_example_num)
else:
    output_path = "output/output_img/"
    input_backup_path = "input/input_backup_img/"

os.makedirs(output_path, exist_ok=True)
os.makedirs(input_backup_path, exist_ok=True)

EXAMPLE_DICT = {
    3: [],
    4: [],
    5: [],
}
for level in levels:
    for example_id in range(8):
        curr_example_pack = {}
        curr_example_pack["image_path"] = "example/level%d/image_input/%d.jpg"%(level, example_id)
        with open("example/level%d/text_input/%d.txt"%(level, example_id), 'r') as f:
            curr_example_pack["question"] = f.read()
        with open("example/level%d/answer/%d.txt"%(level, example_id), 'r') as f:
            curr_example_pack["answer"] = f.read()
        EXAMPLE_DICT[level].append(curr_example_pack)

example_img = PIL.Image.open('prompt-visual-images/example0.jpg')
for level in levels:
    os.makedirs(output_path + "level%d"%(level), exist_ok=True)
    os.makedirs(input_backup_path + "level%d"%(level), exist_ok=True)
    start_idx = 0
    end_idx = 100
    runned_term = 0
    input_img_path = "level%d/image_input/"%(level)
    input_txt_path = "level%d/text_input/"%(level)

    while True:
        try:
            curr_id = start_idx + runned_term
            if curr_id >= end_idx:
                break
            prompt_input_1 = '''In this task, you will analyze an image containing several stacks of blocks. Later, you will be presented with four choices, each offering a textual representation of a block configuration. You will need to choose the configuration that exactly reflects the contents of the given image.

## Game Setup
- Each block has a unique color (blue, yellow, purple, orange, red, green).
- Blocks are stacked vertically in a stack, forming multiple stacks.

This is an image input example:\n
'''

            prompt_input_2 = '''
This example features four blocks arranged in three stacks:
- Stack 1: Purple block (alone)
- Stack 2: Blue block (alone)
- Stack 3: From bottom to top: Orange block, Red block

Here are examples of textual representations:

(A)
- Stack with red block, yellow block, from bottom to top
- Stack with orange block, purple block, green block, from bottom to top

(B)
- Stack with purple block
- Stack with blue block
- Stack with orange block, red block, from bottom to top

(C)
- Stack with orange block
- Stack with purple block
- Stack with blue block
- Stack with green block, yellow block, from bottom to top

(D)
- Stack with green block
- Stack with yellow block, blue block, from bottom to top
- Stack with red block, orange block, from bottom to top

We can analyze which text representation exactly reflects the configurations in the image accordingly. In this example:
- The input image has 3 stacks, while Candidate A only has 2 stacks. Therefore, Candidate A is not the correct answer.
- Similarly, Candidate C has 4 stacks, which also cannot be correct.
- For Candidate B, the blocks in each stack match what's shown in the image. This is the correct answer.
- For Candidate D, the blocks in each stack do not match the image. For example, stack 1 in the image has a purple block, and there is no any purple block in Candidate D. So this is incorrect.
- Therefore, the final answer is B.

## Procedure and Output
Your output should follow this format:
1. First, analyze the block configuration in the image and candidates as shown above;
2. Then, answer the question with the format <Output> <Choice>, where <Choice> is one of {A,B,C,D}. For example, "<Output> A".
'''

            prompt_examples = []
            image_examples = []
            if in_context_example_num > 0:
                prompt_examples.append("## Example:\n")
                example_indices = random.sample(range(8), in_context_example_num)
                for example_index in example_indices:
                    this_example = EXAMPLE_DICT[level][example_index]
                    image_examples.append(PIL.Image.open(this_example["image_path"]))
                    prompt_examples.append(this_example["question"] + "\n" + this_example["answer"] + "\n")
            prompt_input_3 = "\n\nNow please choose the correct textual representation based on the given image below:\n"
            prompt_input_4 = "\nHere are the textual candidates:\n"
            with open(input_txt_path + "%d.txt"%(curr_id), 'r') as f:
                candidates = f.read()
            input_img = PIL.Image.open(input_img_path + "%d.jpg"%(curr_id))
            model_input_seq = [prompt_input_1, example_img, prompt_input_2]
            if in_context_example_num > 0:
                assert len(prompt_examples) == len(image_examples) + 1
                assert len(prompt_examples) == in_context_example_num + 1
                model_input_seq.append(prompt_examples[0])
                for example_index in range(in_context_example_num):
                    model_input_seq.append(image_examples[example_index])
                    model_input_seq.append(prompt_examples[example_index+1])
            model_input_seq += [prompt_input_3, input_img, prompt_input_4, candidates]
            # , prompt_input_3, input_img, prompt_input_4, candidates]
            response = model.generate_content(model_input_seq)

            with open(input_backup_path + "level%d/%d.txt"%(level, curr_id), "w") as f:
                contents = ""
                for input_prompt_index in range(len(model_input_seq)):
                    if type(model_input_seq[input_prompt_index]) == type("string"):
                        contents += model_input_seq[input_prompt_index]
                f.write(contents)
            with open(output_path + "level%d/%d.txt"%(level, curr_id), "w") as f:
                f.write(response.text)
            time.sleep(2)
            runned_term += 1
        except:
            time.sleep(2)
            pass