Datasets:
File size: 11,221 Bytes
45f037d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 |
import pathlib
import textwrap
import google.generativeai as genai
import PIL.Image
import time
import os
import random
import numpy as np
def seed_everything(seed):
random.seed(seed)
np.random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
# torch.manual_seed(seed)
# torch.cuda.manual_seed(seed)
# torch.backends.cudnn.deterministic = True
# env.seed(seed)
seed_everything(1)
levels = [3,4,5,6,7,8]
in_context_example_num = 0 # 0, 1, 2, 4, 8
GOOGLE_API_KEY='YOUR-API-KEY'
genai.configure(api_key=GOOGLE_API_KEY)
model = genai.GenerativeModel('gemini-pro-vision')
if in_context_example_num > 0:
output_path = "output/output_img_%d/"%(in_context_example_num)
input_backup_path = "input/input_backup_img_%d/"%(in_context_example_num)
else:
output_path = "output/output_img/"
input_backup_path = "input/input_backup_img/"
os.makedirs(output_path, exist_ok=True)
os.makedirs(input_backup_path, exist_ok=True)
loop_time = 0
EXAMPLE_DICT = {
3: [],
4: [],
5: [],
6: [],
7: [],
8: []
}
# Prepare examples
for level in levels:
for example_id in range(8):
example_path = "example/level%d/img/"%(level)
img_input = PIL.Image.open(example_path + "%d.png"%(example_id))
with open("example/level%d/question/%d.txt"%(level, example_id), "r") as f:
example_candidates = f.read()
with open("example/level%d/analysis/%d.txt"%(level, example_id), "r") as f:
text_input = f.read()
this_example = (img_input, example_candidates, text_input)
EXAMPLE_DICT[level].append(this_example)
import ipdb; ipdb.set_trace()
for level in levels:
os.makedirs(output_path + "level%d"%(level), exist_ok=True)
os.makedirs(input_backup_path + "level%d"%(level), exist_ok=True)
start_idx = 0
end_idx = 100
runned_term = 0
map_path = "maps/level%d/img/"%(level)
while True:
try:
curr_id = start_idx + runned_term
if curr_id >= end_idx:
break
img_input = PIL.Image.open(map_path + "%d.png"%(curr_id))
prompt_input_1 = '''
In this task, you will analyze a maze presented in an image. Later, you will be presented with four choices, each offering a textual representation of a candidate maze. You will need to choose the representation that exactly reflects the contents of the given image.
The following figure illustrates the appearances of the player, holes, lands, and the goal within the maze in the image.
'''
prompt_input_2 = '''
This is how the player, the holes (non-safe grid), the lands (safe grids), and the goals look like in a map:
- The player is represented as "@"
- The hole is represented as "#"
- The safe grid is represented as "_"
- The goal is represented as "*"
- If the player is at the goal (at this case the game is solved), that grid is represented as "%"
We provide an example to illustrate how to interpret the input, candidates, and answer the question. Here is the image input:
'''
prompt_input_3 = '''
Here are the textual candidates:
(A)
| | Col 1 | Col 2 | Col 3 |
| Row 1 | # | _ | _ |
| Row 2 | # | @ | # |
| Row 3 | _ | * | _ |
(B)
| | Col 1 | Col 2 | Col 3 | Col 4 | Col 5 |
| Row 1 | _ | _ | _ | _ | _ |
| Row 2 | _ | # | _ | _ | _ |
| Row 3 | _ | # | * | _ | # |
| Row 4 | _ | @ | _ | _ | _ |
| Row 5 | _ | _ | _ | # | _ |
(C)
| | Col 1 | Col 2 | Col 3 | Col 4 |
| Row 1 | @ | # | _ | _ |
| Row 2 | _ | _ | _ | _ |
| Row 3 | _ | _ | _ | _ |
| Row 4 | # | _ | _ | * |
(D)
| | Col 1 | Col 2 | Col 3 | Col 4 |
| Row 1 | _ | _ | _ | _ |
| Row 2 | * | _ | _ | _ |
| Row 3 | @ | _ | # | _ |
| Row 4 | _ | _ | _ | # |
Here is an example of how to analyze and answer the question:
- First, we focus on the difference of the maze shape betweeen the candidates and the input image.
- We begin by examining the input image. It is a 4-by-4 maze. We then review the candidates. Candidate A is a 3-by-3 maze. Therefore, it is not the correct answer. Similarly, Candidate B is a 5-by-5 maze, which also cannot be correct. Both Candidate C and Candidate D are 4-by-4 mazes. Now we only need to choose from them.
- For the remaining candidates, we compare the positions of the players, goals, and the holes in the maze.
- We first check the input image. What is the position of the player in the image? The player is in row 1, column 1. We then check the remaining candidates. For Candidate C, the textual representation indicates the player is also at row 1, column 1, matching the input image. For Candidate D, the player is located at row 3, column 1. Hence, Candidate D is not the correct answer.
- We double check the remaining Candidate C, and it correctly shows the position of the player, holes, and the goal. It is therefore the correct answer.
