|
import pathlib |
|
import textwrap |
|
|
|
import google.generativeai as genai |
|
|
|
import PIL.Image |
|
import time |
|
import os |
|
|
|
import random |
|
import numpy as np |
|
def seed_everything(seed): |
|
random.seed(seed) |
|
np.random.seed(seed) |
|
os.environ['PYTHONHASHSEED'] = str(seed) |
|
|
|
|
|
|
|
|
|
seed_everything(1) |
|
|
|
def random_generate_questions(): |
|
if os.path.isdir("questions-hole-pos-50"): |
|
print("Questions are already generated") |
|
return |
|
os.makedirs("questions-hole-pos-50", exist_ok=False) |
|
os.makedirs("answers-hole-pos-50", exist_ok=False) |
|
for level in range(3,9): |
|
os.makedirs("questions-hole-pos-50/level%d"%(level)) |
|
os.makedirs("answers-hole-pos-50/level%d"%(level)) |
|
for question_id in range(100): |
|
|
|
row_num = random.sample(range(level), 1)[0] |
|
col_num = random.sample(range(level), 1)[0] |
|
|
|
with open("utils/maps-50-text/level%d/%d.txt"%(level, question_id), "r") as f: |
|
contents = f.read() |
|
rows = contents.split('\n') |
|
grid_content = rows[row_num][col_num] |
|
if grid_content == "H": |
|
answer = "Y" |
|
else: |
|
answer = "N" |
|
|
|
question = "Is there a hole in row %d, column %d?"%(row_num+1, col_num+1) |
|
with open("questions-hole-pos-50/level%d/%d.txt"%(level, question_id), "w") as f: |
|
f.write(question) |
|
with open("answers-hole-pos-50/level%d/%d.txt"%(level, question_id), "w") as f: |
|
f.write(answer) |
|
|
|
|
|
|
|
levels = [3,4,5,6,7,8] |
|
in_context_example_num = 0 |
|
|
|
|
|
GOOGLE_API_KEY='YOUR-API-KEY' |
|
genai.configure(api_key=GOOGLE_API_KEY) |
|
model = genai.GenerativeModel('gemini-pro-vision') |
|
if in_context_example_num > 0: |
|
output_path = "output/output_img_%d/"%(in_context_example_num) |
|
input_backup_path = "input/input_backup_img_%d/"%(in_context_example_num) |
|
else: |
|
output_path = "output/output_img/" |
|
input_backup_path = "input/input_backup_img/" |
|
|
|
os.makedirs(output_path, exist_ok=True) |
|
os.makedirs(input_backup_path, exist_ok=True) |
|
|
|
EXAMPLE_DICT = { |
|
3: [], |
|
4: [], |
|
5: [], |
|
6: [], |
|
7: [], |
|
8: [], |
|
} |
|
|
|
|
|
for level in levels: |
|
for example_id in range(8): |
|
img_input = PIL.Image.open("example/level%d/img/%d.png"%(level, example_id)) |
|
with open("example/level%d/question/%d.txt"%(level, example_id), "r") as f: |
|
question_input = f.read() |
|
with open("example/level%d/answer/%d.txt"%(level, example_id), "r") as f: |
|
answer_input = f.read() |
|
this_example = (img_input, question_input, answer_input) |
|
EXAMPLE_DICT[level].append(this_example) |
|
|
|
|
|
for level in levels: |
|
os.makedirs(output_path + "level%d"%(level), exist_ok=True) |
|
os.makedirs(input_backup_path + "level%d"%(level), exist_ok=True) |
|
start_idx = 0 |
|
end_idx = 100 |
|
runned_term = 0 |
|
map_path = "maps/level%d/img/"%(level) |
|
while True: |
|
try: |
|
curr_id = start_idx + runned_term |
|
if curr_id >= end_idx: |
|
break |
|
img_input = PIL.Image.open(map_path + "%d.png"%(curr_id)) |
|
prompt_input_1 = ''' |
|
In this task, you will analyze a maze to determine if there is a hole in a specific position. |
|
The following figure illustrates the appearances of the player, holes, lands, and the goal within the maze. You will need to focus on the appearance of the hole. |
|
''' |
|
prompt_input_2 = ''' |
|
Here is an example to illustrate how to analyze and answer the question: |
|
''' |
|
prompt_input_3 = ''' |
|
Example question: Is there a hole in row 3, column 3? |
|
|
|
In this example: |
|
- We check the position in row 3, column 3. |
|
- According to the image, it is a land square. It does not contain a hole. |
|
- Therefore, you will output "<Output> No". |
|
|
|
Your output should be: "<Output> No" or "<Output> Yes", depending on whether there is a hole at the specified position. |
|
''' |
|
question_examples = [] |
|
answer_examples = [] |
|
image_examples = [] |
|
if in_context_example_num > 0: |
|
example_indices = random.sample(range(8), in_context_example_num) |
|
for example_index in example_indices: |
|
this_example = EXAMPLE_DICT[level][example_index] |
|
image_examples.append(this_example[0]) |
|
question_examples.append(this_example[1] + "\n") |
|
answer_examples.append(this_example[2] + "\n\n") |
|
prompt_input_4 = "\n\nNow you will analyze the following maze and answer the question: " |
|
with open("maps/level%d/question/%d.txt"%(level, curr_id), "r") as f: |
|
prompt_input_5 = f.read() |
|
prompt_img_1 = PIL.Image.open('prompt-visual-images/system-figure-1.png') |
|
prompt_img_2 = PIL.Image.open('prompt-visual-images/system-figure-2.png') |
|
model_input_seq = [prompt_input_1, prompt_img_1, prompt_input_2, prompt_img_2, prompt_input_3] |
|
if in_context_example_num > 0: |
|
assert len(question_examples) == len(image_examples) |
|
assert len(question_examples) == in_context_example_num |
|
model_input_seq.append("## Example:\n") |
|
for example_index in range(in_context_example_num): |
|
model_input_seq.append(image_examples[example_index]) |
|
model_input_seq.append(question_examples[example_index]) |
|
model_input_seq.append(answer_examples[example_index]) |
|
model_input_seq += [prompt_input_4, img_input, prompt_input_5] |
|
|
|
response = model.generate_content(model_input_seq) |
|
with open(input_backup_path + "level%d/%d.txt"%(level, curr_id), "w") as f: |
|
contents = "" |
|
for input_prompt_index in range(len(model_input_seq)): |
|
if type(model_input_seq[input_prompt_index]) == type("string"): |
|
contents += model_input_seq[input_prompt_index] |
|
f.write(contents) |
|
with open(output_path + "level%d/%d.txt"%(level, curr_id), "w") as f: |
|
f.write(response.text) |
|
|
|
|
|
time.sleep(2) |
|
runned_term += 1 |
|
except: |
|
time.sleep(2) |
|
pass |
|
|
|
|
|
|
|
|