<Answer> C
Your output should consist of two parts:
1. First, analysis the input image and candidates similar to the reasoning process above.
2. Following the reasoning process, output answer as "<Answer> <Choice>", where "<Choice>" is one of {A,B,C,D}.
Important: Note that there will be only one correct answer. If you find no answer or multiple answers, you must go back and recheck your reasoning process. You are not allowed to provide 0 or more than 1 answer.
'''
candidate_examples = []
prompt_examples = []
image_examples = []
if in_context_example_num > 0:
prompt_examples.append("## Example:\n")
example_indices = random.sample(range(8), in_context_example_num)
for example_index in example_indices:
this_example = EXAMPLE_DICT[level][example_index]
image_examples.append(this_example[0])
candidate_examples.append(this_example[1])
prompt_examples.append(this_example[2] + "\n")
prompt_input_4 = "\nNow answer the question below. Here is the image input:"
prompt_input_5 = "\nHere are the textual candidates:"
prompt_img_1 = PIL.Image.open('prompt-visual-images/system-figure-1.png')
prompt_img_2 = PIL.Image.open('prompt-visual-images/system-figure-2.png')
model_input_seq = [prompt_input_1, prompt_img_1, prompt_input_2, prompt_img_2, prompt_input_3]
if in_context_example_num > 0:
assert len(prompt_examples) == len(image_examples) + 1
assert len(prompt_examples) == in_context_example_num + 1
model_input_seq.append(prompt_examples[0])
for example_index in range(in_context_example_num):
model_input_seq.append(image_examples[example_index])
model_input_seq.append(candidate_examples[example_index])
model_input_seq.append(prompt_examples[example_index+1])
with open("maps/level%d/question/%d.txt"%(level, curr_id), 'r') as f:
candidates_str = f.read()
# candidates_str = ""
# # build candidates strings
# wrong_choices = []
# wrong_sizes = [3,4,5,6,7,8]
# wrong_sizes.remove(level)
# picked_choice = random.sample(wrong_sizes,2)
# # candidate with wrong size: 2
# used_candidates = []
# for select_level in picked_choice:
# select_map = random.sample(range(100), 1)[0]
# with open("../maps/level%d_table/%d.txt"%(select_level, select_map), "r") as f:
# select_content = f.read()
# wrong_choices.append(select_content)
# used_candidates.append("%d-%d"%(select_level, select_map))
# # candidate with correct size: 1
# select_map = random.sample([t for t in range(100) if t != curr_id], 1)[0]
# with open("../maps/level%d_table/%d.txt"%(level, select_map), "r") as f:
# select_content = f.read()
# wrong_choices.append(select_content)
# used_candidates.append("%d-%d"%(level, select_map))
# # correct candidate
# with open("../maps/level%d_table/%d.txt"%(level, curr_id), "r") as f:
# correct_candidate = f.read()
# # build candidate order
# correct_candidate_id = random.sample(range(4), 1)[0]
# correct_size_candidate_id = random.sample([x for x in range(4) if x != correct_candidate_id], 1)[0]
# candidate_order_list = []
# used_candidates_order_list = []
# wrong_size_index = 0 # This is to go through two incorrect caniddates with incorrect size
# for candidate_index in range(4):
# if candidate_index == correct_candidate_id:
# candidate_order_list.append(correct_candidate)
# used_candidates_order_list.append("%d-%d"%(level, curr_id))
# elif candidate_index == correct_size_candidate_id:
# candidate_order_list.append(wrong_choices[-1])
# used_candidates_order_list.append(used_candidates[-1])
# else:
# candidate_order_list.append(wrong_choices[wrong_size_index])
# used_candidates_order_list.append(used_candidates[wrong_size_index])
# wrong_size_index += 1
## save input maps, and correct answer
# with open("answer-key-whole-map-9/level%d/%d.txt"%(level,curr_id), 'w') as f:
# solutions_txt = ""
# for each_used_candidate in used_candidates_order_list:
# solutions_txt += each_used_candidate
# solutions_txt += "\n"
# solutions_txt += "%s"%(correct_candidate_id)
# f.write(solutions_txt)
## build candidate string
# candidates_str = "\n(A)\n" + candidate_order_list[0] + "\n(B)\n" + candidate_order_list[1] + "\n(C)\n" + candidate_order_list[2] + "\n(D)\n" + candidate_order_list[3]
model_input_seq += [prompt_input_4, img_input, prompt_input_5, candidates_str]
response = model.generate_content(model_input_seq)
with open(input_backup_path + "level%d/%d.txt"%(level, curr_id), "w") as f:
contents = ""
for input_prompt_index in range(len(model_input_seq)):
if type(model_input_seq[input_prompt_index]) == type("string"):
contents += model_input_seq[input_prompt_index]
f.write(contents)
with open(output_path + "level%d/%d.txt"%(level, curr_id), "w") as f:
f.write(response.text)
# import ipdb; ipdb.set_trace()
# pass
time.sleep(2)
runned_term += 1
except:
time.sleep(2)
pass
# pass
# cookie_picture = [{
# 'mime_type': 'image/png',
# 'data': Path('cookie.png').read_bytes()
# }]
# prompt = "Do these look store-bought or homemade?"
# response = model.generate_content(
# model="gemini-pro-vision",
# content=[prompt, cookie_picture]
# )
# print(response.text) |